CN110237083A - 一种基于klf4的红景天苷在抗血管内皮细胞衰老中的应用 - Google Patents

一种基于klf4的红景天苷在抗血管内皮细胞衰老中的应用 Download PDF

Info

Publication number
CN110237083A
CN110237083A CN201910466106.3A CN201910466106A CN110237083A CN 110237083 A CN110237083 A CN 110237083A CN 201910466106 A CN201910466106 A CN 201910466106A CN 110237083 A CN110237083 A CN 110237083A
Authority
CN
China
Prior art keywords
rhodioside
hcy
klf4
cell
endothelial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910466106.3A
Other languages
English (en)
Inventor
张彦燕
沈祥春
陶玲
徐旖旎
黄勇攀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Medical University
Original Assignee
Guizhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Medical University filed Critical Guizhou Medical University
Priority to CN201910466106.3A priority Critical patent/CN110237083A/zh
Publication of CN110237083A publication Critical patent/CN110237083A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7032Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a polyol, i.e. compounds having two or more free or esterified hydroxy groups, including the hydroxy group involved in the glycosidic linkage, e.g. monoglucosyldiacylglycerides, lactobionic acid, gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cardiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种基于KLF4的红景天苷在抗血管内皮细胞衰老中的应用,具体涉及红景天苷在Hcy引起的内皮细胞损伤、在Hcy诱导的活性氧水平升高的抑制、在抗血管内皮细胞衰老制剂等方面的应用,本发明结果表明,红景天苷在Hcy诱导的内皮细胞衰老中发挥着重要作用,其机制主要是基于转录因子KLF4的调控。

Description

一种基于KLF4的红景天苷在抗血管内皮细胞衰老中的应用
技术领域
本发明涉及医药发明领域,具体涉及一种基于KLF4的红景天苷在抗血管内皮细胞衰老中的应用。
背景技术
2013年6月《cell》杂志指出:人类整体水平的衰老已成为心血管疾病、糖尿病、肿瘤、神经退行性疾病最主要的危险因素[1],表明内皮细胞衰老与心血管疾病密切相关。随着老龄化人口的迅速增加,衰老相关性疾病严重威胁人们的生命健康[2],其中动脉粥样硬化(Atherosclerosis,AS)是引起心血管事件的病理基础,其发病机制尚不明确。目前更倾向于认为AS是一种慢性血管炎症性疾病[3]。已有研究证明,随着内皮细胞的损伤,内皮细胞更新加快,引起端粒长度缩短,造成血管新生及内皮再生能力的减弱[4],加剧内皮衰老,在此基础上形成As[5]
细胞衰老(cell senescence)是指细胞脱离细胞周期并丧失增殖能力后进入一种相对稳定的状态,其与内皮功能紊乱、内皮损伤修复缺陷密切相关,主要表现为胞体增大、扁平,胞质颗粒增多,β-半乳糖苷酶活性明显增强,细胞端粒缩短以及衰老基因的表达增加等[6-7]。虽然各种危险因素导致的内皮功能紊乱作用机制不尽相同,但其最终都可致内皮细胞衰老这一共同病理归宿[8]。可见,内皮细胞衰老是As的关键事件及病理演变的重要原因,内皮衰老区别于以往的As学说,有可能成为临床防治As的理论与新策略。
研究发现,同型半胱氨酸(homocysteine,Hcy),又称高半胱氨酸,其与心血管事件联系越来越紧密,是AS新的、独立的危险因素[9-12]。Hcy作为一种炎症刺激物,通过影响内皮细胞和平滑肌细胞功能、参与氧化应激和炎症反应以及改变基因表达活性等多种机制,导致AS的发生发展[13]。高Hcy所致的氧化应激与动脉粥样硬化和糖尿病等衰老相关疾病,可抑制内皮细胞再生和加速内皮细胞衰老[14-15],严重的HHcy患者有加速衰老的特征,在生命早期会出现一系列衰老症状。
Krüpple样因子(Krüpple like factors,KLFs)是近年来发现的一种锌指转录因子,其广泛参与调控细胞生长、凋亡、细胞周期以及胚胎形成等重要的生命过程。KLF4(Krüpple-like factor 4,KLF4)又称为胃肠富集KLF(gut-enriched Krüppel-like factor,GKLF),是目前研究较多的KLFs家族成员之一。KLF4包括两个不同位点的转录激活结构域和转录抑制结构域,可作为细胞增殖、分化和凋亡相关基因的转录激活因子和抑制因子[16]。近来发现,KLF4是参与调控心血管系统的重要转录因子[17],能通过不同途径抑制或激活炎性因子,调控血管内皮细胞活化、巨噬细胞极化、平滑肌细胞(SMC)增殖和迁移,发挥心血管保护作用[18]。前期研究发现KLF4可通过调节细胞周期,调控相关基因P53和P21的表达从而抑制平滑肌细胞增殖[19],KLF4过表达可引起抗衰老基因表达下调和细胞衰老基因上调,这说明KLF4诱导了细胞衰老,提示转录因子KLF4对于认识内皮衰老的发生机制具有重要意义。
红景天是景天科红景天属,多年生草本或亚灌木植物,用于治疗哮喘,慢性阻塞性肺气肿,流行性感冒等。红景天苷(Salidroside)为红景天的主要有效成分,其药理活性广泛,尤其在抗衰老和抗氧化方面具有显著作用[20]。诸多红景天苷的现代药理学研究证实,其为具有血管内皮保护作用,调控改善内皮功能稳态及干预调控机体衰老的特色药物资源,但其效应机制有待进一步的探索分析。故本发明以Hcy诱导血管内皮细胞衰老为切入点,以红景天苷调控转录因子KLF4干预内皮衰老病理过程为线索,分析红景天苷改善内皮衰老的分子机制,明确其对血管内皮功能的调控保护作用。
发明内容
本发明的目的是提供一种基于KLF4的红景天苷在抗血管内皮细胞衰老中的应用。
本发明具体内容如下:
本发明提供一种基于KLF4的红景天苷在抗血管内皮细胞衰老中的应用。
具体的,所述红景天苷在Hcy引起的内皮细胞损伤中的应用。
具体的,所述红景天苷在Hcy诱导的活性氧水平升高的抑制应用。
具体的,所述红景天苷在抑制Hcy诱导的内皮细胞衰老中的应用。
具体的,所述红景天苷对于Hcy诱导的内皮细胞衰老保护中的应用。
具体的,所述红景天苷在抑制Hcy诱导的KLF4表达水平上调中的应用。
更具体的,红景天苷在敲除KLF4减弱Hcy诱导的内皮细胞衰老程度中的应用。
进一步的,本发明所述红景天苷在抗血管内皮细胞衰老制剂中的应用。
更进一步的,所述制剂为加入药学上可接受的辅料制备成药学上可接受的制剂。
更进一步的,本发明所述制剂为颗粒剂、胶囊剂、散剂、片剂、丸剂、注射制剂、冻干粉针剂。
本发明所述的药学上可接受的辅料没有限定,可以是填充剂、崩解剂、抗氧化剂、粘合剂、润滑剂、表面活性剂或矫味剂等本领域常用辅料中的一种或几种。
其中所述填充剂选自淀粉、甘露醇、蔗糖、山梨醇、木糖醇、微晶纤维素等;
所述崩解剂选自微晶纤维素、羧甲基淀粉钠、聚乙烯吡咯烷酮、低取代羟丙基纤维素或交联羧甲基纤维素钠等;
所述抗氧化剂为NAC(N-乙酰-L-半胱氨酸);
所述粘合剂选自藻酸盐、纤维素衍生物、明胶等;
所述润滑剂选自硬脂酸、聚乙二醇、碳酸钙、碳酸氢钠、二氧化硅、滑石粉或硬脂酸镁等;
所述表面活性剂选自十二烷基苯磺酸钠、硬脂酸、聚氧乙烯-聚氧丙烯共聚物、脂肪酸山梨坦或聚山梨酯(吐温)等;
所述矫味剂选自阿斯巴甜、蔗糖素或糖精钠等。
本发明来源:
血管老化(Vascular aging)是造成心血管疾病高病死率的重要因素。血管内皮细胞是构成血管壁的主要成分之一,是血管老化的重要细胞生物学基础,内皮功能的改变在血管老化中发生最早,作为早期的病理生理改变,衰老所致的血管内皮功能障碍,在心血管疾病的发生、发展过程中起着重要的作用[21]。所以研究衰老内皮细胞功能改变的机制是研究血管衰老的基础,内皮功能障碍与内皮保护的研究有助于延缓血管衰老,降低心血管疾病发病率和病死率。
转录因子在细胞的各种生命活动调控中发挥了核心作用,本发明主要研究转录因子KLF4在Hcy诱导的内皮细胞衰老中的作用。KLF4((Krüpple like factors 4)是KLF转录因子家族中一个重要的成员,其作为转录因子激活或抑制多个基因的表达,参与细胞增殖调控、介导细胞分化和细胞凋亡等。研究表明在诱导多能干细胞的过程中,过表达KLF4可以诱导细胞衰老发生,其主要通过诱导p21表达引起细胞衰老。此外,利用miRNA芯片发现了一系列有可能被KLF4调控并参与细胞衰老调节的miRNA,并且证明了KLF4可以通过促进miR-203表达,从而参与到细胞衰老发生之中[22]。我们的数据显示Hcy诱导的内皮细胞衰老模型中KLF4的表达在蛋白和mRNA水平上均有上调,在构建慢病毒实现KLF4的敲低后,SA-β-gal染色法结果显示染色阳性细胞数目显著减少,进一步证实了KLF4与Hcy诱导的内皮细胞衰老过程密切相关,且敲低KLF4可减弱内皮细胞衰老程度。
红景天苷是一种存在于红景天属植物中的天然酚类次生代谢产物,具有显著的抗衰老和抗氧化的药理作用。已有研究发现红景天苷可以降低脐静脉内皮细胞内脂质沉积,下调衰老相关分子(p66、p53和p21)表达继而延缓细胞衰老[23]。此外,Mao等[24]发现红景天苷可以通过改变氧化诱导条件下细胞的形态、周期,以及细胞周期依赖激酶抑制物p21基因的表达来发挥作用,证明红景天苷作为一种有效制剂可以延缓人类衰老和降低衰老相关疾病的发病率。然而,KLF4在红景天苷抗同型半胱氨酸(Hcy)诱导的内皮细胞衰老中的功能尚不清楚。本发明旨在探讨KLF4在红景天苷改善内皮衰老中的作用。在Hcy诱导的内皮衰老模型中观察到细胞活力和端粒酶活性降低,LDH外漏量以及活性氧的水平升高,p53和p21的蛋白表达水平明显上调,同时KLF4的表达在蛋白和mRNA水平上均有上调。在给予了红景天苷干预作用后逆转了Hcy引起的内皮损伤与衰老。构建慢病毒实现KLF4的敲低,观察到敲低KLF4可减弱Hcy诱导的内皮细胞衰老程度。我们的结果表明,红景天苷在Hcy诱导的内皮细胞衰老中发挥着重要作用,其机制主要是基于转录因子KLF4的调控。因此,KLF4可能是治疗衰老相关性疾病的潜在靶点。
在本发明研究中Hcy诱导了内皮细胞损伤及衰老,在给予了红景天苷干预作用后明显提高了细胞活力和端粒酶活性,降低了LDH外漏量以及活性氧的水平,同时明显下调了p53和p21的蛋白表达水平。这些结果表明红景天苷在抑制Hcy诱导的内皮细胞衰老中发挥着重要作用。此外,红景天苷药物组KLF4在蛋白和mRNA水平的表达不同程度下调,这进一步说明KLF4是红景天苷抑制Hcy诱导的内皮细胞衰老过程中的关键信号。
本发明表明,红景天苷对Hcy诱导的内皮细胞衰老具有抑制作用,同时可以下调转录因子KLF4在蛋白和mRNA水平的表达。此外,KLF4的敲低减弱了Hcy诱导的内皮细胞衰老程度,表明红景天苷对Hcy诱导的内皮细胞衰老的保护作用是基于转录因子KLF4的调控,提示KLF4是研究血管老化和其他衰老相关性疾病的一个潜在靶标。
本发明有益效果:
1、本发明与现有技术相比:
红景天苷是一种存在于红景天属植物中的天然酚类次生代谢产物,具有显著的抗衰老和抗氧化的药理作用,现有技术研究发现红景天苷可以降低脐静脉内皮细胞内脂质沉积,下调衰老相关分子(p66、p53和p21)表达继而延缓细胞衰老[23]。此外,Mao等[24]发现红景天苷可以通过改变氧化诱导条件下细胞的形态、周期,以及细胞周期依赖激酶抑制物p21基因的表达来发挥作用,证明红景天苷作为一种有效制剂可以延缓人类衰老和降低衰老相关疾病的发病率。
但是,KLF4在红景天苷抗同型半胱氨酸(Hcy)诱导的内皮细胞衰老中的功能尚不清楚。本发明经研究表明,红景天苷对Hcy诱导的内皮细胞衰老具有抑制作用,同时可以下调转录因子KLF4在蛋白和mRNA水平的表达。此外,KLF4的敲低减弱了Hcy诱导的内皮细胞衰老程度,表明红景天苷对Hcy诱导的内皮细胞衰老的保护作用是基于转录因子KLF4的调控,提示KLF4是研究血管老化和其他衰老相关性疾病的一个潜在靶标。
2、本发明通过对细胞活性的测定,表明红景天苷对Hcy引起的内皮细胞损伤具有一定的保护作用。
3、本发明通过对细胞内活性氧水平的测定,Hcy刺激内皮细胞48h,活性氧水平显著提高,药物处理后显著降低了活性氧的水平,荧光强度检测统计结果一致。
4、本发明通过对衰老相关β-半乳糖苷酶染色和端粒酶活性检测,Hcy可加速内皮细胞衰老进程,而红景天苷可明显抑制Hcy诱导的内皮细胞衰老。
5、本发明通过红景天苷对Hcy诱导的内皮细胞衰老相关分子标志物表达的影响试验,表明红景天苷对于Hcy诱导的内皮细胞衰老具有一定的保护作用。
6、本发明通过对KLF4在内皮细胞衰老过程中的表达变化试验,表明KLF4参与了内皮细胞衰老的过程,且红景天苷可以抑制Hcy诱导的KLF4表达水平上调。
7、本发明通过对敲除KLF4减弱Hcy诱导的内皮细胞衰老程度的试验,提示KLF4与Hcy诱导的内皮细胞衰老过程密切相关,且敲低KLF4可减弱Hcy诱导的内皮细胞衰老程度。
附图说明:
图1:红景天苷提高内皮细胞活力和减少LDH外漏量。A图:通过MTT法检测0.01mM,0.1mM,0.5mM,1mMHcy对细胞活力的影响;B图:通过MTT法检测6h,12h,24h,48h 500μM Hcy对细胞活力的影响;C图:通过MTT法检测500μM Hcy和高中低剂量红景天苷共孵育48h后对细胞活力的影响;D图:通过乳酸脱氢酶外漏实验检测500μM Hcy和高中低剂量红景天苷共孵育48h后细胞的损伤程度。NAC为阳性药对照。数值采用平均值±SD表示,每组n=3,通过t检验,**P<0.01,*P<0.05,#P<0.05。
图2:红景天苷降低内皮细胞中活性氧水平。A图:采用DCFH-DA荧光探针检测活性氧水平,荧光显微镜下拍照(绿色,200×);B图:利用酶联免疫分析系统进行荧光强度的检测分析。数值采用平均值±SD表示,每组n=3,通过t检验,*P<0.05,#P<0.05。
图3.红景天苷抑制Hcy诱导的内皮细胞衰老。A图:Hcy和红景天苷处理HUVECs48h后SA-β-gal染色(绿色,200×);B图:HUVECsβ-半乳糖苷酶染色阳性的定量分析;C图:通过RT-PCR技术检测Hcy和红景天苷处理48h后的端粒酶活性。数值采用平均值±SD表示,每组n=3,**P<0.01,*P<0.05,#P<0.05。
图4.红景天苷下调细胞衰老基因p53和p21的蛋白表达水平。A图:通过WesternBlot技术检测Hcy和红景天苷处理HUVECs48h后p53的蛋白表达水平;B图:通过WesternBlot技术检测Hcy和红景天苷处理48h后HUVECs中p21的蛋白表达水平。数值采用平均值±SD表示,每组n=3,**P<0.01,*P<0.05,##P<0.01,#P<0.05。
图5.红景天苷下调KLF4的蛋白和mRNA水平。A图:通过Western Blot技术检测Hcy和红景天苷处理48h后HUVECs中KLF4的蛋白表达水平;B图:通过q-PCR技术检测Hcy和红景天苷处理48h后HUVECs中KLF4的mRNA水平。数值采用平均值±SD表示,每组n=3,*P<0.05,#P<0.05。
图6.沉默KLF4显著抑制Hcy诱导的内皮细胞衰老。A图:通过Western Blot技术检测转染siKLF4后HUVECs中KLF4的蛋白表达水平;B图:转染siKLF4后HUVECsβ-半乳糖苷酶染色(绿色,200×);C图:SA-β-gal染色阳性HUVECs的定量分析。数值采用平均值±SD表示,每组n=3,**P<0.01,##P<0.01,#P<0.05。
下面通过具体实施例,对本发明的技术方案作进一步地具体说明。
实施例1材料与方法
人脐静脉内皮细胞的分离、培养及传代
人脐静脉内皮细胞(Human Umbilical Vein Endothelial Cells,HUVECs)购于美国SCIENCELL公司。取内皮细胞解冻复苏后,无菌条件下移入细胞培养瓶中,加入含新生小牛血清的培养基置37℃、5%CO2培养箱中静置贴壁培养。每隔2天换培养液一次,待细胞生长至融合时,用0.25%胰蛋白酶消化传代。取4-6代呈亚融合的细胞。用含10%小牛血清的低糖DMEM培养液稀释细胞至1×105个/ml,然后将细胞2ml/孔铺种至6孔培养板中,待细胞生长融合后换用不同条件的培养液进行实验。
实验设计与分组方法
实验分组:正常对照组、Hcy组、Hcy+Salidroside(5×10-7、1×10-6、5×10-6M)组和阳性药NAC(N-乙酰-L-半胱氨酸,3×10-6M)对照组。各药物处理组预先同内皮细胞孵育1h后,再用Hcy(500μM)处理48h。
细胞活性的测定
将培养的细胞消化,完全培养液重悬后以1.5×104细胞/孔的密度接种96孔板,24h后按分组施加不同因素干预2天(中间换液一次)。在每孔200μL培养液中加入20μL MTT溶液(5mg/mL),4h后小心吸弃上清,每孔加150μL DMSO振摇10min,在酶联免疫检测仪波长570nm处读取各孔OD值。每组设3个复孔。
衰老相关β-半乳糖苷酶(Senescenceβ-Galactosidase,SA-β-gal)染色
按照细胞衰老β-半乳糖苷酶染色试剂盒(SA-β-gal Staining Kit)说明操作:
(1)6孔板内各组内皮细胞给药培养48h后,弃上清,用PBS洗涤1次,加入1mlβ-半乳糖苷酶染色固定液,固定15min。
(2)吸除细胞固定液,用PBS洗涤细胞3次,每次3min。
(3)吸除PBS,每孔加入1ml染色工作液。
(4)37℃孵育过夜,用parafilm封住6孔板防止蒸发。
(5)普通光学显微镜下观察,蓝色为β-半乳糖苷酶染色阳性。随机挑选4个高倍视野,计数1000个细胞中阳性细胞的个数计算阳性率。
Real time PCR法测定端粒酶活性
将活细胞裂解后,检测提取物中端粒酶的活性。在特定的缓冲液条件中,端粒酶可以利用dNTPs在寡核苷酸末端催化合成端粒重复序列,将端粒酶扩增产物经实时定量PCR扩增后,利用核酸荧光SYBR Green检测扩增产物的荧光信号,从而推算出端粒酶的活性。
Real time PCR法测端粒酶活性。步骤如下:
(1)制备提取物。
①细胞给药处理48h后,加入0.25%胰蛋白酶消化细胞,离心沉淀细胞,PBS洗一遍,离心沉淀,小心弃去PBS,将沉淀于-80℃冻存。融解后应立即加入1×裂解缓冲液。
②按105-106细胞加入200μL 1×裂解缓冲液,重悬沉淀。
③冰浴30min。
④12000×g,4℃,30min。
⑤测定上清中的蛋白含量。
⑥将上清分装,液氮速冻后于-80℃保存。
(2)实验对照
①阴性对照
端粒酶是一种对热敏感的酶,85℃加热10min可以使之失活。每组实验需设立加热失活的样品作为阴性对照。
②阳性对照
端粒酶RNA(TSR)是一段寡核苷酸,作为阳性对照反应的模板。用系列倍比稀释的TSR作为模板进行实时PCR,绘制标准曲线,根据标准曲线计算待测样品中由端粒酶催化合成的端粒重复序列的拷贝数,由此推算出端粒酶的活性。试剂盒中TSR储存液的浓度为0.5M,用裂解缓冲液进行一系列1:5倍稀释,稀释后的模板可以4℃保存2周。反应体系中加入1μL稀释的模板即可
(3)实时PCR法检测端粒酶活性
①实时PCR反应
按下表制备总的反应混合物
充分混合总的反应混合物后,平均分配至PCR反应管中或薄壁PCR板中。
在反应管中分别加入1μL细胞裂解液、热失活的提取液及阳性对照模板。
按照下表所示设定PCR反应程序
②熔解曲线的分析,确定反应的特异性和精确定量。分析软件由ABI公司实时PCR仪提供,参照PCR仪的说明,在65℃-95℃之间进行熔解曲线的分析。
③对端粒酶进行绝对定量分析,在PCR进行的过程中连续进行数据的收集,反应结束后,绘制Ct值标准曲线。Ct(threshold cycle)值指每个反应管中的荧光信号达到设定的域值所经历的循环数。域值(shreshold)定义为循环的早期阶段荧光信号的标准差乘以一个系数,一般×10。在PCR反应的指数期,当反应管中与阴性对照管中的荧光信号的差异可以被检测到的循环数即为该样品的Ct值。通过ABI公司绝对定量分析软件,用测得标准品的Ct值对应于其起始拷贝数的对数值作图,以此按照公式计算样品端粒酶含量。
细胞内氧自由基的测定
荧光染料DCFH-DA本身没有荧光,可自由穿过细胞膜,进入细胞后,被细胞内的酯酶水解生成DCFH。DCFH不能通透细胞膜,细胞内的活性氧可以氧化无荧光的DCFH生成有绿色荧光的DCF。因此,可根据DCF荧光的多少来反映细胞内的ROS水平。
将细胞接种于6孔板加入不同处理因素培养48h后,去除细胞培养液,室温下用无血清培养基漂洗3次,加入10μM DCFH-DA荧光染料,37℃避光孵育20min,无血清培养基漂洗3次后,用多功能读板仪检测荧光强度。
(1)细胞总蛋白提取
步骤如下:
①用0.25%的胰酶消化细胞,转移到1.5mLEP管内,
②4℃,1000rpm离心10min,去上清,
③加PBS混悬洗涤细胞,4℃,3000rpm离心15min,弃上清,
④加入含0.1%PMSF的Western IP裂解液,反复颠掉多次混匀,
⑤冰上孵育裂解40min(期间每隔10min涡旋混匀一次),
⑥4℃,12000rpm离心15min,小心收集上清液并分装,置于-80℃保存待用。
(2)总蛋白浓度测定(BCA法)
步骤如下:
①根据样品数量,按50体积BCA试剂A加1体积BCA试剂B(50:1)配制适量BCA工作液,充分混匀。
②完全溶解蛋白标准品,取10μl稀释至100μl,使终浓度为0.5mg/ml。
③PBS等比稀释标准品为0.5mg/ml、0.25mg/ml、0.125mg/ml、0.0625mg/ml和0.03125mg/ml共5个浓度梯度。
④取各个浓度的标准品20μl加到96孔板的标准品孔中。
⑤取稀释了20倍的待测样品20μl加到96孔板的样品孔中。
⑥各孔加入200μl BCA工作液,37℃放置30min。
⑦测定A562,540-595nm之间的波长也可接受。
⑧根据标准曲线计算出蛋白浓度。
注:BCA法测定蛋白浓度时,吸光度会随着时间的延长不断加深。并且显色反应会因温度升高而加快。如果浓度较低,适合在较高温度孵育,或延长孵育时间。
(3)试剂的配制:
①1.0mol/LTris.HCl(pH6.8):称取121.1gTris碱,置于烧杯中,加800mL蒸馏水溶解,用浓盐酸调PH至7.6,最后用蒸馏水定容至1000mL,高温灭菌后室温保存。
②10%SDS:称取SDS10g,加100mL蒸馏水,50℃水浴下溶解,室温保存。
③10%过硫酸铵:称取过硫酸铵0.1g,溶于1.0ml双蒸水中,4℃保存备用。
④1.5mol/LTris.HCl(pH8.8):称取45.43gTris碱,置于烧杯中,加200mL蒸馏水溶解,用浓盐酸调PH至8.8,最后用蒸馏水定容至250mL,高温灭菌后室温保存。
⑤1×电泳液:分别称取Tris碱3.02g、甘氨酸14.4g、SDS1.0g置于烧杯中,加双蒸水溶解,定容到1L,室温保存备用。
⑥1×转膜液:分别称取Tris碱3.02g、甘氨酸14.4g置于烧杯中,加500ml双蒸水溶解,转移到量筒,加甲醇200ml,定容到1L,4℃保存备用。
⑦1×TBST:分别称取Tris碱14.23g、NaCl 80.06g置于烧杯中,加800ml双蒸水溶解,加浓盐酸调pH至7.6,加1ml吐温20混匀,最后加双蒸水,定容到1L,室温保存备用。
⑧封闭液:称取脱脂奶粉2g溶于40ml的1×TBST中,充分混匀,4℃保存备用。
⑨30%聚丙烯酰胺溶液:分别称取丙烯酰胺29g、甲叉双丙烯酰胺1g,加双蒸水溶解,并定容到100ml,调整pH值到7.0。
(4)10%SDS-PAGE胶的制备
具体步骤如下:
①用移液器依次分别加入4.0ml双蒸水、3.3ml30%聚丙烯酰胺液、2.5ml1.5Mtris-HCl(pH8.8)溶液、0.1ml10%SDS、0.1ml10%过硫酸铵、0.005ml TEMED溶液,充分混匀,即为分离胶。
②倒入事先准备好的玻璃胶槽内,加水封闭,室温凝固45分钟。
③用移液器依次分别加入3.4ml双蒸水、0.83ml30%聚丙烯酰胺液、0.63ml1.0Mtris-HCl(pH8.8)溶液、0.05ml10%SDS、0.05ml10%过硫酸铵、0.004ml TEMED溶液,充分混匀,即为浓缩胶。
④倒去胶槽里分离胶上的水,加入浓缩胶,插入梳子,室温凝固30分钟,4℃保存备用。
(5)蛋白变性
具体步骤如下:
①按4体积蛋白样品(实验前用BCA法已测定蛋白浓度)、1体积5×蛋白上样缓冲液(5×LB)(0.313M Tris-HCl pH6.8,10%SDS,0.05%bromophenol blue,50%glycerol,0.4M DTT)的比例加到200μL的EP管中。
②将上述EP管置于离心机,2000转/分,离心2分钟,使样品充分混匀并沉入管底。
③转移到PCR仪中,99℃变性5min,-20℃保存备用。
(6)蛋白电泳和蛋白印记的检测及分析
具体步骤如下:
①取出10%SDS-PAGE胶,室温复苏几分钟,拔掉梳子,暴露出上样孔;
②按每孔加40μg加样变性好的蛋白及4μL蛋白marker;
③装配好垂直电泳装置(注意正负极不要接反),加入电泳缓冲液到合适位置,设置电压为恒压80V,电泳约30min压缩样品,待样品压缩成线进入分离胶后,调整电压为恒压120V,根据marker判断自己所需蛋白已被充分分离时(通常是溴酚蓝到达底部)结束电泳;
④取2张与凝胶大小相同的滤纸和PVDF膜,先将PVDF膜在甲醇中活化5min,再浸泡在转膜缓冲液中洗去甲醇;
⑤把电泳后的凝胶放转移到PVDF膜上,然后夹在滤纸中,滤纸上下各三层,将夹层物放在电极之中,确认PVDF膜位于凝胶的正极侧,接通电源,252mA恒定转膜2h;
⑥将转膜后的PVDF膜放入含有5%的脱脂奶粉的TBST中,37℃摇床封闭1h;
⑦用TBST将牛奶洗掉,一抗4℃摇床孵育过夜(VPO1:1:1000;β-actin:1:2000,用碧云天一抗稀释液稀释);
⑧TBST洗膜3次,每次10min;室温摇床孵育二抗1h(山羊抗兔、山羊抗小鼠二抗1:5000,用碧云天二抗稀释液稀释);
⑨TBST洗涤3次,每次10min;
⑩分别量取等体积的高灵敏的BeyoECLPlusA液和B液混匀,配成工作液,然后加到PVDF膜的正面,采用ChemiDoc XRS+成像系统(Bio-Rad公司)进行拍照分析,并利用ImageLab软件进行灰度值分析。
内皮细胞KLF4mRNA表达的检测
细胞RNA提取:
具体步骤如下:
①内皮细胞用胰酶消化细胞,转移到1.5mLEP管中,1000r/min离心10分钟,去上清,加1mL的RNA抽提试剂Trizol混匀。
②加入0.2mL的氯仿,反复颠倒10次充分混匀,静置3min,4℃,12000g离心15min。
③吸取上清液转移到新的EP管内,加入0.5mL异丙醇,上下颠倒混匀,静置10min,4℃,12000g离心10min。
④弃上清,加入1mL75%的乙醇反复洗涤沉淀,4℃,7500rpm离心5min,如此重复操作2遍。
⑤弃上清,室温风干后加入50μL的DEPC水,4℃溶解过夜。
⑥取上述RNA 1μL用于RNA浓度和质量测定。其余-80℃备用。
逆转录
用生物分光光度计测定260nm、280nmOD值定量分析RNA(OD260/280在1.8-2.0之间),RNA浓度(μg/ml)=OD260*40*稀释倍数。每个样品各取100μgRNA,实验按照逆转录试剂盒说明书步骤进行(冰上操作):
①将下列反应成分加入离心管中;
②37℃15min;85℃5sec,终止反应,冰上冷却;
逆转录实验完成后,将产物cDNA置于-20℃保存备用。
实时荧光定量PCR检测KLF4 mRNA表达
所得cDNA适当稀释在荧光定量实时仪(7300Real Time PCR System,AppliedBiosystem)上进行反应。按照说明,使用PowerSYBR Green PCR Master Mix试剂盒,以2μlcDNA为模板,以β-actin为内参,PCR扩增基因片断。反应体系按照下表进行配置:
Real-time PCR体系
Real-time PCR反应条件:95℃预变性30s,95℃变性5s,60℃退火和延伸31s,共40个循环。
具体引物或基因序列表如下所示:
引物或基因序列表
采用7300System SDS Software分析数据,统计ΔΔCt值以比较其mRNA的表达。
siKLF4转染实验:以慢病毒为载体,将KLF4-siRNA目的基因转染HUVECs细胞,利用激光共聚焦显微镜(LSCM)及流式细胞术(FCM)检测转染后的效率,用Western blot检测KLF4表达量的抑制效率。
实施例2细胞活性的测定
为了测定药物作用于细胞的最佳浓度与时间,采用MTT法检测细胞活性。同型半胱氨酸(Hcy)500μM作用于内皮细胞48h,细胞活力显著降低(图1A,B)。给予不同剂量红景天苷和阳性药处理后,明显提高细胞活力(图1C)。采用LDH外漏实验检测细胞膜损伤程度,Hcy作用48h,LDH外漏量明显增多,红景天苷作用后可不同程度减少其外漏量(图1D),表明红景天苷对Hcy引起的内皮细胞损伤具有一定的保护作用。
实施例3细胞内活性氧水平的测定
在多种刺激因素作用和多种病理条件下,体内氧自由基大量产生,活性氧含量增加,形成氧化应激状态。内皮细胞长时间暴露在高浓度的氧化应激条件下,最终导致损伤和功能障碍。为了评价红景天苷对Hcy诱导的活性氧水平升高的抑制作用,采用DCFH-DA荧光探针检测内皮细胞的活性氧水平。Hcy刺激内皮细胞48h,活性氧水平显著提高,药物处理后显著降低活性氧水平(图2A)。荧光强度检测统计结果一致(图2B)。
实施例4衰老相关β-半乳糖苷酶染色和端粒酶活性检测
为了检测细胞衰老状态变化,采用SA-β-gal染色法检测阳性细胞百分比。结果显示,模型组Hcy作用后,染色阳性细胞数量显著增多,不同浓度红景天苷干预作用后,染色阳性细胞数目显著减少(图3A)。染色阳性细胞百分比统计结果一致(图3B)。
端粒酶的活性与细胞衰老密切相关,采用Real-time PCR技术检测活细胞端粒酶的活性。如图所示,Hcy作用后,端粒酶活性明显降低,而红景天苷药物处理组端粒酶活性不同程度提高(图3C)。结果表明,Hcy可加速内皮细胞衰老进程,红景天苷显著抑制Hcy诱导的内皮细胞衰老。
实施例5红景天苷对Hcy诱导的内皮细胞衰老相关分子标志物表达的影响
采用Western Blot检测细胞周期调控基因p53和p21的蛋白表达变化情况。如图4A,B所示,与正常组相比,模型组p53和p21蛋白表达水平均上调,红景天苷干预处理组显著下调p53和p21的蛋白表达水平。以上结果表明,红景天苷对于Hcy诱导的内皮细胞衰老具有一定的保护作用。
实施例6 KLF4在内皮细胞衰老过程中的表达变化
为了检测KLF4在Hcy诱导的内皮细胞衰老过程中的作用,采用Western Blot和实时荧光定量PCR的方法进行分析,发现Hcy诱导的内皮细胞衰老模型中KLF4的表达在蛋白和mRNA水平上均有上调。此外,与模型组相比,不同剂量红景天苷药物组KLF4在蛋白和mRNA水平不同程度地表达下调(图5A,B)。这些结果表明KLF4参与内皮细胞衰老,且红景天苷可以抑制Hcy诱导的KLF4表达水平上调。
实施例7敲除KLF4减弱Hcy诱导的内皮细胞衰老程度
为了进一步探讨KLF4对内皮衰老过程的影响,本研究构建了慢病毒实现KLF4的敲低,采用Western Blot技术检测KLF4的蛋白表达水平。模型组KLF4蛋白表达水平显著提高,KLF4 siRNA转染组其蛋白表达水平显著降低(图6A)。采用β-半乳糖苷酶染色法检测阳性细胞百分比。结果显示,与正常组相比,模型组染色阳性细胞数量显著增多,与模型组相比,KLF4 siRNA转染组染色阳性细胞数目显著减少(图6B,C)。这表明KLF4与Hcy诱导的内皮细胞衰老密切相关,敲低KLF4减弱Hcy诱导的内皮细胞衰老程度。
实施例8
取红景天苷作为原料药,加入1/10的淀粉,制粒,得颗粒剂。
实施例9
取红景天苷作为原料药,加入1/10的淀粉,混匀,装入胶囊,得胶囊剂。
实施例10
取红景天苷作为原料药,加入及1/10的糊精混合均匀,干燥,制成丸剂。
实施例11
取红景天苷作为原料药,加入1/8的淀粉,制粒,压片,制成片剂。
实施例12
取红景天苷作为原料药,加入10倍量的注射用水,浸泡2-5小时,过滤,灭菌,得注射剂。
实施例13
取红景天苷作为原料药,加入10倍量的注射用水,浸泡2-5小时,过滤,冻干,得冻干粉剂。
本发明参考文献
[1]Lopezotin C,Blasco M et al.The Hallmarkers of Aging[J].Cell,2013,153(6):1194.
[2]VigenR,MaddoxTM,AllenLA.AgingoftheUnitedStalespopulation:impactonbeartfailureD].CurrHeartFailRep,2012.9(4):369-374
[3]Lahoute C,Herbin O,Mallat Z,et al.Adaptive immunity inatherosclerosis:mechanisms and future therapeutic targets[J].Nat Rev Cardiol,2011,8(6):348-58.
[4]Blackwell KA,Sorenson JP,Richardson DM,et al.Mechanism of aging-induced impairment of endothelial-dependent relaxation:role oftetrahydrobiopterin.Am J Physiol Heart Circ Physiol,2004,287(6):H2448-2453.
[5]Edo MD,Andrés V,et al.Aging,telomeres and atherosclerosis[J].Cardiovasc Res.2005.66(2):213-221.
[6]Geserick C,Blasco MA.Novel roles for telomerase in aging[J].MechAging Dev,2006,127:579-83.
[7]Bringold F,Serrano M.Tumor suppressors and oncogenes in celluarsenescence[J].Exp Gerontol,2000,35(3):317-329.
[8]Erusalimsky JD,et al.Vscular endothelial senescence:form mechanismto pathophysiology[J].J Appl Physiol,2009,106(1):326-332.
[9]杨阳,张允岭,张志辰,等.伴有颈动脉粥样硬化的脑卒中高危人群证候要素与同型半胱氨酸的相关性研究[J].中华中医药杂志,2017,32(2):537-541.
[10]刘丹,敖卫,徐敏,等.H型高血压冠心病患者血清Hcy、β2MG及hs-CRP检测的意义[J].中国循证心血管医学杂志,2016,8(6):687-690.
[11]张秀洲,刘福艳,李静,等.血管内皮功能和同型半胱氨酸对老年冠心病患者发病的相关性探讨[J].中华老年心脑血管病杂志,2015,17(12):1268-1270.
[12]鄢高亮,王栋,乔勇,等.高同型半胱氨酸水平对冠心病严重程度及支架置入治疗预后的影响[J].中华心血管病杂志,2015,43(11):500.
[13]易梦阳,谭俊晖,张爱爱,李方江,刘艳静.同型半胱氨酸与动脉粥样硬化机制的研究进展[J].河北北方学院学报(自然科学版),2018,34(10):56-60.
[14]黄建敏,简崇东,唐雄林,等.老年脑梗死患者高同型半胱氨酸血症和氧化应激及炎性反应的关系研究[J].中华老年心脑血管病杂志,2011,13(3):249-251.
[15]王海英.糖尿病肾病患者血清同型半胱氨酸与氧化应激反应的变化[J].中国医药导刊,2012,14(8):1408-1409.
[16]Park CS,Shen Y,Lewis A,et al.Role of the reprogramming factorKLF4in blood formation[J].J LeukocBiol,2016,99(5):673-85.
[17]Yoshida T,Hayashi M.Role of Krüppel-like factor 4and its bindingproteinsin vascular disease[J].J AtherosclerThromb,2014,21(5):402-13.
[18]罗彩云,丁家望,郑霞霞,周天,张再强.锌指样转录因子4与动脉粥样硬化研究进展[J].中国老年学杂志,2018,38(13):3290-3293.
[19]Zheng B,Han M,Wen JK,et al.Role of Krüppel-like factor 4inphenotypicswitching and proliferation of vascular smooth muscle cells[J].IUBMBLife,2010,62(2):132-9.
[20]李慧,孙乐栋.红景天苷抗衰老和抗氧化药理机制研究新进展[J].中国医药导报,2018,15(07):51-54+81.
[21]吴洪渊,王媛媛,董合玲,吴依芬,王刚,戴萌.CARTPT对过氧化氢诱导人脐静脉内皮细胞衰老的影响[J].广东医学,2018,39(14):2117-2121.
[22]徐勍.转录因子KLF4及DEC1诱导的细胞衰老在肿瘤中作用及机制研究[D].北京协和医学院,2014.
[23]Sun L,Dou F,Chen J,et al.Salidroside slows the progression ofEA.hy926 cell senescence by regulating the cell cycle in an atherosclerosismodel[J].Mol Med Rep,2018,17(1):257-263.
[24]Mao GX,Wang Y,Qiu Q,et al.Salidroside protects human fibroblastcells from premature senescence induced by H2 O2 partly through modulatingoxidative status[J].Mech Ageing Dev,2010,131(11-12):723-731.
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作出一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 贵州医科大学
<120>一种基于KLF4的红景天苷在抗血管内皮细胞衰老中的应用
<160> 4
<210> 1
<211> 20
<212>RNA
<213> Artificial Sequence
<220>
<223>KLF4 F序列
<400> 1
CCCATCTTTC TCCACGTTCG 20
<210> 2
<211> 20
<212>RNA
<213>Artificial Sequence
<220>
<223> KLF4 R序列
<400> 2
AAGTCGCTTC ATGTGGGAGA 20
<210> 3
<211> 18
<212>RNA
<213> Artificial Sequence
<220>
<223>β-actin F序列
<400> 3
CCTGGCACCC AGCACAAT 18
<210> 4
<211> 18
<212>RNA
<213> Artificial Sequence
<220>
<223>β-actin R序列
<400> 4
GGGCCGGACT CGTCATAC 18

Claims (10)

1.一种基于KLF4的红景天苷在抗血管内皮细胞衰老中的应用。
2.根据权利要求1所述的应用,其特征在于,红景天苷在Hcy引起的内皮细胞损伤中的应用。
3.根据权利要求1所述的应用,其特征在于,红景天苷在Hcy诱导的活性氧水平升高的抑制应用。
4.根据权利要求1所述的应用,其特征在于,红景天苷在抑制Hcy诱导的内皮细胞衰老中的应用。
5.根据权利要求1所述的应用,其特征在于,红景天苷对于Hcy诱导的内皮细胞衰老保护中的应用。
6.根据权利要求1所述的应用,其特征在于,红景天苷在抑制Hcy诱导的KLF4表达水平上调中的应用。
7.根据权利要求1所述的应用,其特征在于,红景天苷在敲除KLF4减弱Hcy诱导的内皮细胞衰老中的应用。
8.根据权利要求1所述的应用,其特征在于,所述红景天苷在抗血管内皮细胞衰老制剂中的应用。
9.根据权利要求8所述的应用,其特征在于,所述制剂为加入药学上可接受的辅料制备成药学上可接受的制剂。
10.根据权利要求9所述的应用,其特征在于,所述制剂为颗粒剂、胶囊剂、散剂、片剂、丸剂、注射制剂、冻干粉针剂。
CN201910466106.3A 2019-05-31 2019-05-31 一种基于klf4的红景天苷在抗血管内皮细胞衰老中的应用 Pending CN110237083A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910466106.3A CN110237083A (zh) 2019-05-31 2019-05-31 一种基于klf4的红景天苷在抗血管内皮细胞衰老中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910466106.3A CN110237083A (zh) 2019-05-31 2019-05-31 一种基于klf4的红景天苷在抗血管内皮细胞衰老中的应用

Publications (1)

Publication Number Publication Date
CN110237083A true CN110237083A (zh) 2019-09-17

Family

ID=67885624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910466106.3A Pending CN110237083A (zh) 2019-05-31 2019-05-31 一种基于klf4的红景天苷在抗血管内皮细胞衰老中的应用

Country Status (1)

Country Link
CN (1) CN110237083A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114569699A (zh) * 2022-03-18 2022-06-03 山东大学齐鲁医院(青岛) 一种用于血管内皮细胞衰老的药物制剂

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101254198A (zh) * 2007-11-07 2008-09-03 中国医学科学院医药生物技术研究所 红景天苷延缓衰老的新用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101254198A (zh) * 2007-11-07 2008-09-03 中国医学科学院医药生物技术研究所 红景天苷延缓衰老的新用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIN SUN等: "Salidroside slows the progression of EA.hy926 cell senescence by regulating the cell cycle in an atherosclerosis model" *
SHA-SHA XING等: "Salidroside attenuates endothelial cellular senescence via decreasing the expression of inflammatory cytokines and increasing the expression of SIRT3" *
SIN BOND LEUNG等: "Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress" *
朱琳等: "红景天苷通过抑制内质网应激减少高同型 半胱氨酸诱导的人脐静脉内皮细胞损伤" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114569699A (zh) * 2022-03-18 2022-06-03 山东大学齐鲁医院(青岛) 一种用于血管内皮细胞衰老的药物制剂
CN114569699B (zh) * 2022-03-18 2022-10-28 山东大学齐鲁医院(青岛) 一种用于血管内皮细胞衰老的药物制剂

Similar Documents

Publication Publication Date Title
Ho et al. Egr-1 deficiency protects from renal inflammation and fibrosis
Bascones et al. Apoptosis and cell cycle arrest in oral lichen planus: hypothesis on their possible influence on its malignant transformation
Sun et al. EGR1 promotes the cartilage degeneration and hypertrophy by activating the Krüppel-like factor 5 and β-catenin signaling
Ren et al. Effect of exosomes derived from MiR-133bmodified ADSCs on the recovery of neurological function after SCI.
Yang et al. Mechanisms of Ghrelin anti-heart failure: inhibition of Ang II-induced cardiomyocyte apoptosis by down-regulating AT1R expression
Zhang et al. Melatonin suppresses autophagy in type 2 diabetic osteoporosis
WO2022095489A1 (zh) 秦艽提取物及其制备方法和用途
Cai et al. Deficiency of telomere-associated repressor activator protein 1 precipitates cardiac aging in mice via p53/PPARα signaling
CN107012116A (zh) 一种小肠3d类器官研究bcrp介导药物转运模型的构建方法与应用
Hasan et al. Intestinal stem cell-derived enteroids from morbidly obese patients preserve obesity-related phenotypes: Elevated glucose absorption and gluconeogenesis
Qi et al. Expression of autophagy‑associated proteins in rat dental irreversible pulpitis
Gao et al. Long non-coding RNA (lncRNA) small nucleolar RNA host gene 7 (SNHG7) promotes breast cancer progression by sponging miRNA-381.
Yin et al. RSPOs facilitated HSC activation and promoted hepatic fibrogenesis
CN107095867A (zh) 一种hsp90抑制剂在制备防治主动脉疾病药物中的用途
Niu et al. Overexpression of Egr2 and Egr4 protects rat brains against ischemic stroke by downregulating JNK signaling pathway
CN108273062A (zh) Foxm1抑制剂在肝内胆管细胞癌治疗中的作用
Wang et al. Mitofusin2 regulates the proliferation and function of fibroblasts: The possible mechanisms underlying pelvic organ prolapse development
CN110237083A (zh) 一种基于klf4的红景天苷在抗血管内皮细胞衰老中的应用
Liu et al. Piezo1 transforms mechanical stress into pro senescence signals and promotes osteoarthritis severity
Wu et al. NFATc4 mediates ethanol-triggered hepatocyte senescence
CN116650459A (zh) 丹参素在制备治疗子痫前期及子痫药物中的应用
Wang et al. mtDNA regulates cGAS-STING signaling pathway in adenomyosis
Cheng et al. MANF inhibits Sjögren's syndrome salivary gland epithelial cell apoptosis and antigen expression of Ro52/SSA through endoplasmic reticulum stress/autophagy pathway
He et al. USP5 negatively regulates the activation of NLRP3 inflammasomes and participates in the pathological and physiological processes of Sjogren's syndrome
Liu et al. Anti-angiogenic action of 5, 5-diphenyl-2-thiohydantoin-N10 (DPTH-N10)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190917

RJ01 Rejection of invention patent application after publication