CN110233182A - 一种复合结构双吸收层石墨烯探测器及其制备工艺 - Google Patents

一种复合结构双吸收层石墨烯探测器及其制备工艺 Download PDF

Info

Publication number
CN110233182A
CN110233182A CN201910572336.8A CN201910572336A CN110233182A CN 110233182 A CN110233182 A CN 110233182A CN 201910572336 A CN201910572336 A CN 201910572336A CN 110233182 A CN110233182 A CN 110233182A
Authority
CN
China
Prior art keywords
detector
graphene
metal
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910572336.8A
Other languages
English (en)
Other versions
CN110233182B (zh
Inventor
杨树明
吉培瑞
王一鸣
杨晓凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201910572336.8A priority Critical patent/CN110233182B/zh
Publication of CN110233182A publication Critical patent/CN110233182A/zh
Application granted granted Critical
Publication of CN110233182B publication Critical patent/CN110233182B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种复合结构双吸收层石墨烯探测器及其制备工艺。该探测器包括二氧化硅基底、石墨烯纳米带、金属电极、纳米光栅天线、金属量子点、金属膜环带片和透明粘合剂。通过亚波长纳米光栅天线对光束进行耦合传导同时产生等离子体共振,提高接收效率并增强光电响应;通过金属量子点激发表面等离子体激元,产生表面等离子体共振增强光电响应;通过金属膜环带片对入射光束聚焦,使得入射光能量集中作用在探测区域,增强光电响应。采用正反两面探测器结构,正面与背面同时接收并转换成光电流,有效增大了接收面积,进一步了提高光电响应。相应的制备工艺操作简单,可靠性强。本发明有助于突破石墨烯弱光子能量探测的技术瓶颈。

Description

一种复合结构双吸收层石墨烯探测器及其制备工艺
技术领域
本发明属于材料科学、光电器件及微纳制造技术领域,具体涉及一种复合结构双吸收层石墨烯探测器及其制备工艺。
背景技术
光电探测器可以将人眼难以观测到的微弱辐射信号转换成其它可以测量的物理量,在军事侦察、预警及制导领域,民用医疗图像处理、安防检测领域等方面均具有极大应用需求。基于硒化铅(PbSe)、碲化铅(PbTe)、碲镉汞(HgCdTe)、铟镓砷(InGaAs)等传统材料的光电探测器体积和功耗大,材料制备困难,探测成本高且通常需要制冷,导致其应用范围受到极大限制。石墨烯是一种新型二维材料,其独特的晶格结构使之具有超高的载流子迁移率及超宽的吸收光谱,在弱光子能量探测及全波段可调探测谐等方面极具潜力,成为当前光电探测领域的研究热点。然而,虽然石墨烯电子迁移率很高,但受限于单层原子极低的光吸收率,其归一化探测响应率通常很低。如何有效增强石墨烯与入射光的相互作用,提高石墨烯探测器的响应率,是实现石墨烯材料高效探测的关键所在。
发明内容
本发明的目的在于针对石墨烯探测器探测率低的问题,提供了一种复合结构双吸收层石墨烯探测器及其制备工艺,用于增强石墨烯探测器的响应率。
为达到上述目的,本发明采用如下技术方案予以实现:
一种复合结构双吸收层石墨烯探测器,包括二氧化硅基底、石墨烯纳米带、金属电极、纳米光栅天线、金属量子点和金属膜环带片;其中,
石墨烯纳米带位于二氧化硅基底表面,金属电极形成于石墨烯纳米带两侧,纳米光栅天线形成于金属电极上方,金属量子点形成于石墨烯纳米带表面,金属膜环带片形成于二氧化硅基底表面。
本发明进一步的改进在于,通过亚波长纳米光栅天线对光束进行耦合传导并产生等离子体共振,提高接收效率并增强光电响应;通过金属量子点激发表面等离子体激元,产生等离子体共振增强光电响应;通过金属膜环带片对入射光束聚焦,使入射光能量集中作用在探测区域,增强光电响应。
本发明进一步的改进在于,二氧化硅基底、金属电极、纳米光栅天线、石墨烯纳米带和金属量子点构成探测器的正面;二氧化硅基底和金属膜环带片构成探测器的背面;探测器的正面与探测器的背面通过透明粘合剂有机结合,整体形成一个复合结构双吸收层的石墨烯探测器。
本发明进一步的改进在于,当入射光从探测器的正面与探测器的背面同时入射时,正面与背面同时接收并转换成光电流,有效增大了接收面积。
一种复合结构双吸收层石墨烯探测器的制备工艺,包括如下步骤:
1)制备单晶单层石墨烯纳米带薄膜并转移到SiO2基底上;
2)在步骤1)的纳米带薄膜两端制备石墨烯探测器的金属电极;
3)在步骤2)得到的金属电极顶部和附近制备纳米光栅天线;
4)制备金属量子点并旋涂在石墨烯纳米带薄膜上;
5)选择另一片SiO2基底,在其上制备金属膜环带阵列;
6)通过透明粘合剂,从背面将步骤5)得到的金属膜环带阵列与步骤1)所述基底有机结合,整体得到一个复合结构双吸收层的石墨烯探测器。
本发明进一步的改进在于,步骤2)中,采用电子束光刻技术,并结合金属沉积和剥离等微纳制造工艺,在石墨烯纳米带左右两侧制备20nm厚的Ti及100nm厚的Au电极;其中Ti作为缓冲材料,导电性能优异的Au作为电极材料。
本发明进一步的改进在于,步骤3)中,采用纳米压印技术,利用各向异性湿法腐蚀工艺制备压印模板;首先在硅片表面制备SiO2掩模层,再在掩膜层上进行旋转匀胶、前烘、曝光、后烘、显影及剥离光刻工艺,得到图形化的掩膜层,同时部分硅基底裸露出来,形成腐蚀窗口;在腐蚀窗口处,裸露出的硅基底被腐蚀液腐蚀,得到压印模板;最后根据晶面方向与对准方向,压印得到纳米光栅天线。
本发明进一步的改进在于,步骤4)中,采用金属薄膜退火技术,首先在洁净基底上通过磁控溅射沉积一层金薄膜,沉积时间15s,成膜厚度5nm,并在300℃氩气环境下进行退火,金薄膜在高温下团聚得到纳米尺寸的金属量子点。
本发明进一步的改进在于,步骤5)中,以焦距作为基底厚度的参考值,根据所需焦距的大小,选择基底厚度;首先通过超声清洗去除基底表面杂质并用热板烘干,再用电子束蒸发台在基底上沉积100nm金膜;依据优化设计得到的环带元件特征尺寸,在100nm金膜的表面,采用聚焦离子束系统刻蚀得到金属膜环带元件。
本发明具有如下有益的技术效果:
本发明提供的一种复合结构双吸收层石墨烯探测器,二氧化硅基底、金属电极、纳米光栅天线、石墨烯纳米带、金属量子点构成探测器的正面;二氧化硅基底、金属膜环带片构成探测器的背面,探测器的正面与探测器的背面通过透明粘合剂有机结合,整体形成一个复合结构双吸收层的石墨烯探测器。当入射光从探测器的正面与探测器的背面同时入射时,正面与背面同时接收并转换成光电流,有效增大了接收面积,进一步增强光电响应。本发明提供的探测器结构可以全方面多维度提高光电响应率。相应的制备工艺操作简单、实用性强、可靠性高,适用于实际生产。
本发明提供的一种复合结构双吸收层石墨烯探测器的制备工艺,基于表面等离子体激元和超分辨聚焦对光场信号增强的理论方法,通过亚波长纳米光栅天线对光束进行耦合传导并产生等离子体共振,提高接收效率并增强光电响应;通过金属量子点激发表面等离子体激元,产生等离子体共振增强光电响应;通过金属膜环带片对入射光束聚焦,使入射光能量集中作用在探测区域,增强光电响应。本发明采用正反两面探测器结构,当入射光从探测器的正面与探测器的背面同时入射时,正面与背面同时接收并转换成光电流,有效增大了接收面积,进一步增强光电响应。
综上所述,本发明提出的复合结构双吸收层石墨烯探测器能够有效增强石墨烯与入射光的相互作用,提高探测器光电响应率。方法可靠性强,制备工艺操作简单,有助于突破石墨烯弱光子能量探测的技术瓶颈。
附图说明
图1是复合结构双吸收层石墨烯探测器及其制备工艺示意图;
附图标记说明:
1、二氧化硅基底,2、石墨烯纳米带,3、金属电极,4、纳米光栅天线,5、金属量子点,6、金属膜环带片,7、透明粘合剂,8、探测器的正面,9、探测器的背面,10、入射光。
具体实施方式
为使本发明的目的、技术方案及优势更加清楚明了,下面结合附图对本发明原理及实验过程作进一步说明。
如图1所示,本发明提供的一种复合结构双吸收层石墨烯探测器,包括二氧化硅基底1、石墨烯纳米带2、金属电极3、纳米光栅天线4、金属量子点5、金属膜环带片6和透明粘合剂7。其中,二氧化硅基底1、石墨烯纳米带2、金属电极3、纳米光栅天线4、金属量子点5构成探测器的正面8;二氧化硅基底1、金属膜环带片6构成探测器的背面9。探测器的正面8与探测器的背面9通过透明粘合剂7有机结合,整体形成一个复合结构双吸收层的石墨烯探测器。
为了有效增强石墨烯与入射光的相互作用,提高探测器响应率,本发明基于表面等离子体激元和超分辨聚焦对光场信号增强的理论方法,工作原理为:
通过亚波长纳米光栅天线4对光束进行耦合传导并产生等离子体共振,提高接收效率并增强光电响应;通过金属量子点5激发表面等离子体激元,产生等离子体共振增强光电响应;通过金属膜环带片6对入射光束聚焦,使入射光能量集中作用在探测区域,增强光电响应。本发明采用正反两面探测器结构,当入射光10从探测器的正面8与探测器的背面9同时入射时,正面与背面同时接收并转换成光电流,有效增大了接收面积,进一步增强光电响应。
为了简单高效实现上述复合结构双吸收层石墨烯探测器,本发明提供了一套可靠的制备工艺流程。如图1所示,包括如下步骤:
1)制备单晶单层石墨烯纳米带薄膜并转移到SiO2基底上;
2)在上述纳米带薄膜两端制备石墨烯探测器的金属电极;
3)在上述金属电极顶部和附近制备纳米光栅天线;
4)制备金属量子点并旋涂在石墨烯纳米带薄膜上;
5)选择另一片SiO2基底,在其上制备金属膜环带阵列;
6)通过适当的透明粘合剂,从背面将上述金属膜环带阵列与步骤1)所述基底有机结合,整体得到一个复合结构双吸收层的石墨烯探测器。其中:
步骤1)中所述单晶单层石墨烯纳米带制备及转移方法为本领域技术人员所熟知所常用的方法,在此不作赘述;
步骤2)中,采用电子束光刻技术,并结合金属沉积和剥离等微纳制造工艺,在石墨烯纳米带左右两侧制备20nm厚的Ti及100nm厚的Au电极。其中Ti作为缓冲材料,导电性能优异的Au作为电极材料;
步骤3)中,采用纳米压印技术,利用各向异性湿法腐蚀工艺制备压印模板;首先在硅片表面制备SiO2掩模层,再在掩膜层上进行旋转匀胶、前烘、曝光、后烘、显影、剥离等光刻工艺,得到图形化的掩膜层,同时部分硅基底裸露出来,形成腐蚀窗口;在腐蚀窗口处,裸露出的硅基底被腐蚀液腐蚀,得到压印模板。根据晶面方向与对准方向,压印得到纳米光栅天线。
步骤4)中,采用金属薄膜退火技术,首先在洁净基底上通过磁控溅射沉积一层金薄膜,沉积时间15s,成膜厚度5nm,并在300℃氩气环境下进行退火,金薄膜在高温下团聚得到纳米尺寸的金属量子点;
步骤5)中,以焦距作为基底厚度的参考值,根据所需焦距的大小,选择合适的基底厚度;首先通过超声清洗去除基底表面杂质并用热板烘干,再用电子束蒸发台在基底上沉积100nm金膜。依据优化设计得到的环带元件特征尺寸,在100nm金膜的表面,采用聚焦离子束系统刻蚀得到金属膜环带元件。
步骤6)实现正面与背面的有机结合,得到复合结构双吸收层石墨烯探测器。
以上结合附图对本发明的具体实施方法作了说明,但这些说明不能被理解为限制了本发明的范围,本发明的保护范围由随附的权利要求书限定,任何在本发明权利要求基础上的改动都是本发明的保护范围。

Claims (9)

1.一种复合结构双吸收层石墨烯探测器,其特征在于,包括二氧化硅基底(1)、石墨烯纳米带(2)、金属电极(3)、纳米光栅天线(4)、金属量子点(5)和金属膜环带片(6);其中,
石墨烯纳米带(2)位于二氧化硅基底(1)表面,金属电极(3)形成于石墨烯纳米带(2)两侧,纳米光栅天线(4)形成于金属电极(3)上方,金属量子点(5)形成于石墨烯纳米带(2)表面,金属膜环带片(6)形成于二氧化硅基底(1)表面。
2.根据权利要求1所述的一种复合结构双吸收层石墨烯探测器,其特征在于,通过亚波长纳米光栅天线(3)对光束进行耦合传导并产生等离子体共振,提高接收效率并增强光电响应;通过金属量子点(5)激发表面等离子体激元,产生等离子体共振增强光电响应;通过金属膜环带片(6)对入射光束聚焦,使入射光能量集中作用在探测区域,增强光电响应。
3.根据权利要求1所述的一种复合结构双吸收层石墨烯探测器,其特征在于,二氧化硅基底(1)、金属电极(2)、纳米光栅天线(3)、石墨烯纳米带(4)和金属量子点(5)构成探测器的正面(8);二氧化硅基底(1)和金属膜环带片(6)构成探测器的背面(9);探测器的正面(8)与探测器的背面(9)通过透明粘合剂(7)有机结合,整体形成一个复合结构双吸收层的石墨烯探测器。
4.根据权利要求3所述的一种复合结构双吸收层石墨烯探测器,其特征在于,当入射光(10)从探测器的正面(8)与探测器的背面(9)同时入射时,正面与背面同时接收并转换成光电流,有效增大了接收面积。
5.一种复合结构双吸收层石墨烯探测器的制备工艺,其特征在于,包括如下步骤:
1)制备单晶单层石墨烯纳米带薄膜并转移到SiO2基底上;
2)在步骤1)的纳米带薄膜两端制备石墨烯探测器的金属电极;
3)在步骤2)得到的金属电极顶部和附近制备纳米光栅天线;
4)制备金属量子点并旋涂在石墨烯纳米带薄膜上;
5)选择另一片SiO2基底,在其上制备金属膜环带阵列;
6)通过透明粘合剂,从背面将步骤5)得到的金属膜环带阵列与步骤1)所述基底有机结合,整体得到一个复合结构双吸收层的石墨烯探测器。
6.根据权利要求5所述的一种复合结构双吸收层石墨烯探测器的制备工艺,其特征在于,步骤2)中,采用电子束光刻技术,并结合金属沉积和剥离等微纳制造工艺,在石墨烯纳米带左右两侧制备20nm厚的Ti及100nm厚的Au电极;其中Ti作为缓冲材料,导电性能优异的Au作为电极材料。
7.根据权利要求5所述的一种复合结构双吸收层石墨烯探测器的制备工艺,其特征在于,步骤3)中,采用纳米压印技术,利用各向异性湿法腐蚀工艺制备压印模板;首先在硅片表面制备SiO2掩模层,再在掩膜层上进行旋转匀胶、前烘、曝光、后烘、显影及剥离光刻工艺,得到图形化的掩膜层,同时部分硅基底裸露出来,形成腐蚀窗口;在腐蚀窗口处,裸露出的硅基底被腐蚀液腐蚀,得到压印模板;最后根据晶面方向与对准方向,压印得到纳米光栅天线。
8.根据权利要求5所述的一种复合结构双吸收层石墨烯探测器的制备工艺,其特征在于,步骤4)中,采用金属薄膜退火技术,首先在洁净基底上通过磁控溅射沉积一层金薄膜,沉积时间15s,成膜厚度5nm,并在300℃氩气环境下进行退火,金薄膜在高温下团聚得到纳米尺寸的金属量子点。
9.根据权利要求5所述的一种复合结构双吸收层石墨烯探测器的制备工艺,其特征在于,步骤5)中,以焦距作为基底厚度的参考值,根据所需焦距的大小,选择基底厚度;首先通过超声清洗去除基底表面杂质并用热板烘干,再用电子束蒸发台在基底上沉积100nm金膜;依据优化设计得到的环带元件特征尺寸,在100nm金膜的表面,采用聚焦离子束系统刻蚀得到金属膜环带元件。
CN201910572336.8A 2019-06-28 2019-06-28 一种复合结构双吸收层石墨烯探测器及其制备工艺 Active CN110233182B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910572336.8A CN110233182B (zh) 2019-06-28 2019-06-28 一种复合结构双吸收层石墨烯探测器及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910572336.8A CN110233182B (zh) 2019-06-28 2019-06-28 一种复合结构双吸收层石墨烯探测器及其制备工艺

Publications (2)

Publication Number Publication Date
CN110233182A true CN110233182A (zh) 2019-09-13
CN110233182B CN110233182B (zh) 2020-11-10

Family

ID=67856588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910572336.8A Active CN110233182B (zh) 2019-06-28 2019-06-28 一种复合结构双吸收层石墨烯探测器及其制备工艺

Country Status (1)

Country Link
CN (1) CN110233182B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463310A (zh) * 2020-04-16 2020-07-28 复旦大学 一种单晶体管多维度光信息探测器
CN112242456A (zh) * 2020-09-15 2021-01-19 中国科学院上海技术物理研究所 一种基于光学微带天线非对称集成的二维材料探测器
CN115332385A (zh) * 2022-07-20 2022-11-11 浙江大学 基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201483A (zh) * 2011-05-13 2011-09-28 中国科学院半导体研究所 硅纳米线光栅谐振增强型光电探测器及其制作方法
CN102881761A (zh) * 2011-07-15 2013-01-16 常州光电技术研究所 Apd红外探测器及其制作方法
CN103367518A (zh) * 2012-03-31 2013-10-23 中国科学院上海微系统与信息技术研究所 一种表面等离激元耦合太赫兹量子阱探测器
CN104303320A (zh) * 2011-10-21 2015-01-21 犹他大学研究基金会 均质多带隙装置
CN105699358A (zh) * 2016-04-29 2016-06-22 重庆大学 基于石墨烯与纳米金复合的表面拉曼及红外光谱双增强探测方法
KR20160098917A (ko) * 2015-02-11 2016-08-19 인천대학교 산학협력단 거대면적 그래핀 시트를 이용한 전극용 필름
CN107482072A (zh) * 2016-06-07 2017-12-15 香港大学 具有亚带隙探测能力的石墨烯基波长选择光探测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201483A (zh) * 2011-05-13 2011-09-28 中国科学院半导体研究所 硅纳米线光栅谐振增强型光电探测器及其制作方法
CN102881761A (zh) * 2011-07-15 2013-01-16 常州光电技术研究所 Apd红外探测器及其制作方法
CN104303320A (zh) * 2011-10-21 2015-01-21 犹他大学研究基金会 均质多带隙装置
CN103367518A (zh) * 2012-03-31 2013-10-23 中国科学院上海微系统与信息技术研究所 一种表面等离激元耦合太赫兹量子阱探测器
KR20160098917A (ko) * 2015-02-11 2016-08-19 인천대학교 산학협력단 거대면적 그래핀 시트를 이용한 전극용 필름
CN105699358A (zh) * 2016-04-29 2016-06-22 重庆大学 基于石墨烯与纳米金复合的表面拉曼及红外光谱双增强探测方法
CN107482072A (zh) * 2016-06-07 2017-12-15 香港大学 具有亚带隙探测能力的石墨烯基波长选择光探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KYUNGWHA CHUNG等: "Enhancing the Performance of Surface Plasmon Resonance Biosensor via Modulation of Electron Density at the Graphene–Gold Interface", 《ADVANCED MATERIALS INTERFACES 》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463310A (zh) * 2020-04-16 2020-07-28 复旦大学 一种单晶体管多维度光信息探测器
CN112242456A (zh) * 2020-09-15 2021-01-19 中国科学院上海技术物理研究所 一种基于光学微带天线非对称集成的二维材料探测器
CN112242456B (zh) * 2020-09-15 2023-12-26 中国科学院上海技术物理研究所 一种基于光学微带天线非对称集成的二维材料探测器
CN115332385A (zh) * 2022-07-20 2022-11-11 浙江大学 基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器及其制备方法

Also Published As

Publication number Publication date
CN110233182B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
Zha et al. Infrared photodetectors based on 2D materials and nanophotonics
Chen et al. Graphene hybrid structures for integrated and flexible optoelectronics
Wang et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers
Ezhilmaran et al. Recent developments in the photodetector applications of Schottky diodes based on 2D materials
CN110233182B (zh) 一种复合结构双吸收层石墨烯探测器及其制备工艺
KR101118810B1 (ko) 자유 캐리어의 정상 상태 비평형 분포 및 이를 이용한 광자에너지 상승 변환
Li et al. Enhancement of the photoresponse of monolayer MoS2 photodetectors induced by a nanoparticle grating
CN107316915B (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
CN111554757A (zh) 一种基于等离激元增强的石墨烯中红外光探测器及制备方法
Liu et al. Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene–gold oxide heterojunction
Wang et al. Plasmonically enabled two-dimensional material-based optoelectronic devices
CN111025690B (zh) 一种用于全光调制的石墨烯等离激元器件及制备方法
US9373740B1 (en) Wavelength converting structure for near-infrared rays and solar cell comprising the same
Xia et al. Solution-processed gold nanorods integrated with graphene for near-infrared photodetection via hot carrier injection
CN104851929A (zh) 基于石墨烯表面等离激元的光电材料可调吸收增强层
Yang et al. Mechanism, material, design, and implementation principle of two-dimensional material photodetectors
CN111682087A (zh) 一种二维材料极化激元增强的红外光探测器及其制备方法
CN102097497A (zh) 一种高转换效率的太阳能电池
Lu et al. Localized surface plasmon enhanced photoresponse of AlGaN MSM solar-blind ultraviolet photodetectors
Huang et al. Recent progress in waveguide-integrated photodetectors based on 2D materials for infrared detection
Li et al. Design strategies toward plasmon-enhanced 2-dimensional material photodetectors
Sharma et al. Emerging nanostructured infrared absorbers enabling cost-effective image sensing: a review
Wu et al. Near‐Field Photodetection in Direction Tunable Surface Plasmon Polaritons Waveguides Embedded with Graphene
KR20200005801A (ko) 플라즈몬 결합을 통한 다층그래핀 기반의 광전소자
Tiwari et al. Improved photo-detection using zigzag TiO2 nanostructures as an active medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant