CN110246926B - 一种制备全无机钙钛矿太阳能电池的磁控溅射方法 - Google Patents

一种制备全无机钙钛矿太阳能电池的磁控溅射方法 Download PDF

Info

Publication number
CN110246926B
CN110246926B CN201910460532.6A CN201910460532A CN110246926B CN 110246926 B CN110246926 B CN 110246926B CN 201910460532 A CN201910460532 A CN 201910460532A CN 110246926 B CN110246926 B CN 110246926B
Authority
CN
China
Prior art keywords
magnetron sputtering
solar cell
substrate
inorganic perovskite
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910460532.6A
Other languages
English (en)
Other versions
CN110246926A (zh
Inventor
周艳文
武俊生
李彤
陈雪娇
赵�卓
方方
滕越
张开策
李瑞武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Liaoning USTL
Original Assignee
University of Science and Technology Liaoning USTL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Liaoning USTL filed Critical University of Science and Technology Liaoning USTL
Priority to CN201910460532.6A priority Critical patent/CN110246926B/zh
Publication of CN110246926A publication Critical patent/CN110246926A/zh
Application granted granted Critical
Publication of CN110246926B publication Critical patent/CN110246926B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种制备全无机钙钛矿太阳能电池的磁控溅射方法,包括以下步骤:对衬底进行预处理;在预处理的衬底表面磁控溅射电子传输层,之后继续采用磁控溅射设备使用铯锡合金靶,获得全无机钙钛矿材料;在钙钛矿材料层上磁控溅射太阳能电池空穴传输层;烘干,完成阴极金属电极的沉积,得到全无机钙钛矿太阳能电池。优点是:采用臭氧清洗与磁控溅射氩离子清洗相结合,进一步确保材料表面光洁度。钙钛矿吸收层采用磁控溅射方法,通入碘蒸气,与铯锡等金属离子充分接触,形成具有良好的表面形貌,形成大晶粒和无孔洞的钙钛矿薄膜。

Description

一种制备全无机钙钛矿太阳能电池的磁控溅射方法
技术领域
本发明涉及一种制备全无机钙钛矿太阳能电池的磁控溅射方法,尤其涉及一种在碘气氛中利用铯锡合金靶制备全无机钙钛矿太阳能电池的磁控溅射方法。
背景技术
有机-无机杂化钙钛矿材料凭借其制备方法简单、带隙可调,吸收系数大、缺陷密度低、光学增益高等优点在光电器件领域具有广阔的应用前景。然而,伴随着有机-无机杂化钙钛矿材料在太阳能电池、发光二极管(LED)、激光等领域的迅猛发展,稳定性差的问题日渐突显,成为阻碍该材料在实际应用中的关键瓶颈。为了提高传统钙钛矿太阳能电池的稳定性与光电转换效率,中国专利公开号:CN 107768524 A,公布了一种高效稳定的钙钛矿太阳能电池及其制备方法,该专利在钙钛矿吸光层表面加了一层防紫外疏水层,首先,这种防紫外疏水层可以起到防潮保护作用,防止钙钛矿吸光层水解;其次,它还可以吸收紫外光,防止钙钛矿吸光层光解,并可将紫外光转化为可见光,加以利用。中国专利公开号:CN105047820 A,公布了一种基于PCBM修饰的ZnO纳米棒阵列的钙钛矿电池及其制备方面,该专利采用PCBM修饰ZnO纳米棒的阵列作为电子传输层,有效的提高了钙钛矿中电子传输性能,且效果显著,也可以一定程度上克服稳定性问题。专利将有机-无机相结合,充分发挥优势,开拓了提高钙钛矿性能的新途径。
近年来,全无机钙钛矿太阳能电池受到了广泛的研究关注。相比于有机-无机杂化钙钛矿材料,全无机钙钛矿材料具有相近甚至更加优异的光学性质,并且在稳定性方面具有明显的优势。中国专利公开号:CN 206148472 U,公布了一种基于超薄金属透明电极的钙钛矿太阳能电池,该专利采用的超薄金属透明电极包括成核籽晶层和超薄金属两层薄膜,有效解决了在大面积柔性材料上制备透明电极的问题,转化效率较高,且具备低成本、制备方法工作简单,可规模化生产。中国专利公开号:CN 106910798 A,公布了一种无机钙钛矿太阳能电池及其制备方法,该专利采用无机钙钛矿CsPbBr3作为光吸收层,相比于传统的有机卤化物金属钙钛矿,CsPbBr3对湿度和热具有更高的稳定性,这使得其可以在空气条件下制备,并且在使用过程中能够长时间的保持性能不变,因此降低了对生产条件的要求,为电池的大规模化制备创造了条件,而对无机钙钛矿的研究与应用也将是未来的发展趋势。
另一方面,目前仅有两种比较普遍的方法制备钙钛矿太阳能电池,如利用溶剂法和气相沉积法可以分别用来制备介孔型和平面异质结型钙钛矿太阳能电池。中国专利公开号:CN 103708534 A,公布了一种溶液法制备三碘化铯锡薄膜,该专利依次配比两种溶液混合后滴涂在基片上,经干燥成膜。溶剂法虽然操作简洁,但是不能精确地控制形貌、厚度及均匀性,缺陷多,同时存在有机组分和无机组分失配的现象;制备大尺度器件比较有挑战。而气相法因蒸发速率不同造成无机盐和有机盐配比失衡,并且有机阳离子在高温下的蒸发可能造成设备污染。中国专利公开号:CN 108039393 A,公布了一种全无机钙钛矿型太阳能电池及其制备方法,该专利采用溅射方法在钙钛矿薄膜表面沉积电子传输层,有利于电子的萃取。但是,溅射高能粒子会对钙钛矿薄膜造成一定的损伤,使得钙钛矿层与电子传输层之间形成大量的缺陷态,引入电子复合中心,最终造成电荷的传输中断。中国专利公开号:CN 107863424 A,公布了一种基于钙钛矿薄膜的全无机发光器件及其制备方法,该专利采用气相沉积和溶液法相结合的方法制备吸收层,制备过程较为复杂,且材料表面粗糙度较大,容易造成缺陷失效。中国专利公开号:CN 103706539 A,公布了一种超声喷印法制备三碘化铯锡薄膜的方法,该专利采配比溶液然后在超声喷印过程中进行反应,存在反应过程不充分的问题,且制备的样品与真空粉末沉积法相近,但设备成本较高。
综合上文内容,我们可以看出,现有的一些通过界面修饰和改良材料的工艺,制备过程都较为复杂且不可控因素较大。制备方法存在成膜质量不高和设备昂贵的问题。
发明内容
为克服现有技术的不足,本发明的目的是提供一种制备全无机钙钛矿太阳能电池的磁控溅射方法,该方法操作简单、薄膜结晶性好、形貌易于控制,提高钙钛矿太阳能电池的效率、增强钙钛矿太阳能电池稳定性、降低对温度和湿度的敏感性,同时,有效的避免重金属的污染。
为实现上述目的,本发明通过以下技术方案实现:
一种制备全无机钙钛矿太阳能电池的磁控溅射方法,包括以下步骤:
1)对衬底进行预处理;
2)在预处理的衬底表面磁控溅射电子传输层,之后继续采用磁控溅射设备使用铯锡合金靶,将覆有电子传输层的衬底置于靶材正上方,通入碘蒸气至衬底,完成化学反应,获得全无机钙钛矿材料;
3)在钙钛矿材料层上磁控溅射太阳能电池空穴传输层;
4)将步骤1)~步骤3)制备的器件烘干,完成阴极金属电极的沉积,得到全无机钙钛矿太阳能电池。
步骤1)中所述的衬底为导电玻璃,前处理方法为:首先使用玻璃清洗液清洗导电玻璃;然后将导电玻璃依次浸入丙酮、乙醇溶液和去离子水溶液中进行超声清洗处理;然后将导电玻璃放入臭氧清洗机干燥处理,最后将衬底置于磁控溅射设备中,采用氩离子轰击清洗。
所述的导电玻璃为FTO或ITO导电玻璃。
步骤2)中磁控溅射电子传输层的方法为:将前处理后的衬底置于射频磁控溅射真空腔内,镀膜前真空腔抽真空至3×10-3-5×10-3Pa;随后充入高纯氩气,工作压强0.2-0.5Pa;射频溅射功率为100-150W,靶距10-15cm,Ar通量为8-10sccm,溅射0.5-1h。
步骤2)中铯锡合金靶的铯锡原子比为1:1。
镀膜前抽真空至本底真空度3×10-3-5×10-3Pa,随后依次充入高纯氩气、碘蒸气,工作压强0.2-0.5Pa;射频溅射功率为100-150W,靶距10-15cm,Ar通量为8-12sccm,I2通量为5-10sccm,溅射1-2h。
步骤4)中将器件放置在臭氧清洗机中干燥,然后使用电阻蒸发镀膜设备蒸镀金金属电极,完成阴极金属电极的沉积。
与现有技术相比,本发明的有益效果是:
1)本发明采用臭氧清洗与磁控溅射氩离子清洗相结合,进一步确保材料表面光洁度。
2)本发明利用简单的物理和化学气相沉积法,开发了一种新的制备全无机钙钛矿太阳能电池的方法;
3)本发明的钙钛矿吸收层采用磁控溅射方法,通入碘蒸气,与铯锡等金属离子充分接触,形成具有良好的表面形貌,形成大晶粒和无孔洞的钙钛矿薄膜;
4)本发明的钙钛矿薄膜晶粒大、晶界少、均匀性好,可以有效的减少电子和空穴的复合,能够获得较高的开路电压和短路电流密度。
附图说明
图1是本发明的结构图。
图2是使用磁控溅射设备制备全无机钙钛矿材料的示意图。
图中:1-FTO导电玻璃 2-ZnO致密层 3-钙钛矿CsSnI3层 4-CuI空穴传输层 5-金属金电极 6-磁铁 7-铯锡合金靶 8-磁场 9-电场 10-薄膜。
具体实施方式
下面结合说明书附图对本发明进行详细地描述,但是应该指出本发明的实施不限于以下的实施方式。
一种制备全无机钙钛矿太阳能电池的磁控溅射方法,包括以下步骤:
1)对衬底进行前处理;衬底可为FTO导电玻璃,前处理方法为:首先使用玻璃清洗液清洗FTO导电玻璃;然后将FTO导电玻璃依次浸入丙酮、乙醇溶液和去离子水进行超声清洗处理;然后将FTO导电玻璃放入臭氧清洗机干燥处理。最后置于磁控溅射设备通入高纯氩气,在压强0.2-0.5Pa再进行100-150W的射频清洗。
2)在前处理后的衬底表面磁控溅射ZnO致密层;磁控溅射ZnO致密层的方法为:将前处理后的衬底置于射频磁控溅射真空腔内,镀膜前真空腔抽真空至3×10-3-5×10-3Pa;随后充入高纯氩气,工作压强0.2-0.5Pa;射频溅射功率为100-150W,靶距10-15cm,Ar通量为5-15sccm,溅射0.3-1h。
3)磁控溅射设备的靶材为铯锡合金靶,将覆有ZnO致密层的衬底置于靶材正上方,通入碘蒸气至衬底,完成化学反应,获得全无机钙钛矿材料;其中,铯锡合金靶的铯锡原子比为1:1。镀膜前抽真空至本底真空度3×10-3-5×10-3Pa,随后依次充入高纯氩气、碘蒸气,工作压强0.2-0.5Pa;射频溅射功率为100-150W,靶距10-15cm,Ar通量为5-15sccm,I2通量为10-20sccm,溅射1-2h。
4)在钙钛矿材料层上磁控溅射CuI作为太阳能电池空穴传输层;磁控溅射CuI太阳能电池空穴传输层方法为:将衬底置于真空腔内,镀膜前真空腔抽真空至本底真空度3×10-3-5×10-3Pa;随后充入高纯氩气,工作压强0.2-0.5Pa。射频溅射功率为50-100W,靶距10-15cm,Ar通量为10-30sccm,溅射1-3h。
5)将步骤1)~4)制备的器件烘干,完成阴极金属电极的沉积,得到全无机钙钛矿太阳能电池。具体的,将器件放置在臭氧清洗机中干燥,然后使用电阻蒸发镀膜设备蒸镀金电极,完成阴极金属电极的沉积。
实施例1
见图1、图2,一种制备全无机钙钛矿太阳能电池的磁控溅射方法,该全无机钙钛矿太阳能电池依次由衬底、ZnO致密层(电子传输层)、钙钛矿CsSnI3层、CuI空穴传输层、金属金电极组成,具体制备方法包括以下步骤:
1)对衬底进行前处理;衬底为FTO或ITO导电玻璃,前处理方法为:首先使用玻璃清洗液清洗导电玻璃;然后将导电玻璃依次浸入丙酮、乙醇溶液中进行超声清洗处理;再将导电玻璃用去离子水冲洗,并进行超声清洗处理;最后将导电玻璃放入臭氧清洗机干燥处理。
2)在前处理后的衬底表面磁控溅射ZnO致密层;磁控溅射ZnO致密层的方法为:将前处理后的衬底置于射频磁控溅射真空腔内,镀膜前真空腔抽真空至3×10-3Pa;随后充入高纯氩气,工作压强0.3Pa;射频溅射功率为125W,靶距13cm,Ar通量为10sccm,溅射0.5h。
3)磁控溅射设备的靶材为铯锡合金靶,将覆有ZnO致密层的衬底置于靶材正上方,通入碘蒸气至衬底,完成化学反应,获得全无机钙钛矿材料;其中,铯锡合金靶的铯锡原子比为1:1。镀膜前抽真空至本底真空度3×10-3Pa,随后依次充入高纯氩气、碘蒸气,工作压强0.3Pa;射频溅射功率为100W,靶距13cm,Ar通量为10sccm,I2通量为10sccm,溅射1h。
4)在钙钛矿材料层上磁控溅射CuI作为太阳能电池空穴传输层;磁控溅射CuI太阳能电池空穴传输层方法为:将衬底置于真空腔内,镀膜前真空腔抽真空至本底真空度3×10-3Pa;随后充入高纯氩气,工作压强0.3Pa。射频溅射功率为70W,靶距13cm,Ar通量为20sccm,溅射2h。
5)将步骤1)~4)制备的器件烘干,完成阴极金属电极的沉积,得到全无机钙钛矿太阳能电池。具体的,将器件放置在臭氧清洗机中干燥,然后使用电阻蒸发镀膜设备蒸镀金电极,完成阴极金属电极的沉积。
实施例2
见图1、图2,制备全无机钙钛矿太阳能电池的磁控溅射方法,包括以下步骤:
1)对衬底进行前处理;
首先使用玻璃清洗液清洗FTO导电玻璃衬底;再将衬底依次浸入丙酮、乙醇溶液中进行超声处理15分钟;再将衬底用去离子水冲洗,并进行超声处理15分钟;最后将衬底放入臭氧清洗机干燥处理15分钟。
2)在前处理后的衬底表面磁控溅射ZnO致密层;
其中,磁控溅射ZnO致密层方法为:将前处理后的衬底置于射频磁控溅射真空腔内,镀膜前将系统的真空度抽至本底真空度3×10-3Pa。随后充入高纯氩气,工作压强0.3Pa。射频溅射功率为125W,靶距13cm,Ar通量为10sccm,溅射0.5h。
3)将磁控溅射设备的靶材换为铯锡合金靶,把覆有ZnO致密层的衬底置于靶材正上方,通入碘蒸气至衬底,完成化学反应,获得全无机钙钛矿材料;
镀膜前系统的真空度抽至本底真空度3×10-3Pa。随后依次充入高纯氩气、碘蒸气,工作压强0.3Pa。射频溅射功率为100W,靶距13cm,Ar通量为10sccm,I2通量为10sccm,溅射1h。
4)在钙钛矿材料层上磁控溅射CuI太阳能电池空穴传输层;
其中,磁控溅射CuI太阳能电池空穴传输层方法为:将衬底置于射频磁控溅射真空腔内,镀膜前将系统的真空度抽至本底真空度3×10-3Pa。随后充入高纯氩气,工作压强0.3Pa。射频溅射功率为70W,靶距13cm,Ar通量为20sccm,溅射2h。
5)将步骤1)—4)制备的器件烘干,完成阴极金属电极的沉积,得到全无机钙钛矿太阳能电池。具体的,将器件放置在臭氧清洗机中干燥,然后使用电阻蒸发设备蒸镀金电极,完成阴极沉积。

