CN110241336A - 一种镁铝合金及其制备方法 - Google Patents
一种镁铝合金及其制备方法 Download PDFInfo
- Publication number
- CN110241336A CN110241336A CN201910666294.4A CN201910666294A CN110241336A CN 110241336 A CN110241336 A CN 110241336A CN 201910666294 A CN201910666294 A CN 201910666294A CN 110241336 A CN110241336 A CN 110241336A
- Authority
- CN
- China
- Prior art keywords
- powder
- magnesium alloy
- preparation
- evaporation
- magnesium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/02—Alloys based on magnesium with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/02—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明提供的一种镁铝合金及其制备方法,其包括步骤:一种镁铝合金的制备方法,包括步骤:S100将粉末填料均匀混合装入蒸发容器内,其填料成分为镁粉,铝粉,锰粉,铁粉,铬粉和硅粉;S200通过真空蒸镀法,加热蒸发容器内的混合物,在高真空高温条件下混合后的填料蒸发,进而在衬底表面进行沉积;S300将所获得的镁铝合金样品进行退火,冷却。从而通过合金成分控制,合金熔体净化、合金变质及晶粒组织细化,获得的镁铝合金各项同性,合金力学性能更加优异。
Description
技术领域
本发明涉及合金领域,具体地说,是一种镁铝合金及其制备方法。
背景技术
镁铝合金一般主要元素是镁和铝,再掺入其他的金属材料来加强其硬度。因本身金属金属,其导热性能和强度尤为突出。镁铝合金质坚量轻、密度低、散热性较好、抗压性较强,能充分满足3C产品高度集成化、轻薄化、微型化、抗摔撞及电磁屏蔽和散热的要求。其硬度是传统塑料机壳的数倍,但重量仅为后者的1/3,通常被用于中高档超薄型或尺寸较小的笔记本的外壳。而且,银白色的镁铝合金外壳可使产品更豪华、美观,而且易于上色,可通过表面处理工艺变成个性化的粉蓝色和粉红色,为笔记本电脑增色不少,这是工程塑料以及碳纤维无法比拟的。但是镁铝合金并不是很坚固耐磨,成本较高,比较昂贵,而且成型比工程塑料困难,所以笔记本电脑一般只把镁铝合金使用在顶盖上,很少有机型用镁铝合金来制造整个机壳。
发明内容
本发明的主要目的在于提供一种镁铝合金及其制备方法,其通过合金成分控制,合金熔体净化、合金变质及晶粒组织细化,获得的镁铝合金各项同性,合金力学性能更加优异。
为达到以上目的,本发明采用的技术方案为:一种镁铝合金包括以下质量百分比的组分:镁45~50%,铝48~53%,锰0.1~1%,铁0.2~0.5%,铬0.1~0.2%,余料为硅。
根据本发明的一实施例,一种镁铝合金包括以下质量百分比的组分:镁47%,铝51.8%,锰0.55%,铁0.32%,铬0.13%,余料为硅。
一种镁铝合金的制备方法,包括步骤:
S100将粉末填料均匀混合装入蒸发容器内,其填料成分为镁粉,铝粉,锰粉,铁粉,铬粉和硅粉;
S200通过真空蒸镀法,加热蒸发容器内的混合物,在高真空高温条件下混合后的填料蒸发,进而在衬底表面进行沉积;
S300将所获得的镁铝合金样品进行退火,冷却。
根据本发明的一实施例,所述步骤S100包括步骤:粉末填料中的各粉料的纯度不低于99.99%,粉料用行星球磨机以500~650rpm的速率研磨1~3小时。
根据本发明的一实施例,所述步骤S200包括步骤:所用的真空蒸镀设备的真空度为10-3Pa以下,加热蒸发方式为电子束加热,蒸镀时间2~4小时,蒸镀保护气体为高纯氩气,其纯度不低于99.99%。
根据本发明的一实施例,所述步骤300的退火工艺包括步骤:管式炉以10℃/min的升温速度升温至300℃,继续以5~6℃/min的升温速度升温至800℃,在氩气气氛下保温1小时,退火,冷却。
根据本发明的一实施例,所用的真空蒸镀设备的真空度为10-5Pa。
根据本发明的一实施例,退火温度在320~350℃。
本发明的有益之处在于:
(1)利用行星球磨机将原料粉末充分的混合均匀,通过真空蒸镀将混匀的填料粉末蒸镀于衬底上沉积,形成单相均匀合金,各原料金属原子间以金属键连接,对加工得到的合金样品进一步退火处理,可使其内部金属原子扩散更加均匀;本方法通过合金成分控制,合金熔体净化、合金变质及晶粒组织细化,获得的镁铝合金各项同性,合金力学性能更加优异。
(2)镁合金密度小,弹性模量高,但绝对强度普遍较低,无法经受高强度的物理损伤,铝合金强度大,塑性好,所以以两者为基础制成铝镁合金硬度和强度大、密度低、散热性和抗压性好等优点,能够满足3C产品(计算机、通信和消费类电子产品)高度集成化、轻薄化等要求,应用范围广泛。
(3)本制备方法所采用的真空蒸镀所需真空度高,需达到10-5Pa,能够有效减少杂质的掺入;同时采用离子束加热,温度高能量大,各原料金属原子间以金属键连接,更有助于形成单相均匀合金;
(4)退火温度在320~350℃,能够使镁铝合金再结晶,晶粒细化增大强度,同时使其内部金属原子扩散更加均匀。
(5)Mn是良好的脱氧剂和脱硫剂,其能够有效提升强度和硬度;Cr能提高强度和耐磨性;Si是脱氧剂和还原剂,其与Mn、Cr等结合能够有效增强抗腐蚀性和抗氧化性;各个合金元素在合金中弥散分布,能够使晶粒细化;真空蒸镀必须保证高的真空度,否则杂元素过多会影响合金性能,因为加入的元素提升了强度和硬度,不可避免的损失了塑性,所以需要进行退火,消除残余应力,细化晶粒调整组织,消除组织缺陷。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
实施例1
一种镁铝合金的制备方法,包括步骤:
(1)粉末填料中各组分的质量百分比为:镁粉47%,铝粉51.8%,锰粉0.55%,铁粉0.32%,铬粉0.13%,余料为硅粉;各粉料的纯度不低于99.99%,粉料用行星球磨机以500-650rpm的速率研磨1~3小时,达到细化混合的目的。
(2)通过真空蒸镀法,加热蒸发容器内的混合物,在高真空高温条件下混合后的填料蒸发,进而在衬底表面进行沉积,其中,所用的真空蒸镀设备的真空度需要达到10-5Pa,加热蒸发方式为电子束加热,蒸镀时间2~4小时,蒸镀保护气体为高纯氩气,其纯度不低于99.99%。
(3)退火工艺,管式炉以10℃/min的升温速度升温至300℃,继续以5~6℃/min的升温速度升温至800℃,在氩气气氛下保温1小时,退火,退火温度在320~350℃,冷却。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。
Claims (8)
1.一种镁铝合金,其特征在于,包括以下质量百分比的组分:镁45~50%,铝48~53%,锰0.1~1%,铁0.2~0.5%,铬0.1~0.2%,余料为硅。
2.根据权利要求1所述的镁铝合金,其特征在于,包括以下质量百分比的组分:镁47%,铝51.8%,锰0.55%,铁0.32%,铬0.13%,余料为硅。
3.一种如权利要求1或2所述的镁铝合金的制备方法,其特征在于,包括步骤:
S100 将粉末填料均匀混合装入蒸发容器内,其填料成分为镁粉,铝粉,锰粉,铁粉,铬粉和硅粉;
S200 通过真空蒸镀法,加热蒸发容器内的混合物,在高真空高温条件下混合后的填料蒸发,进而在衬底表面进行沉积;
S300 将所获得的镁铝合金样品进行退火,冷却。
4.根据权利要求3所述的镁铝合金的制备方法,其特征在于,所述步骤S100包括步骤:粉末填料中的各粉料的纯度不低于99.99%,粉料用行星球磨机以500~650rpm的速率研磨1~3小时。
5.根据权利要求4所述的镁铝合金的制备方法,其特征在于,所述步骤S200包括步骤:所用的真空蒸镀设备的真空度为10-3Pa以下,加热蒸发方式为电子束加热,蒸镀时间2~4小时,蒸镀保护气体为高纯氩气,其纯度不低于99.99%。
6.根据权利要求5所述的镁铝合金的制备方法,其特征在于,所述步骤300的退火工艺包括步骤:管式炉以10℃/min的升温速度升温至300℃,继续以5~6℃/min的升温速度升温至800℃,在氩气气氛下保温1小时,退火,冷却。
7.根据权利要求6所述的镁铝合金的制备方法,其特征在于,所用的真空蒸镀设备的真空度为10-5Pa。
8.根据权利要求7所述的镁铝合金的制备方法,其特征在于,退火温度在320~350℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910666294.4A CN110241336A (zh) | 2019-07-23 | 2019-07-23 | 一种镁铝合金及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910666294.4A CN110241336A (zh) | 2019-07-23 | 2019-07-23 | 一种镁铝合金及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110241336A true CN110241336A (zh) | 2019-09-17 |
Family
ID=67893240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910666294.4A Pending CN110241336A (zh) | 2019-07-23 | 2019-07-23 | 一种镁铝合金及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110241336A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112795824A (zh) * | 2020-12-24 | 2021-05-14 | 昆山智盛精密铸造有限公司 | 一种镁铝合金材料及其制备工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54106067A (en) * | 1978-02-08 | 1979-08-20 | Showa Denko Kk | Manufacture of powder of mg-al system alloy depending on natural decay |
CN103540819A (zh) * | 2013-09-27 | 2014-01-29 | 孟静 | 一种镁铝合金 |
CN103572134A (zh) * | 2013-11-05 | 2014-02-12 | 吴高峰 | 一种锰镁铝合金 |
CN104884666A (zh) * | 2012-12-26 | 2015-09-02 | Posco公司 | 铝镁镀层钢板及其制造方法 |
CN106435230A (zh) * | 2016-08-27 | 2017-02-22 | 安徽省宁国市海伟电子有限公司 | 一种金属化薄膜制作方法 |
-
2019
- 2019-07-23 CN CN201910666294.4A patent/CN110241336A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54106067A (en) * | 1978-02-08 | 1979-08-20 | Showa Denko Kk | Manufacture of powder of mg-al system alloy depending on natural decay |
CN104884666A (zh) * | 2012-12-26 | 2015-09-02 | Posco公司 | 铝镁镀层钢板及其制造方法 |
CN103540819A (zh) * | 2013-09-27 | 2014-01-29 | 孟静 | 一种镁铝合金 |
CN103572134A (zh) * | 2013-11-05 | 2014-02-12 | 吴高峰 | 一种锰镁铝合金 |
CN106435230A (zh) * | 2016-08-27 | 2017-02-22 | 安徽省宁国市海伟电子有限公司 | 一种金属化薄膜制作方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112795824A (zh) * | 2020-12-24 | 2021-05-14 | 昆山智盛精密铸造有限公司 | 一种镁铝合金材料及其制备工艺 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer | |
Liu et al. | Microstructure and the properties of FeCoCuNiSnx high entropy alloys | |
Jia et al. | Microstructure and thermal expansion behavior of spray-deposited Al–50Si | |
Sheikh et al. | Aluminizing for enhanced oxidation resistance of ductile refractory high-entropy alloys | |
Zhang et al. | Phase evolution characteristics of FeCoCrAlCuVxNi high entropy alloy coatings by laser high-entropy alloying | |
CN103122431B (zh) | 一种长周期结构相增强的镁锂合金的制备方法 | |
CN109338172A (zh) | 一种高熵合金增强的2024铝基复合材料及其制备方法 | |
Lee et al. | Synthesis of Mn–Al alloy nanoparticles by plasma arc discharge | |
Lin et al. | Influence of laser re-melting and vacuum heat treatment on plasma-sprayed FeCoCrNiAl alloy coatings | |
Sun et al. | Influence of spark plasma sintering temperature on the microstructure and strengthening mechanisms of discontinuous three-dimensional graphene-like network reinforced Cu matrix composites | |
Cherigui et al. | Structure of amorphous iron-based coatings processed by HVOF and APS thermally spraying | |
Luangvaranunt et al. | Aluminum-4 mass% copper/alumina composites produced from aluminum copper and rice husk ash silica powders by powder forging | |
Long et al. | High entropy alloy borides prepared by powder metallurgy process and the enhanced fracture toughness by addition of yttrium | |
Li et al. | Porous Nb-Ti based alloy produced from plasma spheroidized powder | |
Shi et al. | Preparation of Ni–Ti composite powder using radio frequency plasma spheroidization and its laser powder bed fusion densification | |
Wang et al. | Heterogeneous nucleation of Mg2Si on Sr11Sb10 nucleus in Mg–x (3.5, 5 wt.%) Si–1Al alloys | |
Jiang et al. | Fabrication of TiCp/Mg composites by the thermal explosion synthesis reaction in molten magnesium | |
Matyja et al. | Structure of the Ni-Co-Mn-In alloy obtained by mechanical alloying and sintering | |
CN110129596B (zh) | 薄带状纳米Al3(Sc,Zr)/Al复合孕育剂的制备方法 | |
Sun et al. | Fabrication of ZrB2-SiC powder with a eutectic phase for sintering or plasma spraying | |
CN110241336A (zh) | 一种镁铝合金及其制备方法 | |
Kumar et al. | Phase dependence of Fe-based bulk metallic glasses on properties of thermal spray coatings | |
CN110129631A (zh) | 一种内燃机用高强韧耐热铝合金材料及其制备方法 | |
Qin et al. | Microstructure evolution and reaction mechanism of reactive plasma sprayed Ti–C–N coatings | |
CN111101013A (zh) | 新型石墨烯铝复合材料的制备方法及石墨烯铝复合材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190917 |
|
RJ01 | Rejection of invention patent application after publication |