CN110241336A - 一种镁铝合金及其制备方法 - Google Patents

一种镁铝合金及其制备方法 Download PDF

Info

Publication number
CN110241336A
CN110241336A CN201910666294.4A CN201910666294A CN110241336A CN 110241336 A CN110241336 A CN 110241336A CN 201910666294 A CN201910666294 A CN 201910666294A CN 110241336 A CN110241336 A CN 110241336A
Authority
CN
China
Prior art keywords
powder
magnesium alloy
preparation
evaporation
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910666294.4A
Other languages
English (en)
Inventor
姚杰
王春涛
周云海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NINGBO HELI MOULD TECHNOLOGY Co Ltd
Original Assignee
NINGBO HELI MOULD TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NINGBO HELI MOULD TECHNOLOGY Co Ltd filed Critical NINGBO HELI MOULD TECHNOLOGY Co Ltd
Priority to CN201910666294.4A priority Critical patent/CN110241336A/zh
Publication of CN110241336A publication Critical patent/CN110241336A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供的一种镁铝合金及其制备方法,其包括步骤:一种镁铝合金的制备方法,包括步骤:S100将粉末填料均匀混合装入蒸发容器内,其填料成分为镁粉,铝粉,锰粉,铁粉,铬粉和硅粉;S200通过真空蒸镀法,加热蒸发容器内的混合物,在高真空高温条件下混合后的填料蒸发,进而在衬底表面进行沉积;S300将所获得的镁铝合金样品进行退火,冷却。从而通过合金成分控制,合金熔体净化、合金变质及晶粒组织细化,获得的镁铝合金各项同性,合金力学性能更加优异。

Description

一种镁铝合金及其制备方法
技术领域
本发明涉及合金领域,具体地说,是一种镁铝合金及其制备方法。
背景技术
镁铝合金一般主要元素是镁和铝,再掺入其他的金属材料来加强其硬度。因本身金属金属,其导热性能和强度尤为突出。镁铝合金质坚量轻、密度低、散热性较好、抗压性较强,能充分满足3C产品高度集成化、轻薄化、微型化、抗摔撞及电磁屏蔽和散热的要求。其硬度是传统塑料机壳的数倍,但重量仅为后者的1/3,通常被用于中高档超薄型或尺寸较小的笔记本的外壳。而且,银白色的镁铝合金外壳可使产品更豪华、美观,而且易于上色,可通过表面处理工艺变成个性化的粉蓝色和粉红色,为笔记本电脑增色不少,这是工程塑料以及碳纤维无法比拟的。但是镁铝合金并不是很坚固耐磨,成本较高,比较昂贵,而且成型比工程塑料困难,所以笔记本电脑一般只把镁铝合金使用在顶盖上,很少有机型用镁铝合金来制造整个机壳。
发明内容
本发明的主要目的在于提供一种镁铝合金及其制备方法,其通过合金成分控制,合金熔体净化、合金变质及晶粒组织细化,获得的镁铝合金各项同性,合金力学性能更加优异。
为达到以上目的,本发明采用的技术方案为:一种镁铝合金包括以下质量百分比的组分:镁45~50%,铝48~53%,锰0.1~1%,铁0.2~0.5%,铬0.1~0.2%,余料为硅。
根据本发明的一实施例,一种镁铝合金包括以下质量百分比的组分:镁47%,铝51.8%,锰0.55%,铁0.32%,铬0.13%,余料为硅。
一种镁铝合金的制备方法,包括步骤:
S100将粉末填料均匀混合装入蒸发容器内,其填料成分为镁粉,铝粉,锰粉,铁粉,铬粉和硅粉;
S200通过真空蒸镀法,加热蒸发容器内的混合物,在高真空高温条件下混合后的填料蒸发,进而在衬底表面进行沉积;
S300将所获得的镁铝合金样品进行退火,冷却。
根据本发明的一实施例,所述步骤S100包括步骤:粉末填料中的各粉料的纯度不低于99.99%,粉料用行星球磨机以500~650rpm的速率研磨1~3小时。
根据本发明的一实施例,所述步骤S200包括步骤:所用的真空蒸镀设备的真空度为10-3Pa以下,加热蒸发方式为电子束加热,蒸镀时间2~4小时,蒸镀保护气体为高纯氩气,其纯度不低于99.99%。
根据本发明的一实施例,所述步骤300的退火工艺包括步骤:管式炉以10℃/min的升温速度升温至300℃,继续以5~6℃/min的升温速度升温至800℃,在氩气气氛下保温1小时,退火,冷却。
根据本发明的一实施例,所用的真空蒸镀设备的真空度为10-5Pa。
根据本发明的一实施例,退火温度在320~350℃。
本发明的有益之处在于:
(1)利用行星球磨机将原料粉末充分的混合均匀,通过真空蒸镀将混匀的填料粉末蒸镀于衬底上沉积,形成单相均匀合金,各原料金属原子间以金属键连接,对加工得到的合金样品进一步退火处理,可使其内部金属原子扩散更加均匀;本方法通过合金成分控制,合金熔体净化、合金变质及晶粒组织细化,获得的镁铝合金各项同性,合金力学性能更加优异。
(2)镁合金密度小,弹性模量高,但绝对强度普遍较低,无法经受高强度的物理损伤,铝合金强度大,塑性好,所以以两者为基础制成铝镁合金硬度和强度大、密度低、散热性和抗压性好等优点,能够满足3C产品(计算机、通信和消费类电子产品)高度集成化、轻薄化等要求,应用范围广泛。
(3)本制备方法所采用的真空蒸镀所需真空度高,需达到10-5Pa,能够有效减少杂质的掺入;同时采用离子束加热,温度高能量大,各原料金属原子间以金属键连接,更有助于形成单相均匀合金;
(4)退火温度在320~350℃,能够使镁铝合金再结晶,晶粒细化增大强度,同时使其内部金属原子扩散更加均匀。
(5)Mn是良好的脱氧剂和脱硫剂,其能够有效提升强度和硬度;Cr能提高强度和耐磨性;Si是脱氧剂和还原剂,其与Mn、Cr等结合能够有效增强抗腐蚀性和抗氧化性;各个合金元素在合金中弥散分布,能够使晶粒细化;真空蒸镀必须保证高的真空度,否则杂元素过多会影响合金性能,因为加入的元素提升了强度和硬度,不可避免的损失了塑性,所以需要进行退火,消除残余应力,细化晶粒调整组织,消除组织缺陷。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
实施例1
一种镁铝合金的制备方法,包括步骤:
(1)粉末填料中各组分的质量百分比为:镁粉47%,铝粉51.8%,锰粉0.55%,铁粉0.32%,铬粉0.13%,余料为硅粉;各粉料的纯度不低于99.99%,粉料用行星球磨机以500-650rpm的速率研磨1~3小时,达到细化混合的目的。
(2)通过真空蒸镀法,加热蒸发容器内的混合物,在高真空高温条件下混合后的填料蒸发,进而在衬底表面进行沉积,其中,所用的真空蒸镀设备的真空度需要达到10-5Pa,加热蒸发方式为电子束加热,蒸镀时间2~4小时,蒸镀保护气体为高纯氩气,其纯度不低于99.99%。
(3)退火工艺,管式炉以10℃/min的升温速度升温至300℃,继续以5~6℃/min的升温速度升温至800℃,在氩气气氛下保温1小时,退火,退火温度在320~350℃,冷却。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (8)

1.一种镁铝合金,其特征在于,包括以下质量百分比的组分:镁45~50%,铝48~53%,锰0.1~1%,铁0.2~0.5%,铬0.1~0.2%,余料为硅。
2.根据权利要求1所述的镁铝合金,其特征在于,包括以下质量百分比的组分:镁47%,铝51.8%,锰0.55%,铁0.32%,铬0.13%,余料为硅。
3.一种如权利要求1或2所述的镁铝合金的制备方法,其特征在于,包括步骤:
S100 将粉末填料均匀混合装入蒸发容器内,其填料成分为镁粉,铝粉,锰粉,铁粉,铬粉和硅粉;
S200 通过真空蒸镀法,加热蒸发容器内的混合物,在高真空高温条件下混合后的填料蒸发,进而在衬底表面进行沉积;
S300 将所获得的镁铝合金样品进行退火,冷却。
4.根据权利要求3所述的镁铝合金的制备方法,其特征在于,所述步骤S100包括步骤:粉末填料中的各粉料的纯度不低于99.99%,粉料用行星球磨机以500~650rpm的速率研磨1~3小时。
5.根据权利要求4所述的镁铝合金的制备方法,其特征在于,所述步骤S200包括步骤:所用的真空蒸镀设备的真空度为10-3Pa以下,加热蒸发方式为电子束加热,蒸镀时间2~4小时,蒸镀保护气体为高纯氩气,其纯度不低于99.99%。
6.根据权利要求5所述的镁铝合金的制备方法,其特征在于,所述步骤300的退火工艺包括步骤:管式炉以10℃/min的升温速度升温至300℃,继续以5~6℃/min的升温速度升温至800℃,在氩气气氛下保温1小时,退火,冷却。
7.根据权利要求6所述的镁铝合金的制备方法,其特征在于,所用的真空蒸镀设备的真空度为10-5Pa。
8.根据权利要求7所述的镁铝合金的制备方法,其特征在于,退火温度在320~350℃。
CN201910666294.4A 2019-07-23 2019-07-23 一种镁铝合金及其制备方法 Pending CN110241336A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910666294.4A CN110241336A (zh) 2019-07-23 2019-07-23 一种镁铝合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910666294.4A CN110241336A (zh) 2019-07-23 2019-07-23 一种镁铝合金及其制备方法

Publications (1)

Publication Number Publication Date
CN110241336A true CN110241336A (zh) 2019-09-17

Family

ID=67893240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910666294.4A Pending CN110241336A (zh) 2019-07-23 2019-07-23 一种镁铝合金及其制备方法

Country Status (1)

Country Link
CN (1) CN110241336A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795824A (zh) * 2020-12-24 2021-05-14 昆山智盛精密铸造有限公司 一种镁铝合金材料及其制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106067A (en) * 1978-02-08 1979-08-20 Showa Denko Kk Manufacture of powder of mg-al system alloy depending on natural decay
CN103540819A (zh) * 2013-09-27 2014-01-29 孟静 一种镁铝合金
CN103572134A (zh) * 2013-11-05 2014-02-12 吴高峰 一种锰镁铝合金
CN104884666A (zh) * 2012-12-26 2015-09-02 Posco公司 铝镁镀层钢板及其制造方法
CN106435230A (zh) * 2016-08-27 2017-02-22 安徽省宁国市海伟电子有限公司 一种金属化薄膜制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106067A (en) * 1978-02-08 1979-08-20 Showa Denko Kk Manufacture of powder of mg-al system alloy depending on natural decay
CN104884666A (zh) * 2012-12-26 2015-09-02 Posco公司 铝镁镀层钢板及其制造方法
CN103540819A (zh) * 2013-09-27 2014-01-29 孟静 一种镁铝合金
CN103572134A (zh) * 2013-11-05 2014-02-12 吴高峰 一种锰镁铝合金
CN106435230A (zh) * 2016-08-27 2017-02-22 安徽省宁国市海伟电子有限公司 一种金属化薄膜制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795824A (zh) * 2020-12-24 2021-05-14 昆山智盛精密铸造有限公司 一种镁铝合金材料及其制备工艺

Similar Documents

Publication Publication Date Title
Wang et al. Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer
Liu et al. Microstructure and the properties of FeCoCuNiSnx high entropy alloys
Jia et al. Microstructure and thermal expansion behavior of spray-deposited Al–50Si
Sheikh et al. Aluminizing for enhanced oxidation resistance of ductile refractory high-entropy alloys
Zhang et al. Phase evolution characteristics of FeCoCrAlCuVxNi high entropy alloy coatings by laser high-entropy alloying
CN103122431B (zh) 一种长周期结构相增强的镁锂合金的制备方法
CN109338172A (zh) 一种高熵合金增强的2024铝基复合材料及其制备方法
Lee et al. Synthesis of Mn–Al alloy nanoparticles by plasma arc discharge
Lin et al. Influence of laser re-melting and vacuum heat treatment on plasma-sprayed FeCoCrNiAl alloy coatings
Sun et al. Influence of spark plasma sintering temperature on the microstructure and strengthening mechanisms of discontinuous three-dimensional graphene-like network reinforced Cu matrix composites
Cherigui et al. Structure of amorphous iron-based coatings processed by HVOF and APS thermally spraying
Luangvaranunt et al. Aluminum-4 mass% copper/alumina composites produced from aluminum copper and rice husk ash silica powders by powder forging
Long et al. High entropy alloy borides prepared by powder metallurgy process and the enhanced fracture toughness by addition of yttrium
Li et al. Porous Nb-Ti based alloy produced from plasma spheroidized powder
Shi et al. Preparation of Ni–Ti composite powder using radio frequency plasma spheroidization and its laser powder bed fusion densification
Wang et al. Heterogeneous nucleation of Mg2Si on Sr11Sb10 nucleus in Mg–x (3.5, 5 wt.%) Si–1Al alloys
Jiang et al. Fabrication of TiCp/Mg composites by the thermal explosion synthesis reaction in molten magnesium
Matyja et al. Structure of the Ni-Co-Mn-In alloy obtained by mechanical alloying and sintering
CN110129596B (zh) 薄带状纳米Al3(Sc,Zr)/Al复合孕育剂的制备方法
Sun et al. Fabrication of ZrB2-SiC powder with a eutectic phase for sintering or plasma spraying
CN110241336A (zh) 一种镁铝合金及其制备方法
Kumar et al. Phase dependence of Fe-based bulk metallic glasses on properties of thermal spray coatings
CN110129631A (zh) 一种内燃机用高强韧耐热铝合金材料及其制备方法
Qin et al. Microstructure evolution and reaction mechanism of reactive plasma sprayed Ti–C–N coatings
CN111101013A (zh) 新型石墨烯铝复合材料的制备方法及石墨烯铝复合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190917

RJ01 Rejection of invention patent application after publication