Claims (5)

1.一种制备全无机钙钛矿太阳能电池的磁控溅射方法,其特征在于,该全无机钙钛矿太阳能电池依次由衬底;ZnO致密层,即电子传输层;钙钛矿CsSnI3层;CuI空穴传输层;金属金电极组成,包括以下步骤:
1)对衬底进行预处理;
2)在预处理的衬底表面磁控溅射电子传输层,之后继续采用磁控溅射设备使用铯锡合金靶,将覆有电子传输层的衬底置于靶材正上方,通入碘蒸气至衬底,完成化学反应,获得全无机钙钛矿材料层;
镀钙钛矿材料层前抽真空至本底真空度3×10-3-5×10-3Pa,随后依次充入高纯氩气、碘蒸气,工作压强0.2-0.5Pa;射频溅射功率为100-150W,靶距10-15cm,Ar通量为8-12sccm,I2通量为5-10sccm,溅射1-2h;
铯锡合金靶的铯锡原子比为1:1;
3)在钙钛矿材料层上磁控溅射太阳能电池空穴传输层;
4)将步骤 1)~步骤 3)制备的器件烘干,完成阴极金属电极的沉积,得到全无机钙钛矿太阳能电池。
2.根据权利要求1所述的一种制备全无机钙钛矿太阳能电池的磁控溅射方法,其特征在于,步骤1)中所述的衬底为导电玻璃,预处理方法为:首先使用玻璃清洗液清洗导电玻璃;然后将导电玻璃依次浸入丙酮、乙醇溶液和去离子水溶液中进行超声清洗处理;然后将导电玻璃放入臭氧清洗机干燥处理,最后将衬底置于磁控溅射设备中,采用氩离子轰击清洗。
3.根据权利要求2所述的一种制备全无机钙钛矿太阳能电池的磁控溅射方法,其特征在于,所述的导电玻璃为FTO或ITO导电玻璃。
4.根据权利要求1所述的一种制备全无机钙钛矿太阳能电池的磁控溅射方法,其特征在于,步骤2)中磁控溅射电子传输层的方法为:将预处理后的衬底置于射频磁控溅射真空腔内,镀电子传输层前真空腔抽真空至3×10-3-5×10-3Pa;随后充入高纯氩气,工作压强0.2-0.5Pa;射频溅射功率为100-150W,靶距10-15cm,Ar通量为8-10sccm,溅射0.5-1h。
5. 根据权利要求 1 所述的一种制备全无机钙钛矿太阳能电池的磁控溅射方法,其特征在于,步骤 4)中将器件放置在臭氧清洗机中干燥,然后使用电阻蒸发镀膜设备蒸镀金金属电极,完成阴极金属电极的沉积。
CN201910460532.6A 2019-05-30 2019-05-30 一种制备全无机钙钛矿太阳能电池的磁控溅射方法 Active CN110246926B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910460532.6A CN110246926B (zh) 2019-05-30 2019-05-30 一种制备全无机钙钛矿太阳能电池的磁控溅射方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910460532.6A CN110246926B (zh) 2019-05-30 2019-05-30 一种制备全无机钙钛矿太阳能电池的磁控溅射方法

Publications (2)

Publication Number Publication Date
CN110246926A CN110246926A (zh) 2019-09-17
CN110246926B true CN110246926B (zh) 2021-03-19

Family

ID=67885396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910460532.6A Active CN110246926B (zh) 2019-05-30 2019-05-30 一种制备全无机钙钛矿太阳能电池的磁控溅射方法

Country Status (1)

Country Link
CN (1) CN110246926B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463351A (zh) * 2020-05-06 2020-07-28 武汉理工大学 钙钛矿太阳能电池的防铅泄露封装结构及其封装方法
CN112909126B (zh) * 2021-02-02 2022-10-25 中南大学 一种PVK-TMDCs范德华异质结及其制备方法
CN113930763B (zh) * 2021-10-14 2023-11-07 华能新能源股份有限公司 一种在太阳能电池基底表面制备电极膜层的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140935B2 (ja) * 2006-03-28 2013-02-13 富士通セミコンダクター株式会社 マグネトロンスパッタ成膜装置、及び半導体装置の製造方法
CN103094393B (zh) * 2013-01-24 2016-07-06 尚越光电科技有限公司 基于三碘化铯锡的荧光聚光太阳能电池及其制备方法
CN105895726A (zh) * 2016-05-11 2016-08-24 徐翔星 含钙钛矿纳米晶下转换层的太阳能电池及其制备方法
US10273403B2 (en) * 2016-05-31 2019-04-30 Alliance For Sustainable Energy, Llc Nanoparticles for photovoltaic and LED devices and methods of making the same
CN107742661A (zh) * 2017-10-19 2018-02-27 辽宁科技大学 用物理气相沉积法制备无机锡基钙钛矿太阳能电池的方法

Also Published As

Publication number Publication date
CN110246926A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
CN110246926B (zh) 一种制备全无机钙钛矿太阳能电池的磁控溅射方法
CN105070841B (zh) 一种钙钛矿太阳能电池的制备方法
CN105552236B (zh) 一种钙钛矿太阳电池及其制备方法
CN105161623B (zh) 一种钙钛矿太阳能电池及其制备方法
CN104617165A (zh) 一种二硫化钼/缓冲层/硅n-i-p太阳能电池器件及其制备方法
CN104241447A (zh) 一种铜锌锡硫薄膜材料的制备方法
Miao et al. Effect of oxygen vacancies in the electron transfer layer SiZnSnO on the performance of perovskite solar cells
CN117615593B (zh) 一种大面积钙钛矿电池氧化镍空穴传输层钝化方法
Seok et al. Plasma damage-free deposition of transparent Sn-doped In2O3 top cathode using isolated plasma soft deposition for perovskite solar cells
CN114242897A (zh) 一种钙钛矿光电器件的封装的方法
CN106252516A (zh) 一种平面倒置半透明有机/无机杂化钙钛矿太阳电池器件及制备方法
CN112952005A (zh) 太阳能电池及其制备方法
CN101705473B (zh) 一种用于硅薄膜电池陷光结构研究的物理气相沉积设备
CN111362808A (zh) 钙钛矿薄膜的制备方法及太阳能电池
CN105261703B (zh) 一种以Cu:CrOx薄膜作为空穴传输层的钙钛矿光伏电池及其制备方法
CN112952001A (zh) 一种钙钛矿太阳能电池及其制备方法
CN103117361A (zh) 基于氧化镍阳极界面层的有机半导体薄膜太阳能电池的制备方法
CN104600153A (zh) 一种cigs太阳电池吸收层制备方法
CN112002812A (zh) 基于分步热蒸发制备钙钛矿太阳电池吸收层的方法及钙钛矿太阳电池的制备
CN113707817B (zh) 一种钙钛矿太阳能电池的无机空穴传输层的制备方法
CN115353767B (zh) 一种用于钙钛矿光伏规模化量产的电子传输层墨水
CN221777986U (zh) 一种镀膜设备
CN108642446A (zh) 一种多孔CrN涂层及其制备方法和一种超级电容器
CN113845896B (zh) 曲面有机铵金属卤化物薄膜、制备方法、太阳能电池及应用
CN117979714B (zh) 具有NiOx缓冲层的钙钛矿太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant