CN110224443B - 一种发电机组与换热站联合启停控制决策方法 - Google Patents

一种发电机组与换热站联合启停控制决策方法 Download PDF

Info

Publication number
CN110224443B
CN110224443B CN201910275369.6A CN201910275369A CN110224443B CN 110224443 B CN110224443 B CN 110224443B CN 201910275369 A CN201910275369 A CN 201910275369A CN 110224443 B CN110224443 B CN 110224443B
Authority
CN
China
Prior art keywords
generating unit
power generating
thermal power
heat exchange
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910275369.6A
Other languages
English (en)
Other versions
CN110224443A (zh
Inventor
吴文传
王彬
孙勇
孙宏斌
郭庆来
蔺晨晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
State Grid Corp of China SGCC
State Grid Jilin Electric Power Corp
Original Assignee
Tsinghua University
State Grid Corp of China SGCC
State Grid Jilin Electric Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, State Grid Corp of China SGCC, State Grid Jilin Electric Power Corp filed Critical Tsinghua University
Priority to CN201910275369.6A priority Critical patent/CN110224443B/zh
Publication of CN110224443A publication Critical patent/CN110224443A/zh
Priority to US16/664,053 priority patent/US11411406B2/en
Application granted granted Critical
Publication of CN110224443B publication Critical patent/CN110224443B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Operations Research (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种发电机组与换热站联合启停控制决策方法,属于电力系统运行技术领域。本方法建立了发电机组与换热站联合启停控制决策模型,该模型以常规火电机组与供热火电机组的总发电和供热成本最小化为目标函数,约束条件包括电力系统约束条件与供热系统约束条件。本方法通过大M法对所建立的发电机组与换热站联合启停控制决策模型进行等价变换,最后对得到的混合整数二次规划问题进行求解得到发电机组与换热站联合启停计划。本方法可以避免传统基于经验的控制决策风险带来的电力与热力供应不足风险,保证供电与供热安全可靠性,同时充分挖掘供热系统的热惯性与储热特性,对电力系统的风电消纳有显著改善。

Description

一种发电机组与换热站联合启停控制决策方法
技术领域
本发明涉及一种发电机组与换热站联合启停控制决策方法,属于电力系统运行控制技术领域。
背景技术
热电联供技术对改进能源效率、促进风电等可再生能源消纳、减少碳排放有着巨大的潜力和效益。我国北方正在大力发展热电联供技术,供热火电机组既是电力主要来源,又是城市供热系统的主要热源。受制于供热火电机组的自身出力约束限制,其必须维持在一个较高水平下的最小电出力来保证充分供热,这又导致了风电消纳空间不足,甚至影响供电安全。然而,热电联合系统构成复杂,传统启停控制方法基于经验,无法保证满足供电与供热安全。
发明内容
本发明的目的是为克服已有技术的不足之处,提出一种发电机组与换热站联合启停控制决策方法。本发明基于电负荷、热负荷与风电出力预测,通过合理利用供热系统的热惯性与储热特性,对发电机组与换热站的启停计划进行联合控制决策,保证供电与供热的可靠性,提升风电的消纳空间。
本发明提出一种发电机组与换热站联合启停控制决策方法,其特征在于,包括以下步骤:
(1)建立发电机组与换热站联合启停控制决策模型,该模型由目标函数和约束条件构成;具体步骤如下:
(1-1)确定联合启停控制决策模型的目标函数:
联合启停控制决策模型的目标函数为机组发电与供热总成本最小化,表达式如下:
Figure GDA0002583683800000011
上式中,t为时刻编号,T为启停控制决策涉及的时刻集合,IG为常规火电机组编号集合,
Figure GDA0002583683800000021
为常规火电机组i的可变运行成本函数,
Figure GDA0002583683800000022
为常规火电机组i在时刻t的发电出力,
Figure GDA0002583683800000023
为常规火电机组i的不带负载成本,
Figure GDA0002583683800000024
为常规火电机组i在时刻t的运行状态,1为运行,0为不运行,
Figure GDA0002583683800000025
为常规火电机组i的启动成本,
Figure GDA0002583683800000026
为常规火电机组i在时刻t的启动状态,1为启动,0为不启动,
Figure GDA0002583683800000027
为常规火电机组i的停止成本,
Figure GDA0002583683800000028
为常规火电机组i在时刻t的停止状态,1为停止,0为不停止,IH为供热火电机组编号集合,
Figure GDA0002583683800000029
为供热火电机组i的可变运行成本函数,
Figure GDA00025836838000000210
为供热火电机组i在时刻t的发电出力,
Figure GDA00025836838000000211
为供热火电机组i在时刻t的供热出力,
Figure GDA00025836838000000212
为供热火电机组i的不带负载成本,
Figure GDA00025836838000000213
为供热火电机组i在时刻t的运行状态,1为运行,0为不运行,
Figure GDA00025836838000000214
为供热火电机组i的启动成本,
Figure GDA00025836838000000215
为供热火电机组i在时刻t的启动状态,1为启动,0为不启动,
Figure GDA00025836838000000216
为供热火电机组i的停止成本,
Figure GDA00025836838000000217
为供热火电机组i在时刻t的停止状态,1为停止,0为不停止;
(1-2)确定联合启停控制决策模型的约束条件,包括:
(1-2-1)电力系统约束,具体如下:
(1-2-1-1)功率平衡约束:
Figure GDA00025836838000000218
上式中,IW为风电机组编号集合,
Figure GDA00025836838000000219
为风电机组i在时刻t的发电出力,ID为负荷编号集合,
Figure GDA00025836838000000220
代表负荷i在时刻t的负荷预测值;
(1-2-1-2)发电机组出力区间约束:
Figure GDA00025836838000000221
Figure GDA00025836838000000222
Figure GDA00025836838000000223
上式中,Pi G 为常规火电机组i的出力下限,
Figure GDA00025836838000000224
为常规火电机组i的出力上限,
Figure GDA00025836838000000225
Figure GDA00025836838000000226
分别为供热火电机组i的多边形出力区间的参数向量,
Figure GDA00025836838000000227
风电机组i在时刻t的最大发电预测;
(1-2-1-3)爬坡约束为:
Figure GDA0002583683800000031
Figure GDA0002583683800000032
Figure GDA0002583683800000033
Figure GDA0002583683800000034
上式中,
Figure GDA0002583683800000035
为常规火电机组i的停止爬坡能力,
Figure GDA0002583683800000036
为常规火电机组i的向下爬坡能力,
Figure GDA0002583683800000037
为常规火电机组i的启动爬坡能力,
Figure GDA0002583683800000038
为常规火电机组i的向上爬坡能力,
Figure GDA0002583683800000039
为供热火电机组i的停止爬坡能力,
Figure GDA00025836838000000310
为供热火电机组i的向下爬坡能力,
Figure GDA00025836838000000311
为供热火电机组i的启动爬坡能力,
Figure GDA00025836838000000312
为供热火电机组i的向上爬坡能力;
(1-2-1-4)旋转备用约束:
Figure GDA00025836838000000313
Figure GDA00025836838000000314
上式中,SRUt为电力系统在时刻t的向上旋转备用需求,SRDt为电力系统在时刻t的向下旋转备用需求;
(1-2-1-5)线路容量约束:
Figure GDA00025836838000000315
Figure GDA00025836838000000316
上式中,
Figure GDA00025836838000000317
为线路j在时刻t的传输功率,
Figure GDA00025836838000000318
为常规火电机组i到线路j的转移分布因子,
Figure GDA00025836838000000319
为供热火电机组i到线路j的转移分布因子,
Figure GDA00025836838000000320
为风电机组i到线路j的转移分布因子,
Figure GDA00025836838000000321
为负荷i到线路j的转移分布因子,IL为线路编号集合,
Figure GDA00025836838000000322
为线路j的传输功率上限;
(1-2-1-6)组合状态逻辑约束:
Figure GDA00025836838000000323
Figure GDA00025836838000000324
(1-2-1-7)最小启动与停止时间约束:
Figure GDA0002583683800000041
Figure GDA0002583683800000042
Figure GDA0002583683800000043
Figure GDA0002583683800000044
上式中,tu、td为时刻索引,
Figure GDA0002583683800000045
为常规火电机组i的最小启动时间,
Figure GDA0002583683800000046
为常规火电机组i的最小停止时间,
Figure GDA0002583683800000047
为供热火电机组i的最小启动时间,
Figure GDA0002583683800000048
为供热火电机组i的最小停止时间;
(1-2-2)供热系统约束,具体如下:
(1-2-2-1)热源供热约束:
Figure GDA0002583683800000049
上式中,CW为水的比热容,
Figure GDA00025836838000000410
为供热火电机组i的节点水流量,
Figure GDA00025836838000000411
为供热火电机组i在时刻t的出口节点温度,
Figure GDA00025836838000000412
为供热火电机组i在时刻t的入口节点温度;
(1-2-2-2)水管传输温度约束:
Figure GDA00025836838000000413
Figure GDA00025836838000000414
Figure GDA00025836838000000415
Figure GDA00025836838000000416
Figure GDA00025836838000000417
上式中,
Figure GDA00025836838000000418
为供热水管i在时刻t的出口节点温度,
Figure GDA00025836838000000419
为时刻t的外界温度,
Figure GDA00025836838000000420
为供热水管i的传输延迟时间,
Figure GDA00025836838000000421
为供热水管i在时刻
Figure GDA00025836838000000422
的入口节点温度,KDS为热耗散系数,
Figure GDA00025836838000000423
Figure GDA00025836838000000424
的向下取整,ΡW为水的密度,Vi P为供热水管i的容积,
Figure GDA00025836838000000425
为供热水管i的水流量,IP为供热水管编号集合,
Figure GDA00025836838000000426
为供热水管j在时刻t的入口节点温度,
Figure GDA00025836838000000427
为供热网络中节点i在时刻t的温度,
Figure GDA00025836838000000428
为供热网络中以节点i为首端节点的水管编号集合,IND为供热网络中的节点编号集合,
Figure GDA0002583683800000051
为供热网络中以节点i为末端节点的水管编号集合;
(1-2-2-3)换热站约束:
Figure GDA0002583683800000052
Figure GDA0002583683800000053
Figure GDA0002583683800000054
Figure GDA0002583683800000055
上式中,
Figure GDA0002583683800000056
为换热站i在时刻t如果启动的理论换热功率,
Figure GDA0002583683800000057
为换热站i的换热系数,
Figure GDA0002583683800000058
为换热站i的换热面积,
Figure GDA0002583683800000059
为换热站i在时刻t的一次侧入口温度,
Figure GDA00025836838000000510
为换热站i在时刻t的二次侧出口温度,
Figure GDA00025836838000000511
为换热站i在时刻t的一次侧出口温度,
Figure GDA00025836838000000512
为换热站i在时刻t的二次侧入口温度,IEX为换热站编号集合,
Figure GDA00025836838000000513
为换热站i在时刻t的换热功率,
Figure GDA00025836838000000514
为换热站i在时刻t的运行状态,1为运行,0为不运行,
Figure GDA00025836838000000515
为换热站i的一次侧水流量,
Figure GDA00025836838000000516
为换热站i的二次侧水流量;
(1-2-2-3)热负荷约束:
Figure GDA00025836838000000517
Figure GDA00025836838000000518
Figure GDA00025836838000000519
Figure GDA00025836838000000520
上式中,
Figure GDA00025836838000000521
为换热站i所带的热负荷在时刻t的储热水平,
Figure GDA00025836838000000522
为换热站i所带的热负荷的储热水平参数,
Figure GDA00025836838000000523
为换热站i所带的热负荷在时刻t的热耗散功率,ΔT为启停控制决策时刻分辨率,
Figure GDA00025836838000000524
分别为换热站i所带的热负荷的热耗散参数,
Figure GDA00025836838000000525
为时刻t的室外综合温度,
Figure GDA00025836838000000526
为换热站i所带的热负荷的储热水平下限,
Figure GDA00025836838000000527
为换热站i所带的热负荷的储热水平上限;
(2)将步骤(1)建立的发电机组与换热站联合启停控制决策模型进行变换,将换热站约束中的
Figure GDA0002583683800000061
通过大M法等价变换为下面的形式:
Figure GDA0002583683800000062
Figure GDA0002583683800000063
上式中,M为正数;
(3)对步骤(2)变换后的发电机组与换热站联合启停控制决策模型进行求解,得到的常规火电机组运行状态
Figure GDA0002583683800000064
供热火电机组运行状态
Figure GDA0002583683800000065
与换热站运行状态
Figure GDA0002583683800000066
即为发电机组与换热站联合启停计划。
本发明的特点及有益效果是:
本方法能够将换热站的启停控制决策与传统机组启停控制决策相结合,使得供热系统合理参与到电力系统的调峰中,避免了传统基于经验的决策风险带来的供电与供热安全风险,保证电力和热力供应的安全性,对电力系统的风电消纳有显著改善。相比于传统基于经验的换热站启停控制决策,本发明所提出的发电机组与换热站联合启停控制决策方法能够避免供热系统热供应不足或过剩,保证供电与供热的可靠性,同时实现对供热系统的热惯性与储热特性的深度挖掘。
具体实施方式
本发明提出一种发电机组与换热站联合启停控制决策方法,下面结合具体实施例进一步详细说明如下。
本发明提出一种发电机组与换热站联合启停控制决策方法,包括以下步骤:
(1)建立发电机组与换热站联合启停控制决策模型,该模型由目标函数和约束条件构成;具体步骤如下:
(1-1)确定联合启停控制决策模型的目标函数:
联合启停控制决策模型的目标函数为机组发电与供热总成本最小化,表达式如下:
Figure GDA0002583683800000067
上式中,t为时刻编号,T为启停控制决策涉及的时刻集合,IG为常规火电机组编号集合,
Figure GDA0002583683800000068
为常规火电机组i的可变运行成本函数,
Figure GDA0002583683800000069
为常规火电机组i在时刻t的发电出力,
Figure GDA0002583683800000071
为常规火电机组i的不带负载成本,
Figure GDA0002583683800000072
为常规火电机组i在时刻t的运行状态(1为运行,0为不运行),
Figure GDA0002583683800000073
为常规火电机组i的启动成本,
Figure GDA0002583683800000074
为常规火电机组i在时刻t的启动状态(1为启动,0为不启动),
Figure GDA0002583683800000075
为常规火电机组i的停止成本,
Figure GDA0002583683800000076
为常规火电机组i在时刻t的停止状态(1为停止,0为不停止),IH为供热火电机组编号集合,
Figure GDA0002583683800000077
为供热火电机组i的可变运行成本函数,
Figure GDA0002583683800000078
为供热火电机组i在时刻t的发电出力,
Figure GDA0002583683800000079
为供热火电机组i在时刻t的供热出力,
Figure GDA00025836838000000710
为供热火电机组i的不带负载成本,
Figure GDA00025836838000000711
为供热火电机组i在时刻t的运行状态(1为运行,0为不运行),
Figure GDA00025836838000000712
为供热火电机组i的启动成本,
Figure GDA00025836838000000713
为供热火电机组i在时刻t的启动状态(1为启动,0为不启动),
Figure GDA00025836838000000714
为供热火电机组i的停止成本,
Figure GDA00025836838000000715
为供热火电机组i在时刻t的停止状态(1为停止,0为不停止)。
(1-2)确定联合启停控制决策模型的约束条件,包括:
(1-2-1)电力系统约束,具体如下:
(1-2-1-1)功率平衡约束:
Figure GDA00025836838000000716
上式中,IW为风电机组编号集合,
Figure GDA00025836838000000717
为风电机组i在时刻t的发电出力,ID为负荷编号集合,
Figure GDA00025836838000000718
代表负荷i在时刻t的负荷预测值;
(1-2-1-2)发电机组出力区间约束:
Figure GDA00025836838000000719
Figure GDA00025836838000000720
Figure GDA00025836838000000721
上式中,Pi G为常规火电机组i的出力下限,
Figure GDA00025836838000000722
为常规火电机组i的出力上限,
Figure GDA00025836838000000723
Figure GDA00025836838000000724
分别为供热火电机组i的多边形出力区间的参数向量(该参数为机组出厂参数),
Figure GDA00025836838000000725
风电机组i在时刻t的最大发电预测。
(1-2-1-3)爬坡约束为:
Figure GDA0002583683800000081
Figure GDA0002583683800000082
Figure GDA0002583683800000083
Figure GDA0002583683800000084
上式中,
Figure GDA0002583683800000085
为常规火电机组i的停止爬坡能力,
Figure GDA0002583683800000086
为常规火电机组i的向下爬坡能力,
Figure GDA0002583683800000087
为常规火电机组i的启动爬坡能力,
Figure GDA0002583683800000088
为常规火电机组i的向上爬坡能力,
Figure GDA0002583683800000089
为供热火电机组i的停止爬坡能力,
Figure GDA00025836838000000810
为供热火电机组i的向下爬坡能力,
Figure GDA00025836838000000811
为供热火电机组i的启动爬坡能力,
Figure GDA00025836838000000812
为供热火电机组i的向上爬坡能力。
(1-2-1-4)旋转备用约束:
Figure GDA00025836838000000813
Figure GDA00025836838000000814
上式中,SRUt为电力系统在时刻t的向上旋转备用需求,SRDt为电力系统在时刻t的向下旋转备用需求。
(1-2-1-5)线路容量约束:
Figure GDA00025836838000000815
Figure GDA00025836838000000816
上式中,
Figure GDA00025836838000000817
为线路j在时刻t的传输功率,
Figure GDA00025836838000000818
为常规火电机组i到线路j的转移分布因子,
Figure GDA00025836838000000819
为供热火电机组i到线路j的转移分布因子,
Figure GDA00025836838000000820
为风电机组i到线路j的转移分布因子,
Figure GDA00025836838000000821
为负荷i到线路j的转移分布因子,IL为线路编号集合,
Figure GDA00025836838000000822
为线路j的传输功率上限。
(1-2-1-6)组合状态逻辑约束:
Figure GDA00025836838000000823
Figure GDA00025836838000000824
(1-2-1-7)最小启动与停止时间约束:
Figure GDA0002583683800000091
Figure GDA0002583683800000092
Figure GDA0002583683800000093
Figure GDA0002583683800000094
上式中,tu、td为时刻索引,
Figure GDA0002583683800000095
为常规火电机组i的最小启动时间,
Figure GDA0002583683800000096
为常规火电机组i的最小停止时间,
Figure GDA0002583683800000097
为供热火电机组i的最小启动时间,
Figure GDA0002583683800000098
为供热火电机组i的最小停止时间。
(1-2-2)供热系统约束,具体如下:
(1-2-2-1)热源供热约束:
Figure GDA0002583683800000099
上式中,CW为水的比热容,
Figure GDA00025836838000000910
为供热火电机组i的节点水流量,
Figure GDA00025836838000000911
为供热火电机组i在时刻t的出口节点温度,
Figure GDA00025836838000000912
为供热火电机组i在时刻t的入口节点温度。
(1-2-2-2)水管传输温度约束:
Figure GDA00025836838000000913
Figure GDA00025836838000000914
Figure GDA00025836838000000915
Figure GDA00025836838000000916
Figure GDA00025836838000000917
上式中,
Figure GDA00025836838000000918
为供热水管i在时刻t的出口节点温度,
Figure GDA00025836838000000919
为时刻t的外界温度,
Figure GDA00025836838000000920
为供热水管i的传输延迟时间,
Figure GDA00025836838000000921
为供热水管i在时刻
Figure GDA00025836838000000922
的入口节点温度,KDS为热耗散系数,
Figure GDA00025836838000000923
Figure GDA00025836838000000924
的向下取整,ΡW为水的密度,Vi P为供热水管i的容积,
Figure GDA00025836838000000925
为供热水管i的水流量,IP为供热水管编号集合,
Figure GDA00025836838000000926
为供热水管j在时刻t的入口节点温度,
Figure GDA00025836838000000927
为供热网络中节点i在时刻t的温度,
Figure GDA00025836838000000928
为供热网络中以节点i为首端节点的水管编号集合,IND为供热网络中的节点编号集合,
Figure GDA0002583683800000101
为供热网络中以节点i为末端节点的水管编号集合。
(1-2-2-3)换热站约束:
Figure GDA0002583683800000102
Figure GDA0002583683800000103
Figure GDA0002583683800000104
Figure GDA0002583683800000105
上式中,
Figure GDA0002583683800000106
为换热站i在时刻t如果启动的理论换热功率,
Figure GDA0002583683800000107
为换热站i的换热系数,
Figure GDA0002583683800000108
为换热站i的换热面积,
Figure GDA0002583683800000109
为换热站i在时刻t的一次侧入口温度,
Figure GDA00025836838000001010
为换热站i在时刻t的二次侧出口温度,
Figure GDA00025836838000001011
为换热站i在时刻t的一次侧出口温度,
Figure GDA00025836838000001012
为换热站i在时刻t的二次侧入口温度,IEX为换热站编号集合,
Figure GDA00025836838000001013
为换热站i在时刻t的换热功率,
Figure GDA00025836838000001014
为换热站i在时刻t的运行状态(1为运行,0为不运行),
Figure GDA00025836838000001015
为换热站i的一次侧水流量,
Figure GDA00025836838000001016
为换热站i的二次侧水流量。
(1-2-2-3)热负荷约束:
Figure GDA00025836838000001017
Figure GDA00025836838000001018
Figure GDA00025836838000001019
Figure GDA00025836838000001020
上式中,
Figure GDA00025836838000001021
为换热站i所带的热负荷在时刻t的储热水平,
Figure GDA00025836838000001022
为换热站i所带的热负荷的储热水平参数,
Figure GDA00025836838000001023
为换热站i所带的热负荷在时刻t的热耗散功率,ΔT为启停控制决策时刻分辨率,
Figure GDA00025836838000001024
分别为换热站i所带的热负荷的热耗散参数,
Figure GDA00025836838000001025
为时刻t的室外综合温度,
Figure GDA00025836838000001026
为换热站i所带的热负荷的储热水平下限,
Figure GDA00025836838000001027
为换热站i所带的热负荷的储热水平上限。
(2)将步骤(1)建立的发电机组与换热站联合启停控制决策模型进行变换,将换热站约束条件中的
Figure GDA0002583683800000111
通过大M法等价变换为下面的形式:
Figure GDA0002583683800000112
Figure GDA0002583683800000113
上式中,M为一个足够大的正数,在本发明中可取值10000。
(3)对步骤(2)变换后的发电机组与换热站联合启停控制决策模型进行求解,该求解可以通过开源或商业的混合整数二次规划求解器来完成。求解得到的常规火电机组运行状态
Figure GDA0002583683800000114
供热火电机组运行状态
Figure GDA0002583683800000115
与换热站运行状态
Figure GDA0002583683800000116
即为发电机组与换热站联合启停计划。

Claims (1)

1.一种发电机组与换热站联合启停控制决策方法,其特征在于,包括以下步骤:
(1)建立发电机组与换热站联合启停控制决策模型,该模型由目标函数和约束条件构成;具体步骤如下:
(1-1)确定联合启停控制决策模型的目标函数:
联合启停控制决策模型的目标函数为机组发电与供热总成本最小化,表达式如下:
Figure FDA0002583683790000011
上式中,t为时刻编号,T为启停控制决策涉及的时刻集合,IG为常规火电机组编号集合,
Figure FDA0002583683790000012
为常规火电机组i的可变运行成本函数,
Figure FDA0002583683790000013
为常规火电机组i在时刻t的发电出力,
Figure FDA0002583683790000014
为常规火电机组i的不带负载成本,
Figure FDA0002583683790000015
为常规火电机组i在时刻t的运行状态,1为运行,0为不运行,
Figure FDA0002583683790000016
为常规火电机组i的启动成本,
Figure FDA0002583683790000017
为常规火电机组i在时刻t的启动状态,1为启动,0为不启动,
Figure FDA0002583683790000018
为常规火电机组i的停止成本,
Figure FDA0002583683790000019
为常规火电机组i在时刻t的停止状态,1为停止,0为不停止,IH为供热火电机组编号集合,
Figure FDA00025836837900000110
为供热火电机组i的可变运行成本函数,
Figure FDA00025836837900000111
为供热火电机组i在时刻t的发电出力,
Figure FDA00025836837900000112
为供热火电机组i在时刻t的供热出力,
Figure FDA00025836837900000113
为供热火电机组i的不带负载成本,
Figure FDA00025836837900000114
为供热火电机组i在时刻t的运行状态,1为运行,0为不运行,
Figure FDA00025836837900000115
为供热火电机组i的启动成本,
Figure FDA00025836837900000116
为供热火电机组i在时刻t的启动状态,1为启动,0为不启动,
Figure FDA00025836837900000120
为供热火电机组i的停止成本,
Figure FDA00025836837900000117
为供热火电机组i在时刻t的停止状态,1为停止,0为不停止;
(1-2)确定联合启停控制决策模型的约束条件,包括:
(1-2-1)电力系统约束,具体如下:
(1-2-1-1)功率平衡约束:
Figure FDA00025836837900000118
上式中,IW为风电机组编号集合,
Figure FDA00025836837900000119
为风电机组i在时刻t的发电出力,ID为负荷编号集合,
Figure FDA0002583683790000021
代表负荷i在时刻t的负荷预测值;
(1-2-1-2)发电机组出力区间约束:
Figure FDA0002583683790000022
Figure FDA0002583683790000023
Figure FDA0002583683790000024
上式中,
Figure 3
为常规火电机组i的出力下限,
Figure FDA0002583683790000025
为常规火电机组i的出力上限,
Figure FDA0002583683790000026
Figure FDA0002583683790000027
分别为供热火电机组i的多边形出力区间的参数向量,
Figure FDA0002583683790000028
风电机组i在时刻t的最大发电预测;
(1-2-1-3)爬坡约束为:
Figure FDA0002583683790000029
Figure FDA00025836837900000210
Figure FDA00025836837900000211
Figure FDA00025836837900000212
上式中,
Figure FDA00025836837900000213
为常规火电机组i的停止爬坡能力,
Figure FDA00025836837900000214
为常规火电机组i的向下爬坡能力,
Figure FDA00025836837900000215
为常规火电机组i的启动爬坡能力,
Figure FDA00025836837900000216
为常规火电机组i的向上爬坡能力,
Figure FDA00025836837900000217
为供热火电机组i的停止爬坡能力,
Figure FDA00025836837900000218
为供热火电机组i的向下爬坡能力,
Figure FDA00025836837900000219
为供热火电机组i的启动爬坡能力,
Figure FDA00025836837900000220
为供热火电机组i的向上爬坡能力;
(1-2-1-4)旋转备用约束:
Figure FDA00025836837900000221
Figure FDA00025836837900000222
上式中,SRUt为电力系统在时刻t的向上旋转备用需求,SRDt为电力系统在时刻t的向下旋转备用需求;
(1-2-1-5)线路容量约束:
Figure FDA0002583683790000031
Figure FDA0002583683790000032
上式中,
Figure FDA0002583683790000033
为线路j在时刻t的传输功率,
Figure FDA0002583683790000034
为常规火电机组i到线路j的转移分布因子,
Figure FDA0002583683790000035
为供热火电机组i到线路j的转移分布因子,
Figure FDA0002583683790000036
为风电机组i到线路j的转移分布因子,
Figure FDA0002583683790000037
为负荷i到线路j的转移分布因子,IL为线路编号集合,
Figure FDA0002583683790000038
为线路j的传输功率上限;
(1-2-1-6)组合状态逻辑约束:
Figure FDA0002583683790000039
Figure FDA00025836837900000310
(1-2-1-7)最小启动与停止时间约束:
Figure FDA00025836837900000311
Figure FDA00025836837900000312
Figure FDA00025836837900000313
Figure FDA00025836837900000314
上式中,tu、td为时刻索引,
Figure FDA00025836837900000315
为常规火电机组i的最小启动时间,
Figure FDA00025836837900000316
为常规火电机组i的最小停止时间,
Figure FDA00025836837900000317
为供热火电机组i的最小启动时间,
Figure FDA00025836837900000318
为供热火电机组i的最小停止时间;
(1-2-2)供热系统约束,具体如下:
(1-2-2-1)热源供热约束:
Figure FDA00025836837900000319
上式中,CW为水的比热容,
Figure FDA00025836837900000320
为供热火电机组i的节点水流量,
Figure FDA00025836837900000321
为供热火电机组i在时刻t的出口节点温度,
Figure FDA00025836837900000322
为供热火电机组i在时刻t的入口节点温度;
(1-2-2-2)水管传输温度约束:
Figure FDA0002583683790000041
Figure FDA0002583683790000042
Figure FDA0002583683790000043
Figure FDA0002583683790000044
Figure FDA0002583683790000045
上式中,
Figure FDA0002583683790000046
为供热水管i在时刻t的出口节点温度,
Figure FDA0002583683790000047
为时刻t的外界温度,
Figure FDA0002583683790000048
为供热水管i的传输延迟时间,
Figure FDA0002583683790000049
为供热水管i在时刻
Figure FDA00025836837900000410
的入口节点温度,KDS为热耗散系数,
Figure FDA00025836837900000411
Figure FDA00025836837900000412
的向下取整,ΡW为水的密度,Vi P为供热水管i的容积,
Figure FDA00025836837900000413
为供热水管i的水流量,IP为供热水管编号集合,
Figure FDA00025836837900000414
为供热水管j在时刻t的入口节点温度,
Figure FDA00025836837900000415
为供热网络中节点i在时刻t的温度,
Figure FDA00025836837900000416
为供热网络中以节点i为首端节点的水管编号集合,IND为供热网络中的节点编号集合,
Figure FDA00025836837900000417
为供热网络中以节点i为末端节点的水管编号集合;
(1-2-2-3)换热站约束:
Figure FDA00025836837900000418
Figure FDA00025836837900000419
Figure FDA00025836837900000420
Figure FDA00025836837900000421
上式中,
Figure FDA00025836837900000422
为换热站i在时刻t如果启动的理论换热功率,
Figure FDA00025836837900000423
为换热站i的换热系数,
Figure FDA00025836837900000424
为换热站i的换热面积,
Figure FDA00025836837900000425
为换热站i在时刻t的一次侧入口温度,
Figure FDA00025836837900000426
为换热站i在时刻t的二次侧出口温度,
Figure FDA00025836837900000427
为换热站i在时刻t的一次侧出口温度,
Figure FDA00025836837900000428
为换热站i在时刻t的二次侧入口温度,IEX为换热站编号集合,
Figure FDA00025836837900000429
为换热站i在时刻t的换热功率,
Figure FDA00025836837900000430
为换热站i在时刻t的运行状态,1为运行,0为不运行,
Figure FDA00025836837900000431
为换热站i的一次侧水流量,
Figure FDA0002583683790000051
为换热站i的二次侧水流量;
(1-2-2-3)热负荷约束:
Figure FDA0002583683790000052
Figure FDA0002583683790000053
Figure FDA0002583683790000054
Figure FDA0002583683790000055
上式中,
Figure FDA0002583683790000056
为换热站i所带的热负荷在时刻t的储热水平,
Figure FDA0002583683790000057
为换热站i所带的热负荷的储热水平参数,
Figure FDA0002583683790000058
为换热站i所带的热负荷在时刻t的热耗散功率,ΔT为启停控制决策时刻分辨率,
Figure FDA0002583683790000059
分别为换热站i所带的热负荷的热耗散参数,
Figure FDA00025836837900000510
为时刻t的室外综合温度,
Figure FDA00025836837900000511
为换热站i所带的热负荷的储热水平下限,
Figure FDA00025836837900000512
为换热站i所带的热负荷的储热水平上限;
(2)将步骤(1)建立的发电机组与换热站联合启停控制决策模型进行变换,将换热站约束中的
Figure FDA00025836837900000513
通过大M法等价变换为下面的形式:
Figure FDA00025836837900000514
Figure FDA00025836837900000515
上式中,M为正数;
(3)对步骤(2)变换后的发电机组与换热站联合启停控制决策模型进行求解,得到的常规火电机组运行状态
Figure FDA00025836837900000516
供热火电机组运行状态
Figure FDA00025836837900000517
与换热站运行状态
Figure FDA00025836837900000518
即为发电机组与换热站联合启停计划。
CN201910275369.6A 2019-04-08 2019-04-08 一种发电机组与换热站联合启停控制决策方法 Active CN110224443B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910275369.6A CN110224443B (zh) 2019-04-08 2019-04-08 一种发电机组与换热站联合启停控制决策方法
US16/664,053 US11411406B2 (en) 2019-04-08 2019-10-25 Method, apparatus, and storage medium for controlling combined heat and power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910275369.6A CN110224443B (zh) 2019-04-08 2019-04-08 一种发电机组与换热站联合启停控制决策方法

Publications (2)

Publication Number Publication Date
CN110224443A CN110224443A (zh) 2019-09-10
CN110224443B true CN110224443B (zh) 2020-09-25

Family

ID=67822510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910275369.6A Active CN110224443B (zh) 2019-04-08 2019-04-08 一种发电机组与换热站联合启停控制决策方法

Country Status (2)

Country Link
US (1) US11411406B2 (zh)
CN (1) CN110224443B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110738394B (zh) * 2019-09-17 2021-04-13 广西电网有限责任公司电力科学研究院 一种考虑能量品质系数的供热机组热电比计算方法
CN111416396A (zh) * 2020-03-31 2020-07-14 清华大学 辅助服务市场中考虑电采暖的火电与风电联合调度方法
CN113689043B (zh) * 2021-08-25 2024-03-08 国网黑龙江省电力有限公司电力科学研究院 一种考虑机组启停的电热联合调度方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106339772B (zh) * 2016-08-11 2019-06-18 清华大学 基于供热管网储热效益的热-电联合优化调度方法
CN106253350B (zh) * 2016-08-11 2019-03-05 清华大学 基于供热管网储热效益的热-电联合机组组合方法
CN106329581A (zh) * 2016-09-05 2017-01-11 国家电网公司 一种风火电打捆发电系统优化规划方法
WO2019084262A1 (en) * 2017-10-25 2019-05-02 Omega Grid, Llc POWER MANAGEMENT BY DISTRIBUTING BLOCK CHAINS WITH OPTIMIZED BALANCING
US11164126B2 (en) * 2018-12-18 2021-11-02 Johnson Controls Tyco IP Holdings LLP Cost optimization of a central energy facility with block-and-index rate structure

Also Published As

Publication number Publication date
CN110224443A (zh) 2019-09-10
US20200321784A1 (en) 2020-10-08
US11411406B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
CN112104007B (zh) 一种广义源储系统调度的集中控制方法
CN104716644B (zh) 一种可再生能源冷热电微网系统及控制方法
Papaefthymiou et al. A wind-hydro-pumped storage station leading to high RES penetration in the autonomous island system of Ikaria
CN102710013B (zh) 基于微电网的园区能源网能量优化管理系统及其实现方法
CN110224443B (zh) 一种发电机组与换热站联合启停控制决策方法
CN104467030B (zh) 一种基于风电与火电联合发电的功率分配方法
CN113346528B (zh) 一种基于氢储能构建的多能联供式调峰站及调峰方法
CN110991000B (zh) 计及固体氧化物燃料电池和电转气的能量枢纽建模方法
JP2009213240A (ja) 電力系統の周波数制御システム、給電所、および電気機器
CN111049136B (zh) 电/热/冷三联储综合能源系统及方法
US20200005405A1 (en) Wind-solar-gas complementary and coupled power generation system and method
CN114069688B (zh) 一种基于时序生产模拟的多电源容量布局规划方法
CN113572197A (zh) 基于氢储能的综合自洽能源微网配置方法及能量调控方法
CN102738835A (zh) 基于多智能体的“风-火-水”协同调度方法
CN112838603B (zh) 一种风光储抽多源能源agc协调互补控制方法和装置
CN114256885B (zh) 适应用户负荷需求变化的火电厂综合能源系统及调控方法
CN113725915A (zh) 一种考虑可再生能源不确定性和热惰性的乡村电热综合能源系统运行优化方法
CN110336329A (zh) 特高压直流以及新能源参与后的受端电网调峰控制方法
CN109992818A (zh) 大规模风电参与一次调频的机组组合模型及求解方法
CN104239960A (zh) 考虑抽水蓄能机组的发电计划优化方法
CN204407890U (zh) 一种可再生能源冷热电微网系统
CN111125611B (zh) 面向多场景的冷-热-电微能网群两阶段优化调度方法
CN108155644A (zh) 计及辅助服务的动态供热系统与电力系统耦合调度方法
CN112653137A (zh) 计及碳交易的光热电站与风电系统、低碳调度方法及系统
WO2023108890A1 (zh) 一种物理同步的光-储混合发电系统及其工作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant