CN110216685B - 一种用于煤仓内壁缺陷检测的悬索并联机器人及控制方法 - Google Patents
一种用于煤仓内壁缺陷检测的悬索并联机器人及控制方法 Download PDFInfo
- Publication number
- CN110216685B CN110216685B CN201910193057.0A CN201910193057A CN110216685B CN 110216685 B CN110216685 B CN 110216685B CN 201910193057 A CN201910193057 A CN 201910193057A CN 110216685 B CN110216685 B CN 110216685B
- Authority
- CN
- China
- Prior art keywords
- rope
- coordinate system
- movable platform
- pulley
- length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003245 coal Substances 0.000 title claims abstract description 43
- 230000007547 defect Effects 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000000725 suspension Substances 0.000 title claims abstract description 15
- 230000007246 mechanism Effects 0.000 claims abstract description 30
- 238000001514 detection method Methods 0.000 claims abstract description 28
- 230000000007 visual effect Effects 0.000 claims abstract description 18
- 238000009434 installation Methods 0.000 claims description 28
- 239000011159 matrix material Substances 0.000 claims description 24
- 238000004804 winding Methods 0.000 claims description 20
- 238000012937 correction Methods 0.000 claims description 10
- 238000003825 pressing Methods 0.000 claims description 10
- 230000001360 synchronised effect Effects 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 9
- 230000009471 action Effects 0.000 claims description 5
- 230000009977 dual effect Effects 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000013519 translation Methods 0.000 claims description 3
- 238000009795 derivation Methods 0.000 claims 2
- 238000012423 maintenance Methods 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 3
- 239000012636 effector Substances 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 241000273930 Brevoortia tyrannus Species 0.000 description 32
- 238000004364 calculation method Methods 0.000 description 7
- 238000005381 potential energy Methods 0.000 description 6
- 239000000428 dust Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- SYHGEUNFJIGTRX-UHFFFAOYSA-N methylenedioxypyrovalerone Chemical compound C=1C=C2OCOC2=CC=1C(=O)C(CCC)N1CCCC1 SYHGEUNFJIGTRX-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/954—Inspecting the inner surface of hollow bodies, e.g. bores
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Manipulator (AREA)
Abstract
本发明实施例公开了一种用于煤仓内壁缺陷检测的悬索并联机器人,包括视觉检测动平台、4个伺服机构、4个滑轮机构、4个柔性绳索,所述4个滑轮机构分别固定于煤仓4个拐角处,所述视觉检测动平台与所述4个柔性绳索连接并分别绕设经所述4个滑轮机构与所述4个伺服机构连接。本发明实施例还公开了一种用于煤仓内壁缺陷检测的悬索并联机器人的控制方法。采用本发明,实现了视觉检测云台精确的空间定位以及实时的视觉图像处理,取代了传统人工检测的方式,极大的提高了工作效率,降低了设备检修的维护成本。本发明使运动过程中即便绳索安装板不平,相机依然保持水平作业的特点,为悬索并联机器人运动时末端执行器不平稳提供了新的解决方案。
Description
技术领域
本发明涉及大空间内壁缺陷检测领域和柔索并联机器人领域,尤其涉及一种用于煤仓、电厂烟囱等大空间内壁的裂缝、锈蚀、凹坑、衬板翘起、螺栓缺失等缺陷视觉检测的悬索并联机器人及控制方法。
背景技术
煤仓是燃煤电厂在生产过程中存储煤的容器,煤仓内衬板一般采用不锈钢或超高分子量聚乙烯板,由于不锈钢衬板价格便宜,韧性好,安装制作简单且耐冲击,目前在燃煤电厂中应用得比较广泛。但是不锈钢会因焊接、表面划伤等原因接触到燃煤中的氯和硫而腐蚀,而衬板腐蚀过度会有脱落的危险,还会造成煤仓受损。
因此,煤仓内壁需要定期检测。但是目前现有的煤仓内壁检测手段主要是人工检测,要将煤仓静置约半个月,等粉尘沉降,有毒气体排出后,依赖工人带防爆照明灯进入煤仓内部一点一点地查看。煤仓的体积庞大,检测周期长,检测一次会耽误电厂不少的生产工作。且煤仓内部粉尘严重,还含有CO等有毒气体,对检测工人的安全构成威胁。
专利[ZL201720834837.5]采用无人机的方式进入煤仓内部拍摄图片进行瑕疵检测分析,但此方法有无人机螺旋桨扬尘、内定位难度高、无人机在煤灰粉尘、可燃性气体环境中容易引发爆炸等隐患。且无人机续航时间短,负载能力差,煤仓空间尺寸大,使其较难实际运用于生产实际。
发明内容
本发明实施例所要解决的技术问题在于,提供一种用于煤仓内壁缺陷检测的悬索并联机器人及控制方法。可用于煤仓、电厂烟囱等大空间内壁的裂缝等缺陷视觉检测。
为了解决上述技术问题,本发明实施例提供了一种用于煤仓内壁缺陷检测的悬索并联机器人,包括视觉检测动平台(100)、4个伺服机构(200)、4个滑轮机构(300)、4个柔性绳索(202),所述4个滑轮机构(300)分别固定于煤仓(400)4个拐角处,所述视觉检测动平台与所述4个柔性绳索连接并分别绕设经所述4个滑轮机构与所述4个伺服机构连接;
所述4个伺服机构(200)均包括绕线滚筒(201)、直线轴承(205)、安装底板(208)、压线机构(210)、编码器(2005)、编码器轮(209)、伺服电机(211),所述绕线滚筒(201)通过联轴器(212)与伺服电机(211)连接,柔性绳索绕经所述压线机构(210)、编码器轮(209)缠绕在绕线滚筒(201)上,所述编码器(2005)通过编码器轮(209)测出柔性绳索(202)的精确长度变化,通过机器人空间姿态控制方法,确认目标空间位置对应的柔性绳索(202)的长度,实现对视觉检测平台的空间位置控制。
进一步地,所述4个伺服机构(200)还包括同步轮组(203)、丝杆(204)、直线轴承(205)、换向轴承(206)、原点开关(207);
所述丝杆(204)通过所述同步轮组(203)与所述绕线滚筒(201)同步转动,换向轴承(206)设置于滑动块上,所述滑动块设置于所述丝杆(204)上,且与所述直线轴承(205)固定连接,所述原点开关用于检测所述滑动块的滑动极限位置。
更进一步地,所述视觉检测动平台(100)包括2轴无线光学变焦云台相机(106)、绳索安装板(102)、2轴平衡结构(103,105)、以及配重模块(101),所述2轴无线光学变焦云台相机安装于所述2轴平衡结构底端,所述配重模块(101)设置于顶端,所述绳索安装板设置于中部。
相应地,本发明实施例还提供了一种用于煤仓内壁缺陷检测的悬索并联机器人的控制方法如下步骤。
步骤1.建立动平台空间姿态和绳长关系模型
该四索牵引并联机器人是6自由度欠约束结构,为了描述动平台的位置姿态,建立全局坐标系O-xyz,在动平台中心建立局部坐标系P-xyz。
建立如下式(1)的动平台空间姿态和绳长模型:
将模型(1)经过移项整理得动平台空间姿态和绳长模型(2)(3):
动平台中心点位姿相对于全局坐标系为
式(1)、式(2)中,PO为局部坐标系中的原点(即动平台中心)相对于全局坐标系O中的位置矢量,Po=[Px,Py,Pz]T;表示全局坐标系O中绳索i在动平台的安装位置, 表示局部坐标系P中绳索i在动平台的安装位置, 表示全局坐标系O中绳索i与滑轮最高点接触的位置, 表示全局坐标系O中绳索i在动平台的安装位置相对于绳索i与滑轮最高点接触的位置的位置矢量;将滑轮i最高点到动平台绳索i的安装位置这段绳索长度,定义为绳索i的长度,记为li;i取值为[1,2,3,4];
RP表示全局坐标系O相对于动平台P的空间旋转矩阵,其表达式为:
式(4)、(5)中,α表示动平台绕局部坐标系x轴旋转的角度;β表示动平台绕局部坐标系y轴旋转的角度;γ表示动平台绕局部坐标系z轴旋转的角度;其旋转顺序为先绕局部坐标系z轴旋转γ,再绕局部坐标系y轴旋转β;最后绕局部坐标系x轴旋转α。
步骤2.考虑滑轮半径的影响,修正动平台空间姿态和绳长关系模型
步骤2.1根据式(6)、(7)、(8)求θi
θi=π-θi,1-θi,2# (8)
式(6)~(8)中,表示滑轮的半径大小;表示全局坐标系O中滑轮i的轴心点坐标位置, 表示全局坐标系O中绳索i在动平台的安装位置,θi表示滑轮轴心点到滑轮最高点的线段与滑轮轴心点到绳索i在滑轮上的切点的线段所成夹角;θi,1表示滑轮轴心点到绳索安装点的线段与全局坐标系z轴所成夹角;θi,2表示滑轮轴心点到绳索安装点的线段与滑轮轴心点到绳索i在滑轮上的切点的线段所成夹角;
步骤2.2建立修正后的绳长模型
式(9)中l′i表示考虑滑轮半径的影响修正后的绳索i的长度;表示滑轮的半径大小;表示全局坐标系O中滑轮i的轴心点坐标位置, 表示全局坐标系O中绳索i在动平台的安装位置,θi表示滑轮轴心点到滑轮最高点的线段与滑轮轴心点到绳索i在滑轮上的切点的线段所成夹角;θi,2表示滑轮轴心点到绳索安装点的线段与滑轮轴心点到绳索i在滑轮上的切点的线段所成夹角。
步骤3.考虑绳索在受到拉力作用下的形变,修正动平台空间姿态和绳长关系模型
根据胡克定理
得
式(10)、(11)中,E表示金属丝线材的杨氏模量,单位N/m;F表示外力大小,单位N;l表示金属丝绳索的原长,单位m;s为金属丝绳索的横截面积,单位m2;σ表示金属丝线材的拉伸形变伸长量,单位m。
把步骤2中式(9)算得的绳索修正长度l′i带入式(12),得到考虑滑轮半径和绳索形变的双重影响,修正后的绳索长度l″i
式(12)中,l″i表示考虑滑轮半径和绳索形变的双重影响下,修正后的绳索i的长度;l0表示绕线轴到相对应的滑轮的长度;l′i表示仅考虑滑轮半径的影响下,修正后的绳索i的长度;E表示本机器人系统中钢索线材的杨氏模量,单位N/m;Fi表示绳索i所受拉力,单位N;s为金属丝绳索的横截面积,单位m2。
步骤4.假定绳索模型为理想状态下的直线模型,忽略自身重力作用下的弯曲,将所述绳长模型对时间t进行求导,得到绳长随时间变化的雅克比矩阵。
故而
步骤4.2根据式(16)求绳索i的单位向量
步骤4.3将所述绳长模型对时间t进行求导,如式(17)所示,得到绳长随时间变化的雅克比矩阵,式(18)。
步骤5.建立运动学正解方程,并求最优解。
步骤5.1由动平台空间姿态和绳长关系模型(2),得第i根柔索长度的运动学正解方程(21)
步骤5.2求运动学正解方程的最优解。
步骤5.2.1
由于本机器人系统欠约束,有无穷多个解。根据最小势能原理,力学系统处于稳定平衡时,势能最小,即Pz最小。使用牛顿迭代法,多次迭代,得到最优解(x1,y1,z1,α1,β1,γ1)。
步骤5.2.2
具体计算时,求反解时只要求得到目标的三维空间位置(x0,y0,z0),由于云台的复合铰链结构,安装板角度对云台相机的角度不产生影响,第一次计算时默认目标位置(x0,y0,z0,0,0,0),通过计算,可以求出线长l1~l4;再求正解,根据势能最小原理,多次迭代得(x1,y1,z1,α1,β1,γ1),此时(x0,y0,z0)已经与(x1,y1,z1)发生偏移,比较Δx=x1-x0;Δy=y1-y0;Δz=z1-z0是否达到精度要求。如果达不到要求,设置目标位姿为(x0,y0,z0,α1,β1,γ1),再次计算l1~l4;……多次迭代,再次计算比较第j次迭代xj-x0;yj-y0;zj-z0是否达到精度要求。
实施本发明实施例,具有如下有益效果:本发明实现了视觉检测云台精确的空间定位以及实时的视觉图像处理,取代了传统人工检测的方式,极大的提高了工作效率,降低了设备检修的维护成本。本发明公布的悬索并联机器人通过视觉检测动平台的结构,使运动过程中即便绳索安装板不平,相机依然保持水平作业的特点,为悬索并联机器人运动时末端执行器不平稳提供了新的解决方案。
附图说明
图1为本发明煤仓内壁缺陷检测悬索并联机器人总效果图。各部件分别为:
100——视觉检测动平台、300——滑轮机构、400——煤仓
图2为本发明煤仓检测系统中视觉检测动平台示意图。各部件分别为:
106——2轴无线光学变焦云台相机、103,105——2轴平衡结构、1004——电池、101——配重模块3、102——绳索安装板。
图3-a为本发明煤仓检测系统中伺服机构装配体的主视图。
201——绕线滚筒、202——柔性绳索、203——同步轮组、204——丝杆、205——直线轴承、206——换向轴承、207——原点开关、208——安装底板、209——编码器轮(209)、210——压线机构、211——伺服电机、212——联轴器。
图3-b为本发明煤仓检测系统中伺服机构装配体的后视图。
213——编码器。
图4为本发明煤仓检测系统中滑轮机构示意图。
301——轴承座、302——滑轮支座、303——墙壁安装支架
图5为本发明煤仓内壁缺陷检测悬索并联机器人运动学模型坐标系示意图。
图6为本发明煤仓内壁缺陷检测悬索并联机器人运动学模型矢量计算示意图。
图7为本发明煤仓内壁缺陷检测悬索并联机器人滑轮局部示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
本发明实施例的一种用于煤仓内壁缺陷检测的悬索并联机器人,如图1所示安装。
4滑轮机构(300)固定于煤仓(400)4个拐角处,如图1。绕线滚筒(201)通过联轴器(212)与伺服电机(211)连接。
所述4个伺服机构(200)均包括绕线滚筒(201)、直线轴承(205)、安装底板(208)、压线机构(210)、编码器(2013)、编码器轮(209)、伺服电机(211),所述绕线滚筒(201)通过联轴器(212)与伺服电机(211)连接,柔性绳索绕经所述压线机构(210)、编码器轮(209)缠绕在绕线滚筒(201)上,所述编码器(213)通过编码器轮(209)测出柔性绳索(202)的精确长度变化,通过机器人空间姿态控制方法,确认目标空间位置对应的柔性绳索(202)的长度,实现对视觉检测平台的空间位置控制。
压线机构(210)为压线轮,使得柔性绳索能准确带动编码器轮(209)转动。
4个伺服机构(200)还包括同步轮组(203)、丝杆(204)、直线轴承(205)、换向轴承(206)、原点开关(207)、安装底板(208);
所述丝杆(204)通过所述同步轮组(203)与所述绕线滚筒(201)同步转动,换向轴承(206)设置于滑动块上,所述滑动块设置于所述丝杆(204)上,且与所述直线轴承(205)固定连接,所述原点开关用于检测所述滑动块的滑动极限位置。
柔性绳索(202)缠绕在绕线滚筒(201)上,柔性绳索(202)通过换向轴承(206)绕过编码器轮(209)、压线机构(210),再经过滑轮机构(300)连接与视觉检测动平台(100)的绳索安装板(102)上的4个安装位置连接。绕线滚筒(201)通过同步轮组(203)和丝杆(204)传动,使设备在运行过程中柔性绳索(202)能够以螺旋线在绕线滚筒上收放卷。
所述视觉检测动平台(100)包括2轴无线光学变焦云台相机(106)、绳索安装板(102)、2轴平衡结构(103,105)、以及配重模块(101),所述2轴无线光学变焦云台相机安装于所述2轴平衡结构底端,所述配重模块(101)设置于顶端,所述绳索安装板设置于中部。
换向轴承(206)设置于滑动块上,滑动块设置于所述丝杆(204)上,且与所述直线轴承(205)固定连接,原点开关(207)包括设置于安装底板(208)上的光电眼,滑动块上设置有一感应板,当感应板随滑动块滑动并置于光电眼时,发出触发信号。
硬件安装完毕之后,通电打开软件,设置煤仓的形状、尺寸、相机等参数
本发明实施例还提供了应用于上述用于煤仓内壁缺陷检测的悬索并联机器人的控制方法,包括如下步骤:
步骤1.建立动平台空间姿态和绳长关系模型
该四索牵引并联机器人是6自由度欠约束结构,为了描述动平台的位置姿态,建立全局坐标系O-xyz,在动平台中心建立局部坐标系P-xyz。
建立如下式(1)的动平台空间姿态和绳长模型:
将模型(1)经过移项整理得动平台空间姿态和绳长模型(2)(3):
动平台中心点位姿相对于全局坐标系为
式(1)、式(2)中,Po为局部坐标系中的原点(即动平台中心)相对于全局坐标系O中的位置矢量,Po=[Px,Py,Pz]T;表示全局坐标系O中绳索i在动平台的安装位置, 表示局部坐标系P中绳索i在动平台的安装位置, 表示全局坐标系O中绳索i与滑轮最高点接触的位置, 表示全局坐标系O中绳索i在动平台的安装位置相对于绳索i与滑轮最高点接触的位置的位置矢量;将滑轮i最高点到动平台绳索i的安装位置这段绳索长度,定义为绳索i的长度,记为li;i取值为[1,2,3,4];
RP表示全局坐标系O相对于动平台P的空间旋转矩阵,其表达式为:
式(4)、(5)中,α表示动平台绕局部坐标系x轴旋转的角度;β表示动平台绕局部坐标系y轴旋转的角度;γ表示动平台绕局部坐标系z轴旋转的角度;其旋转顺序为先绕局部坐标系z轴旋转γ,再绕局部坐标系y轴旋转β;最后绕局部坐标系x轴旋转α。
步骤2.考虑滑轮半径的影响,修正动平台空间姿态和绳长关系模型
步骤2.1根据式(6)、(7)、(8)求θi
θi=π-θi,1-θi,2# (8)
式(6)~(8)中,表示滑轮的半径大小;表示全局坐标系O中滑轮i的轴心点坐标位置, 表示全局坐标系O中绳索i在动平台的安装位置,θi表示滑轮轴心点到滑轮最高点的线段与滑轮轴心点到绳索i在滑轮上的切点的线段所成夹角;θi,1表示滑轮轴心点到绳索安装点的线段与全局坐标系z轴所成夹角;θi,2表示滑轮轴心点到绳索安装点的线段与滑轮轴心点到绳索i在滑轮上的切点的线段所成夹角;
步骤2.2建立修正后的绳长模型
式(9)中l′i表示考虑滑轮半径的影响修正后的绳索i的长度;表示滑轮的半径大小;表示全局坐标系O中滑轮i的轴心点坐标位置, 表示全局坐标系O中绳索i在动平台的安装位置,θi表示滑轮轴心点到滑轮最高点的线段与滑轮轴心点到绳索i在滑轮上的切点的线段所成夹角;θi,2表示滑轮轴心点到绳索安装点的线段与滑轮轴心到绳索i在滑轮上的切点的线段所成夹角。
步骤3.考虑绳索在受到拉力作用下的形变,修正动平台空间姿态和绳长关系模型
根据胡克定理
得
式(10)、(11)中,E表示金属丝线材的杨氏模量,单位N/m;F表示外力大小,单位N;l表示金属丝绳索的原长,单位m;s为金属丝绳索的横截面积,单位m2;σ表示金属丝线材的拉伸形变伸长量,单位m。
把步骤2中式(9)算得的绳索修正长度l′i带入式(12),得到考虑滑轮半径和绳索形变的双重影响,修正后的绳索长度l″i
式(12)中,l″i表示考虑滑轮半径和绳索形变的双重影响下,修正后的绳索i的长度;l0表示绕线轴到相对应的滑轮的长度;l′i表示仅考虑滑轮半径的影响下,修正后的绳索i的长度;E表示本机器人系统中钢索线材的杨氏模量,单位N/m;Fi表示绳索i所受拉力,单位N;s为金属丝绳索的横截面积,单位m2。
步骤4.假定绳索模型为理想状态下的直线模型,忽略自身重力作用下的弯曲,将所述绳长模型对时间t进行求导,得到绳长随时间变化的雅克比矩阵。
故而
步骤4.2根据式(16)求绳索i的单位向量
步骤4.3将所述绳长模型对时间t进行求导,如式(17)所示,得到绳长随时间变化的雅克比矩阵,式(18)。
步骤5.建立运动学正解方程,并求最优解。
步骤5.1由动平台空间姿态和绳长关系模型(2),得第i根柔索长度的运动学正解方程(21)
步骤5.2求运动学正解方程的最优解。
步骤5.2.1
由于本机器人系统欠约束,有无穷多个解。根据最小势能原理,力学系统处于稳定平衡时,势能最小,即Pz最小。使用牛顿迭代法,多次迭代,得到最优解(x1,y1,z1,α1,β1,γ1)。
步骤5.2.2
具体计算时,求反解时只要求得到目标的三维空间位置(x0,y0,z0),由于云台的复合铰链结构,安装板角度对云台相机的角度不产生影响,第一次计算时默认目标位置(x0,y0,z0,0,0,0),通过计算,可以求出线长l1~l4;再求正解,根据势能最小原理,多次迭代得(x1,y1,z1,α1,β1,γ1),此时(x0,y0,z0)已经与(x1,y1,z1)发生偏移,比较Δx=x1-x0;Δy=y1-y0;Δz=z1-z0是否达到精度要求。如果达不到要求,设置目标位姿为(x0,y0,z0,α1,β1,γ1),再次计算l1~l4;……多次迭代,再次计算比较第j次迭代xj-x0;yj-y0;zj-z0是否达到精度要求。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。
Claims (2)
1.一种用于煤仓内壁缺陷检测的悬索并联机器人,其特征在于,包括视觉检测动平台(100)、4个伺服机构(200)、4个滑轮机构(300)、4个柔性绳索(202),所述4个滑轮机构(300)分别固定于煤仓(400)4个拐角处,所述视觉检测动平台与所述4个柔性绳索连接并分别绕设经所述4个滑轮机构与所述4个伺服机构连接;
所述4个伺服机构(200)均包括绕线滚筒(201)、直线轴承(205)、安装底板(208)、压线机构(210)、编码器(2005)、编码器轮(209)、伺服电机(211),所述绕线滚筒(201)通过联轴器(212)与伺服电机(211)连接,柔性绳索绕经所述压线机构(210)、编码器轮(209)缠绕在绕线滚筒(201)上,所述编码器(2005)通过编码器轮(209)测出柔性绳索(202)的精确长度变化,通过机器人空间姿态控制方法,确认目标空间位置对应的柔性绳索(202)的长度,实现对视觉检测平台的空间位置控制;
所述4个伺服机构(200)还包括同步轮组(203)、丝杆(204)、直线轴承(205)、换向轴承(206)、原点开关(207);
所述丝杆(204)通过所述同步轮组(203)与所述绕线滚筒(201)同步转动,换向轴承(206)设置于滑动块上,所述滑动块设置于所述丝杆(204)上,且与所述直线轴承(205)固定连接,所述原点开关用于检测所述滑动块的滑动极限位置;
所述视觉检测动平台(100)包括2轴无线光学变焦云台相机(106)、绳索安装板(102)、2轴平衡结构(103,105)、以及配重模块(101),所述2轴无线光学变焦云台相机安装于所述2轴平衡结构底端,所述配重模块(101)设置于顶端,所述绳索安装板设置于中部;
所述用于煤仓内壁缺陷检测的悬索并联机器人包括以下控制步骤:
步骤1. 建立动平台空间姿态和绳长关系模型:
经过移项整理得动平台空间姿态和绳长模型:
动平台中心点位姿相对于全局坐标系为
为局部坐标系中的原点(即动平台中心)相对于全局坐标系O中的位置矢量,表示全局坐标系O中绳索i在动平台的安装位置,;表示局部坐标系P中绳索i在动平台的安装位置,; 表示全局坐标系O中绳索i与滑轮最高点接触的位置,;表示全局坐标系O中绳索i在动平台的安装位置相对于绳索i与滑轮最高点接触的位置的位置矢量;将滑轮i最高点到动平台绳索i的安装位置这段绳索长度,定义为绳索i的长度,记为;i取值为[1,2,3,4];
其中,表示动平台绕局部坐标系x轴旋转的角度;表示动平台绕局部坐标系y轴旋转的角度;表示动平台绕局部坐标系z轴旋转的角度;其旋转顺序为先绕局部坐标系z轴旋转,再绕局部坐标系y轴旋转;最后绕局部坐标系x轴旋转;
步骤2:修正动平台空间姿态和绳长关系模型,消除滑轮半径的影响,
建立修正后的绳长模型:
其中表示考虑滑轮半径的影响修正后的绳索i的长度;ρ表示滑轮的半径大小;表示全局坐标系O中滑轮i的轴心点坐标位置,;表示全局坐标系O中绳索i在动平台的安装位置,;表示滑轮轴心点到滑轮最高点的线段与滑轮轴心点到绳索i在滑轮上的切点的线段所成夹角;表示滑轮轴心点到绳索安装点的线段与滑轮轴心点到绳索i在滑轮上的切点的线段所成夹角;
步骤3:修正动平台空间姿态和绳长关系模型消除绳索在受到拉力作用下的形变的影响,
其中,表示绕线轴到相对应的滑轮的长度;表示仅考虑滑轮半径的影响下,修正后的绳索i的长度;E表示本用于煤仓内壁缺陷检测的悬索并联机器人系统中绳索线材的杨氏模量,;表示绳索i所受拉力,s为金属丝绳索的横截面积;
步骤4:将上述绳长模型对时间t进行求导,得到绳长随时间变化的雅克比矩阵;
步骤5:由动平台空间姿态和绳长关系模型,得第i根绳索长度的运动学正解方程
求运动学正解方程的最优解。
2.根据权利要求1所述的用于煤仓内壁缺陷检测的悬索并联机器人,其特征在于,所述步骤4具体包括:
步骤4.2:根据以下公式求绳索i的单位向量
步骤4.3:将绳长模型对时间t进行求导,得到绳长随时间变化的雅克比矩阵,
其中:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910193057.0A CN110216685B (zh) | 2019-03-12 | 2019-03-12 | 一种用于煤仓内壁缺陷检测的悬索并联机器人及控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910193057.0A CN110216685B (zh) | 2019-03-12 | 2019-03-12 | 一种用于煤仓内壁缺陷检测的悬索并联机器人及控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110216685A CN110216685A (zh) | 2019-09-10 |
CN110216685B true CN110216685B (zh) | 2021-02-02 |
Family
ID=67822390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910193057.0A Active CN110216685B (zh) | 2019-03-12 | 2019-03-12 | 一种用于煤仓内壁缺陷检测的悬索并联机器人及控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110216685B (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112611497B (zh) * | 2019-09-18 | 2022-01-28 | 马洪文 | 并联杆系多维力传感器结构 |
CN110861081B (zh) * | 2019-10-14 | 2021-10-26 | 北京航空航天大学 | 一种欠约束索并联机器人末端执行器的自主定位方法 |
CN112091946B (zh) * | 2020-09-16 | 2022-03-25 | 哈尔滨工业大学 | 一种上置式多自由度绳驱并联机器人 |
CN112847444A (zh) * | 2020-12-31 | 2021-05-28 | 洛阳尚奇机器人科技有限公司 | 一种柔性驱动的视觉跟踪装置设计及控制方法 |
CN113334373B (zh) * | 2021-05-14 | 2023-03-14 | 广西电网有限责任公司电力科学研究院 | 变电站室内自动巡检机器人系统控制方法 |
CN113650035A (zh) * | 2021-09-16 | 2021-11-16 | 南京信息工程大学 | 一种绳驱动汽车换挡机器人 |
CN114351541B (zh) * | 2021-09-27 | 2023-11-07 | 广西北投交通养护科技集团有限公司 | 一种泡沫轻质混凝土自动化浇筑系统 |
CN114084855A (zh) * | 2021-10-09 | 2022-02-25 | 四川美术学院 | 一种废墟搜救自动化平台 |
CN114460899B (zh) * | 2022-01-27 | 2024-05-03 | 北京北特圣迪科技发展有限公司 | 一种基于预测绳索长度的四柔索牵引并联执行器运动姿态控制方法 |
CN114643584B (zh) * | 2022-05-17 | 2022-09-30 | 中国科学技术大学 | 一种绳索牵引并联机器人快速终端滑模同步控制方法 |
CN115127002B (zh) * | 2022-07-07 | 2023-07-21 | 哈尔滨工业大学(深圳) | 一种室内超大空间作业的绳驱并联机器人 |
CN115070771B (zh) * | 2022-07-19 | 2022-12-30 | 中国科学技术大学 | 一种绳索牵引并联机器人弹性双环同步控制方法 |
CN118483666B (zh) * | 2024-07-15 | 2024-09-17 | 成都世源频控技术股份有限公司 | 一种基于无人机的雷达模拟测试系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03103015A (ja) * | 1989-09-16 | 1991-04-30 | Nippon Telegr & Teleph Corp <Ntt> | 先端けん引型マニピュレータケーブル架渉車 |
EP0674974A1 (en) * | 1994-03-29 | 1995-10-04 | General Electric Company | Maintenance system |
CN1129382A (zh) * | 1994-09-20 | 1996-08-21 | 富士通株式会社 | 用于在局部区域跟踪图象的跟踪装置 |
CN2703487Y (zh) * | 2004-04-30 | 2005-06-08 | 刘宝利 | 高效多功能大楼清洁机 |
CN102117075A (zh) * | 2011-01-28 | 2011-07-06 | 西安电子科技大学 | 悬索牵引摄影摄像机机位的控制方法 |
CN109048911A (zh) * | 2018-08-31 | 2018-12-21 | 河南工程学院 | 一种基于矩形特征的机器人视觉控制方法 |
-
2019
- 2019-03-12 CN CN201910193057.0A patent/CN110216685B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03103015A (ja) * | 1989-09-16 | 1991-04-30 | Nippon Telegr & Teleph Corp <Ntt> | 先端けん引型マニピュレータケーブル架渉車 |
EP0674974A1 (en) * | 1994-03-29 | 1995-10-04 | General Electric Company | Maintenance system |
CN1129382A (zh) * | 1994-09-20 | 1996-08-21 | 富士通株式会社 | 用于在局部区域跟踪图象的跟踪装置 |
CN2703487Y (zh) * | 2004-04-30 | 2005-06-08 | 刘宝利 | 高效多功能大楼清洁机 |
CN102117075A (zh) * | 2011-01-28 | 2011-07-06 | 西安电子科技大学 | 悬索牵引摄影摄像机机位的控制方法 |
CN109048911A (zh) * | 2018-08-31 | 2018-12-21 | 河南工程学院 | 一种基于矩形特征的机器人视觉控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110216685A (zh) | 2019-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110216685B (zh) | 一种用于煤仓内壁缺陷检测的悬索并联机器人及控制方法 | |
CN104925159B (zh) | 一种侦察型可越障机器蛇 | |
CN110465844B (zh) | 一种打磨机器人及其工作方法 | |
CN103303449B (zh) | 一种水下作业机器人 | |
Xu et al. | Developing a climbing robot for repairing cables of cable-stayed bridges | |
EP3059484B1 (en) | Autonomous robot for the inspection and maintenance of large-sized pipes and method of its exploitation | |
JP2535550Y2 (ja) | 水中移動型検査装置 | |
US3262593A (en) | Wall-mounted support structure | |
CN101693368B (zh) | 一种大型板材安装机械手 | |
CN110861729B (zh) | 一种大直径主缆与管道检测机器人 | |
SA519402326B1 (ar) | تنظيف وحدات تتبع الشمس بدون ماء باستخدام روبوت | |
CN105945900A (zh) | 一种变电站室内巡检机器人 | |
JPH0776797B2 (ja) | 遠隔処理装置用の遠隔操作可能な位置決め兼支持装置 | |
CN101279619A (zh) | 高机动球形探测机器人 | |
CN209080129U (zh) | 一种用于水下设施圆管结构的清洗和检测机器人 | |
CN109823872B (zh) | 一种智能平粮机器人及平粮控制系统 | |
TWI576579B (zh) | 檢查與維修模組及系統與檢查模組 | |
CN112407345A (zh) | 空间机械臂悬吊微重力模拟装置 | |
CN103398297A (zh) | 一种排管检测机器人 | |
CN115091474A (zh) | 一种超高压架空输电线路全方位高精度巡检机器人 | |
JPWO2009136567A1 (ja) | 物品搬送ロボット装置 | |
CN210915147U (zh) | 一种平衡式升降检测机器人 | |
CN111805501A (zh) | 柔性可变径永磁吸附麦轮式爬筒机器人系统 | |
Ciszewski et al. | Design, modelling and laboratory testing of a pipe inspection robot | |
JP2018118525A (ja) | 飛行作業体、および、それを用いた作業システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |