CN110218978A - 一种基于铜箔基底的有机单分子层薄膜制备方法 - Google Patents

一种基于铜箔基底的有机单分子层薄膜制备方法 Download PDF

Info

Publication number
CN110218978A
CN110218978A CN201910660085.9A CN201910660085A CN110218978A CN 110218978 A CN110218978 A CN 110218978A CN 201910660085 A CN201910660085 A CN 201910660085A CN 110218978 A CN110218978 A CN 110218978A
Authority
CN
China
Prior art keywords
copper foil
organic
annealing
monolayer
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910660085.9A
Other languages
English (en)
Other versions
CN110218978B (zh
Inventor
窦卫东
施碧云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shaoxing
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN201910660085.9A priority Critical patent/CN110218978B/zh
Publication of CN110218978A publication Critical patent/CN110218978A/zh
Application granted granted Critical
Publication of CN110218978B publication Critical patent/CN110218978B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种基于铜箔基底的有机单分子层薄膜制备方法,属于单分子有机薄膜技术领域;本发明通过利用真空分子束沉积法在金属基底上制备具有单分子层厚度的有机薄膜的方法,与通常情况不同的是,单分子层有机薄膜中的有机分子以“站立”形态排列,分子之间的pi‑pi堆栈方向与金属基底表面相平行。退火处理后的铜箔表面具有原子级的平整度,且其表面分布着含有COOH官能团的碳氢化合物,退火处理后铜箔表面上存在的COOH是导致并五苯分子形成“站立”式堆栈结构的关键。

Description

一种基于铜箔基底的有机单分子层薄膜制备方法
技术领域
本发明属于单分子有机薄膜技术领域,具体是涉及一种基于铜箔基底的有机单分子层薄膜制备方法。
背景技术
有机场效应晶体管(OFET)是有机电子学器件的最基本元件。从工作介质的形态上区分,OFET可大致分为基于有机单晶体的器件和基于有机薄膜的场效应器件。相比较而言,前者具有更高的载流子迁移率,因而具有更好的器件性能。然而,由于难以实现宏量可控制备,基于单晶的OFET器件难以适应规模化生产的要求。与之相比,有机薄膜具有可宏量制备和易于加工的特点,因而基于有机薄膜的OFET器件更适合规模化生产。通过开发新材料、研发新工艺以及开展界面工程研究等努力,基于有机薄膜的OFET的载流子迁移率已经得到大幅度提高,已经可以与单晶OFET甚至是多晶硅材料相比拟。近年来,二维有机半导体薄膜的成功制备,为构建高性能、低工作电压的OTFT提供了一条新的路径。与传统OTFT相比,二维超薄薄膜即使在单层极限下,仍保持极高的晶体质量与载流子迁移率,并且其金属电极与电荷传输层直接接触,可以有效提高载流子的注入效率,降低接触电阻。然而,若试图充分发挥二维有机场效应晶体管的性能,还需在界面和薄膜结构等方面开展深入的探讨,其中实现具有有序分子排列结构的有机单分子薄膜的制备是一个重要的前置条件。
发明内容
本发明主要是解决上述现有技术所存在的技术问题,提供一种基于铜箔基底的有机单分子层薄膜制备方法。
本发明的上述技术问题主要是通过下述技术方案得以解决的:一种基于铜箔基底的有机单分子层薄膜制备方法,包括金属基底的预处理和有机单分子层的沉积,所述金属基底的预处理的步骤为:
步骤(1):选取纯度为99.8%、厚度为25微米的多晶铜箔;
步骤(2):将铜箔裁剪成10mm*10mm大小,并用无水乙醇和丙酮简单冲洗,而后用氮气吹干;
步骤(3):将吹干后的铜箔放进真空退火系统里进行退火处理,所述真空退火系统其本底真空为0.01Pa,退火过程中,往真空退火系统中充入纯度均为99.999%的氢气和氩气,其中氢气的流量为100sccm,氩气的流量为600sccm,退火温度为1050℃,并在该温度下保持6小时;
所述有机单分子层的沉积的步骤为:
步骤(1):将退火处理后的铜箔装填到有机薄膜沉积系统中,有机薄膜沉积系统的本底真空为1*10-6Pa;
步骤(2):将铜箔在150℃条件下退火,除去吸附在铜箔表面的空气污染物,该退火过程在1*10-6Pa真空环境中进行;
步骤(3):待铜箔冷却到室温后,开始沉积有机分子,有机分子为纯度为99.8%的并五苯,沉积速率为0.1纳米/分钟,沉积覆盖1个单分子层的时间为15分钟。
作为优选,所述金属基底的预处理中铜箔在退火处理后的表面具有原子级的平整度,且其表面分布着含有COOH官能团的碳氢化合物。
本发明具有的有益效果:本发明通过利用真空分子束沉积法在金属基底上制备具有单分子层厚度的有机薄膜的方法,与通常情况不同的是,单分子层有机薄膜中的有机分子以“站立”形态排列,分子之间的pi-pi堆栈方向与金属基底表面相平行。退火处理后的铜箔表面具有原子级的平整度,且其表面分布着含有COOH官能团的碳氢化合物,退火处理后铜箔表面上存在的COOH是导致并五苯分子形成“站立”式堆栈结构的关键。
附图说明
图1是本发明的一种退火处理流程示意图;
图2是本发明退火处理后铜箔基底表面的一种原子力显微镜图;
图3是本发明退火处理后在铜箔上采集的铜元素Cu2p能态X射线光电子谱数据图;
图4是本发明退火处理后在铜箔上采集的碳元素C1s能态X射线光电子谱数据图;
图5是本发明退火处理后在铜箔上采集的氧元素O1s能态X射线光电子谱数据图;
图6是覆盖度为0.4个单分子层的并五苯薄膜的原子力显微镜图;
图7是覆盖度为1个单分子层的并五苯薄膜的原子力显微镜图;
图8是在覆盖度为1个单层子层的并五苯薄膜上测得的偏振拉曼光谱图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:一种基于铜箔基底的有机单分子层薄膜制备方法,如图1-图8所示,包括金属基底的预处理和有机单分子层的沉积,所述金属基底的预处理的步骤为:
步骤(1):选取纯度为99.8%、厚度为25微米的多晶铜箔;
步骤(2):将铜箔裁剪成10mm*10mm大小,并用无水乙醇和丙酮简单冲洗,而后用氮气吹干;
步骤(3):将吹干后的铜箔放进真空退火系统里进行退火处理,所述真空退火系统其本底真空为0.01Pa,退火过程中,往真空退火系统中充入纯度均为99.999%的氢气和氩气,其中氢气的流量为100sccm,氩气的流量为600sccm,退火温度为1050℃,并在该温度下保持6小时;
所述有机单分子层的沉积的步骤为:
步骤(1):将退火处理后的铜箔装填到有机薄膜沉积系统中,有机薄膜沉积系统的本底真空为1*10-6Pa;
步骤(2):将铜箔在150℃条件下退火,除去吸附在铜箔表面的空气污染物,该退火过程在1*10-6Pa真空环境中进行;
步骤(3):待铜箔冷却到室温后,开始沉积有机分子,有机分子为纯度为99.8%的并五苯,沉积速率为0.1纳米/分钟,沉积覆盖1个单分子层的时间为15分钟。
所述金属基底的预处理中铜箔在退火处理后的表面具有原子级的平整度,且其表面分布着含有COOH官能团的碳氢化合物;退火处理后铜箔表面上存在的COOH是导致并五苯分子形成“站立”式堆栈结构的关键。
本发明的方法原理为:
金属基底的预处理:选取纯度为99.8%、厚度为25微米的多晶铜箔,将铜箔裁剪成10mm*10mm大小,并用无水乙醇和丙酮简单冲洗,而后用氮气吹干,将吹干后的铜箔放进真空退火系统里进行退火处理,所述真空退火系统其本底真空为0.01Pa,退火过程中,往真空系统中充入纯度均为99.999%的氢气和氩气,其中氢气的流量为100sccm,氩气的流量为600sccm,退火温度为1050℃,并在该温度下保持6小时,具体的退火程序如图1所示;如图2所示退火处理后的铜箔表面具有原子级的平整度。为了揭示退火过程对铜箔表面化学属性的影响,我们利用X-射线光电子谱(XPS)表征了退火处理后的铜箔样品表面上三种元素的化学态(如图3-图5所示)。众所周知,退火过程中,溶于铜块体内的碳会偏析到铜箔的表面上,并与退火腔体内的环境气体(例如氢气和微量的氧气)发生反应,形成带羧基官能团的分子。XPS数据毫无疑问的显示了羧基故能团(-COOH)的存在(如图4所示)。退火处理后的铜箔表面上存在的COOH是导致并五苯分子形成“站立”式堆栈结构的关键;
有机单分子层的沉积:将退火处理后的铜箔装填到有机薄膜沉积系统中,有机薄膜沉积系统的本底真空为1*10-6Pa,将铜箔在150℃条件下退火,除去吸附在铜箔表面的空气污染物,该退火过程在1*10-6Pa真空环境中进行;待铜箔冷却到室温后,开始沉积有机分子,有机分子为纯度为99.8%的并五苯,沉积速率为0.1纳米/分钟,具体沉积时间依据所需有机薄膜的厚度而定,沉积覆盖1个单分子层的时间为15分钟;如图4和图5所示,分别展示了覆盖0.4个单分子层和1个单分子层的并五苯薄膜的形貌,由两图可见,并五苯聚集所形成的晶畴具有均一的厚度、平整的表面,这些特点表明,并五苯晶畴中分子排列具有极佳的有序性。另外,还测量了这些有机晶畴的高度,如图6和如图7所示下部的高度曲线,发现这些有机晶畴的高度非常接近,均约为1.5nm。这一数值与并五苯分子沿长轴方向的长度数值相等。据此判断,这些有机晶畴中的并五苯分子全部以“站立”形式排列。通过偏振拉曼光谱进一步验证了这一推断,拉曼光谱测试中,用于激发拉曼光谱的激光沿与样品表面垂直的方向照射在待测样品上,激光的偏振方向与待测样品表面平行,如图8所示展示了一副典型的拉曼光谱图,图中的谱峰来自于并五苯分子中的C-C和C-H的各种振动模式。为辨别并五苯分子的排列取向,我们特别标出了分别位于1533cm-1和1596cm-1位置上的两个拉曼共振峰,前者具有Ag对称性,而后者具有B3g对称性,根据拉曼响应机制可知,如果并五苯分子为站立式结构,则具有B3g对称性的振动模具有较弱的拉曼响应(即位于1596cm-1的拉曼峰比位于1533cm-1的拉曼峰强度小)。如图8所示,1596cm-1的拉曼峰与1533cm-1的拉曼峰强度比为0.47。这一数值进一步证明,在退火处理过的铜箔基底表面上,并五苯分子是“站立”式结构。
最后,应当指出,以上实施例仅是本发明较有代表性的例子。显然,本发明不限于上述实施例,还可以有许多变形。凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均应认为属于本发明的保护范围。

Claims (2)

1.一种基于铜箔基底的有机单分子层薄膜制备方法,其特征在于所述方法包括金属基底的预处理和有机单分子层的沉积,所述金属基底的预处理的步骤为:
步骤(1):选取纯度为99.8%、厚度为25微米的多晶铜箔;
步骤(2):将铜箔裁剪成10mm*10mm大小,并用无水乙醇和丙酮简单冲洗,而后用氮气吹干;
步骤(3):将吹干后的铜箔放进真空退火系统里进行退火处理,所述真空退火系统其本底真空为0.01Pa,退火过程中,往真空退火系统中充入纯度均为99.999%的氢气和氩气,其中氢气的流量为100sccm,氩气的流量为600sccm,退火温度为1050℃,并在该温度下保持6小时;
所述有机单分子层的沉积的步骤为:
步骤(1):将退火处理后的铜箔装填到有机薄膜沉积系统中,有机薄膜沉积系统的本底真空为1*10-6Pa;
步骤(2):将铜箔在150℃条件下退火,除去吸附在铜箔表面的空气污染物,该退火过程在1*10-6Pa真空环境中进行;
步骤(3):待铜箔冷却到室温后,开始沉积有机分子,有机分子为纯度为99.8%的并五苯,沉积速率为0.1纳米/分钟,沉积覆盖1个单分子层的时间为15分钟。
2.根据权利要求1所述的一种基于铜箔基底的有机单分子层薄膜制备方法,其特征在于所述金属基底的预处理中铜箔在退火处理后的表面具有原子级的平整度,且其表面分布着含有COOH官能团的碳氢化合物。
CN201910660085.9A 2019-07-22 2019-07-22 一种基于铜箔基底的有机单分子层薄膜制备方法 Active CN110218978B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910660085.9A CN110218978B (zh) 2019-07-22 2019-07-22 一种基于铜箔基底的有机单分子层薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910660085.9A CN110218978B (zh) 2019-07-22 2019-07-22 一种基于铜箔基底的有机单分子层薄膜制备方法

Publications (2)

Publication Number Publication Date
CN110218978A true CN110218978A (zh) 2019-09-10
CN110218978B CN110218978B (zh) 2021-05-11

Family

ID=67813704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910660085.9A Active CN110218978B (zh) 2019-07-22 2019-07-22 一种基于铜箔基底的有机单分子层薄膜制备方法

Country Status (1)

Country Link
CN (1) CN110218978B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1398004A (zh) * 2002-08-28 2003-02-19 中国科学院长春应用化学研究所 含有有机半导体的夹心型场效应晶体管及制作方法
US20100104977A1 (en) * 2008-10-28 2010-04-29 Shin-Etsu Chemical Co., Ltd. Photoresist undercoat-forming material and patterning process
KR101151106B1 (ko) * 2006-09-15 2012-06-01 삼성전자주식회사 유기 절연 고분자, 이를 이용하여 제조된 유기 절연층 및유기 박막 트랜지스터
CN105706220A (zh) * 2013-11-21 2016-06-22 株式会社尼康 晶体管的制造方法和晶体管
CN108374200A (zh) * 2018-02-11 2018-08-07 绍兴文理学院 一种纳米线状有机单晶晶畴的制备方法
US10263186B2 (en) * 2009-07-27 2019-04-16 The Regents Of The University Of Michigan Bulk heterojunction organic photovoltaic cells made by glancing angle deposition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1398004A (zh) * 2002-08-28 2003-02-19 中国科学院长春应用化学研究所 含有有机半导体的夹心型场效应晶体管及制作方法
KR101151106B1 (ko) * 2006-09-15 2012-06-01 삼성전자주식회사 유기 절연 고분자, 이를 이용하여 제조된 유기 절연층 및유기 박막 트랜지스터
US20100104977A1 (en) * 2008-10-28 2010-04-29 Shin-Etsu Chemical Co., Ltd. Photoresist undercoat-forming material and patterning process
US10263186B2 (en) * 2009-07-27 2019-04-16 The Regents Of The University Of Michigan Bulk heterojunction organic photovoltaic cells made by glancing angle deposition
CN105706220A (zh) * 2013-11-21 2016-06-22 株式会社尼康 晶体管的制造方法和晶体管
CN108374200A (zh) * 2018-02-11 2018-08-07 绍兴文理学院 一种纳米线状有机单晶晶畴的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEI ZHANG ET.AL: "Knietic Barrier Against Standing Up of Pentacene Molecules Upon a Pentacene Monolayer", 《PHYSICAL STATUS SOLIDI-RAPID RESEARCH LETTERS》 *
温秉权: "《机械制造基础》", 31 January 2017, 北京理工大学出版社 *
石明霞等: "Cd(0001)基底上并五苯单分子层的结构相变", 《中国科学:物理学 力学 天文学》 *

Also Published As

Publication number Publication date
CN110218978B (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
JP6615853B2 (ja) 半導体基板上におけるグラフェンの直接形成方法
McDowell et al. Improved organic thin-film transistor performance using novel self-assembled monolayers
KR101063359B1 (ko) 탄소재료, 이를 포함하는 적층체 및 그 제조방법
US10113230B2 (en) Formation method of hexagonal boron nitride thick film on a substrate and hexagonal boron nitride thick film laminates thereby
Niesar et al. Low‐Cost Post‐Growth Treatments of Crystalline Silicon Nanoparticles Improving Surface and Electronic Properties
CN102621126A (zh) 金纳米点阵表面增强拉曼活性基底及其制备方法
CN101643196B (zh) 纳米线、纳米线的生产方法及电子装置
Zhang et al. Selective Growth of Metal‐Free Metallic and Semiconducting Single‐Wall Carbon Nanotubes
CN104310372A (zh) 一种在纤维基底上直接生长碳纳米管阵列的方法
CN109881176A (zh) 一种花瓣状的二硫化钼二维晶体材料及其制备方法和应用
EP3703134A1 (en) Graphene transistor comprising functionalized n-heterocyclic carbene compound, fabrication method therefor, and biosensor comprising same
US20100006820A1 (en) Silica nanowire comprising silicon nanodots and method of preparing the same
US20200273955A1 (en) Room-temperature ferromagnetic semiconductor layers, electronic devices including the same, and methods of forming the same
CN109440081A (zh) 一种基于化学气相沉积法制备磁性石墨烯薄膜的方法
Wang et al. Photoresponse and noise characteristics of in-situ fabricated NiPc nanowire photodetectors
US20190081243A1 (en) Solution process for fabricating high-performance organic thin-film transistors
CN110218978A (zh) 一种基于铜箔基底的有机单分子层薄膜制备方法
Shi et al. Study of copper-phthalocyanine and pentacene film growth on transferred graphene: The influence of polymer residues
CN110085738B (zh) 一种有机单晶自旋阀及其制备方法与应用
Yuan et al. Formation, photoluminescence and charge storage characteristics of Au nanocrystals embedded in amorphous Al2O3 matrix
CN110382414A (zh) 碳纳米管、碳类微细结构体及带碳纳米管的基材以及这些的制造方法
Suresh Babu et al. Investigation on V2O5 thin films for field effect transistor applications
Hong et al. Preparation of highly oriented copper phthalocyanine film by molecular templating effects for organic field-effect transistor
Salaoru et al. Creating Electrical Bistability Using Nano-bits—Application in 2-Terminal Memory Devices
Fanciulli et al. Electrically detected magnetic resonance of donors and interfacial defects in silicon nanowires

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant