CN110207770A - 一种可识别干扰及位置的线圈感应式水表 - Google Patents

一种可识别干扰及位置的线圈感应式水表 Download PDF

Info

Publication number
CN110207770A
CN110207770A CN201910606759.7A CN201910606759A CN110207770A CN 110207770 A CN110207770 A CN 110207770A CN 201910606759 A CN201910606759 A CN 201910606759A CN 110207770 A CN110207770 A CN 110207770A
Authority
CN
China
Prior art keywords
variable
voltage difference
water meter
sequence vector
subcycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910606759.7A
Other languages
English (en)
Other versions
CN110207770B (zh
Inventor
严军荣
卢玉龙
宋财华
祝向辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanchuan Wisdom Technology Co Ltd
Original Assignee
Sanchuan Wisdom Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanchuan Wisdom Technology Co Ltd filed Critical Sanchuan Wisdom Technology Co Ltd
Priority to CN201910606759.7A priority Critical patent/CN110207770B/zh
Publication of CN110207770A publication Critical patent/CN110207770A/zh
Application granted granted Critical
Publication of CN110207770B publication Critical patent/CN110207770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了一种可识别干扰及位置的线圈感应式水表。其线圈感应式水表识别干扰及位置的方法包括以下步骤:获取感应电压差数据及计算电压差计量值、生成分段电压差向量序列、计算电压差向量序列之间的距离、判断水表是否受到干扰及识别干扰位置。本发明的方法及系统解决了现有线圈感应式水表不能识别干扰及干扰位置的技术问题。

Description

一种可识别干扰及位置的线圈感应式水表
技术领域
本发明属于水表技术领域,特别是涉及一种可识别干扰及位置的线圈感应式水表。
背景技术
目前水表计量多是采用干簧管、霍尔元件、韦根传感器,但由于干黄管固有的机械特性、使用寿命及抗振性受到影响,而霍尔元件是电流太大,也存在低或高流速的频率响应问题;韦根传感器存在磁阻大的缺点,极易吸附住叶轮增加始动流量,且价格昂贵。因此现有远传水表采用无线圈感应的原理将机械表齿轮转动或指针的转动转化为电脉冲信号,例如中国专利CN201810125788.7公开了一种无磁远传水表,专利CN100535603C公开了一种感应式角位传感器,其在水表基表的转动轴(A)上设置半圆形钢片(4a)或部分金属化的圆盘(4),水表本体玻璃上方(与圆盘平行)设置外部电感线圈(初级线圈)以及均匀设置在外部电感线圈内的4个电感线圈(2对次级线圈),如图1所示,通过检测成对电感线圈的电压差计量水流量。
在工业用水、生活用水领域,感应线圈所产生的感应电压非常微弱,如果受到干扰,则会导致水表流量计算出现误差,给用户或供水方带来损失。因此需要一种能够识别干扰及干扰位置的线圈感应式水表方案。为此,提出一种可识别干扰及位置的线圈感应式水表。
发明内容
本发明所要解决的技术问题是现有线圈感应式水表不能识别干扰及干扰位置的问题,提出一种可识别干扰及位置的线圈感应式水表。
本发明采用背景技术中描述的线圈感应式水表,包括本体、安装在表盘内与表盘内的指针同轴转动的非圆金属片和位于非圆金属片正上方的计量模块;所述计量模块包括单片机和与单片机电连接的用于脉冲信号收发的电感线圈以及用于检测感应电压差的电路;所述电感线圈包括用于脉冲信号发射的初级线圈和用于脉冲信号接收的多对次级线圈;单片机根据每个采样时刻每对次级线圈的感应电压差数据计算水流量。本发明在上述单片机中加入识别干扰及干扰位置的程序。
本发明的线圈感应式水表识别干扰及位置的方法,包括以下步骤:
获取感应电压差数据及计算电压差计量值:次级线圈对的数量记为N,按照事先设置的采样时间间隔T0获取各次级线圈对的感应电压差,用变量vi表示,其中i是次级线圈对的编号,1≤i≤N;判断感应电压差vi与事先设置的计量阈值V的大小,若vi>V,则该感应电压差的计量值为1,若vi=V,则该感应电压差的计量值为0,vi<V,则该感应电压差的计量值为-1。
所述事先设置的采样时间间隔T0远小于非圆金属片的转动半圈所用的时间。
生成分段电压差向量序列:统计各次级线圈对的感应电压差计量值并以此计算周期值,用变量p表示;将每个周期分为多段子周期,子周期的数量记为m,将子周期按照时间先后顺序编号为j,1≤j≤m;获取各次级线圈对各子周期内采样的感应电压差计量值,子周期内感应电压差计量值的数量用变量n表示,各子周期内的感应电压差计量值用变量vijk表示,1≤k≤n;根据各次级线圈对各子周期内的感应电压差计量值生成分段电压差向量序列aij=(vij1,vij2,…,vijk,…vijn)。
所述子周期的数量其中D是事先设置的分段阈值且满足D≥T0;所述子周期内感应电压差计量值的数量
计算电压差向量序列之间的距离:获取事先设置的水表正常工作时一个周期内各次级线圈对的电压差向量序列,将其按照子周期分段得到标准分段电压差向量序列,用bij表示,(例如,取水表出厂时检测的各次级线圈对的电压差向量序列,将该序列作为标准电压差向量序列),标准分段电压差向量序列中的感应电压差计量值用变量uijk表示,1≤k≤n;计算各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离,用变量sij表示。
所述各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离
所述各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离
判断水表是否受到干扰及识别干扰位置:判断距离sij是否大于事先设置的距离阈值S,若是,则识别该距离对应的子周期编号,记为X,判断不同次级线圈对的距离siX是否都大于距离阈值S,若是,则判定水表受到干扰,根据子周期X对应的非圆金属片相对初始点的转动角度识别干扰的位置;否则判定水表未受到干扰(可能是水表本身线圈存在损坏或检测误差)。
本发明的一种线圈感应式水表,包括:
水表本体;
一个或多个处理器;
可读存储介质;以及
一个或多个程序,其中所述一个或多个程序被存储在可读存储介质中,并且被配置成由所述一个或多个处理器执行,所述程序包括用于执行上述方法。
本发明的方法具有的优点是:
(1)相比传统的处理方式,通过计算感应电压差数据计量值及生成电压差向量序列,对各次级线圈对的电压差数据进行数字化和统计学处理,计算复杂度低。
(2)通过次级线圈对不同子周期内电压差向量序列与标准序列的距离,可以有效地判断水表是否受到干扰。
(3)通过次级线圈的感应电压计量值周期与非圆金属片的转动周期的对应关系,可以有效地根据异常感应电压差所在的周期位置识别金属片对应的干扰位置。
附图说明
图1是背景技术中线圈感应式水表结构图;
图2是本发明实施例一的两对次级线圈的电压差计量值显示图;
图3是本发明实施例的线圈感应式水表识别干扰及位置的方法流程图。
具体实施方式
下面对本发明优选实施例作详细说明。
本发明采用背景技术中描述的线圈感应式水表,包括本体、安装在表盘内与表盘内的指针同轴转动的非圆金属片和位于非圆金属片正上方的计量模块;所述计量模块包括单片机和与单片机电连接的用于脉冲信号收发的电感线圈以及用于检测感应电压差的电路;所述电感线圈包括用于脉冲信号发射的初级线圈和用于脉冲信号接收的多对次级线圈;单片机根据每个采样时刻每对次级线圈的感应电压差数据计算水流量。本发明实施例在上述单片机中加入识别干扰及干扰位置的程序。
实施例一、一种线圈感应式水表识别干扰及位置的方法。
本实施例一中,非圆金属片为半圆的金属片,4个次级线圈分为两对相互串联且反相连接。
本实施例的线圈感应式水表识别干扰及位置的方法,包括以下步骤:
获取感应电压差数据及计算电压差计量值:次级线圈对的数量记为N,按照事先设置的采样时间间隔T0获取各次级线圈对的感应电压差,用变量vi表示,其中i是次级线圈对的编号,1≤i≤N;判断感应电压差vi与事先设置的计量阈值V的大小,若vi>V,则该感应电压差的计量值为1,若vi=V,则该感应电压差的计量值为0,vi<V,则该感应电压差的计量值为-1。
所述事先设置的采样时间间隔T0小于非圆金属片的转动半圈所用的时间。本实施例中,次级线圈的对数N=2,线圈A、C编号为1,线圈B、D编号为2;事先设置的采样时间间隔T0=0.1秒,某时刻获取每对次级线圈的感应电压差数据,v1=7毫伏,v2=10毫伏,事先设置的计量阈值V=5毫伏,则两对次级线圈的感应电压差计量值为1。
生成分段电压差向量序列:统计各次级线圈对的感应电压差计量值并以此计算周期值,用变量p表示;将每个周期分为多段子周期,子周期的数量记为m,将子周期按照时间先后顺序编号为j,1≤j≤m;获取各次级线圈对各子周期内采样的感应电压差计量值,子周期内感应电压差计量值的数量用变量n表示,各子周期内的感应电压差计量值用变量vijk表示,1≤k≤n;根据各次级线圈对各子周期内的感应电压差计量值生成分段电压差向量序列aij=(vij1,vij2,…,vijk,…vijn)。
所述子周期的数量其中D是事先设置的分段阈值且满足D≥T0;所述子周期内感应电压差计量值的数量本实施例中,统计各次级线圈对的感应电压差计量值,得到两个电压差计量值显示图,如图2所示,并以此计算周期p=0.8秒,事先设置的分段阈值D=0.2,m=0.8/0.2=4,每个周期分为4段子周期,将子周期按照时间先后顺序编号为j,1≤j≤m;获取各次级线圈对每段子周期内的感应电压差计量值,子周期内感应电压差计量值的数量 各子周期内的感应电压差计量值用变量vijk表示,1≤k≤2,以此生成各次级线圈对的分段电压差向量序列,a11=(1,0),a12=(1,-1),a13=(-1,0),a14=(1,1),a21=(1,1),a22=(1,1),a23=(-1,-1),a24=(-1,0)。
计算电压差向量序列之间的距离:获取事先设置的水表正常工作时一个周期内各次级线圈对的电压差向量序列,将其按照子周期分段得到标准分段电压差向量序列,用bij表示,标准分段电压差向量序列中的感应电压差计量值用变量uijk表示,1≤k≤n;计算各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离,用变量sij表示。
所述各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离
所述各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离本实施例中,事先设置的水表正常工作时一个周期内各次级线圈对的电压差向量序列分别为,b1=(1,0,-1,-1,-1,0,1,1),b2=(1,1,1,0,-1,-1,-1,0),将其按照子周期分段得到标准分段电压差向量序列为b11=(1,0),b12=(-1,-1),b13=(-1,0),b14=(1,1),b21=(1,1),b22=(1,0),b23=(-1,-1),b24=(-1,0);计算距离
判断水表是否受到干扰及识别干扰位置:判断距离sij是否大于事先设置的距离阈值S,若是,则识别该距离对应的子周期编号,记为X,判断不同次级线圈对的距离siX是否都大于距离阈值S,若是,则判定水表受到干扰,根据子周期X对应的非圆金属片相对初始点的转动角度识别干扰的位置;否则判定水表未受到干扰(可能是水表本身线圈存在损坏或检测误差)。本实施例中,事先设置的距离阈值S=0.2,其中s12=2>S,s22=1>S,识别对应的子周期编号X=2,s12和s22都大于S,判定水表受到干扰,该子周期2对应的非圆金属片相对初始点的转动角度为90°到180°,即识别干扰的位置为非圆金属片相对于初始点转动90°到180°之间所对应的位置。
本实施例的线圈感应式水表识别干扰及位置的方法流程图,如图3所示。
实施例二、一种线圈感应式水表识别干扰及位置的方法。
本实施例二中,非圆金属片为半圆的金属片,4个次级线圈分为两对相互串联且反相连接。
本实施例的线圈感应式水表识别干扰及位置的方法,包括以下步骤:
获取感应电压差数据及计算电压差计量值:次级线圈对的数量记为N,按照事先设置的采样时间间隔T0获取各次级线圈对的感应电压差,用变量vi表示,其中i是次级线圈对的编号,1≤i≤N;判断感应电压差vi与事先设置的计量阈值V的大小,若vi>V,则该感应电压差的计量值为1,若vi=V,则该感应电压差的计量值为0,vi<V,则该感应电压差的计量值为-1。
所述事先设置的采样时间间隔T0小于非圆金属片的转动半圈所用的时间。本实施例中,次级线圈的对数N=2,线圈A、C编号为1,线圈B、D编号为2;事先设置的采样时间间隔T0=0.1秒,某时刻获取每对次级线圈的感应电压差数据,v1=7毫伏,v2=10毫伏,事先设置的计量阈值V=5毫伏,则两对次级线圈的感应电压差计量值为1。
生成分段电压差向量序列:统计各次级线圈对的感应电压差计量值并以此计算周期值,用变量p表示;将每个周期分为多段子周期,子周期的数量记为m,将子周期按照时间先后顺序编号为j,1≤j≤m;获取各次级线圈对各子周期内采样的感应电压差计量值,子周期内感应电压差计量值的数量用变量n表示,各子周期内的感应电压差计量值用变量vijk表示,1≤k≤n;根据各次级线圈对各子周期内的感应电压差计量值生成分段电压差向量序列aij=(vij1,vij2,…,vijk,…vijn)。
所述子周期的数量其中D是事先设置的分段阈值且满足D≥T0;所述子周期内感应电压差计量值的数量本实施例中,统计各次级线圈对的感应电压差计量值,得到两个电压差计量值显示图,如图2所示,并以此计算周期p=0.8秒,事先设置的分段阈值D=0.2,m=0.8/0.2=4,每个周期分为4段子周期,将子周期按照时间先后顺序编号为j,1≤j≤m;获取各次级线圈对每段子周期内的感应电压差计量值,子周期内感应电压差计量值的数量 各子周期内的感应电压差计量值用变量vijk表示,1≤k≤2,以此生成各次级线圈对的分段电压差向量序列,a11=(1,0),a12=(1,-1),a13=(-1,0),a14=(1,1),a21=(1,1),a22=(1,1),a23=(-1,-1),a24=(-1,0)。
计算电压差向量序列之间的距离:获取事先设置的水表正常工作时一个周期内各次级线圈对的电压差向量序列,将其按照子周期分段得到标准分段电压差向量序列,用bij表示,标准分段电压差向量序列中的感应电压差计量值用变量uijk表示,1≤k≤n;计算各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离,用变量sij表示。
所述各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离
所述各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离本实施例中,事先设置的水表正常工作时一个周期内各次级线圈对的电压差向量序列分别为,b1=(1,0,-1,-1,-1,0,1,1),b2=(1,1,1,0,-1,-1,-1,0),将其按照子周期分段得到标准分段电压差向量序列为b11=(1,0),b12=(-1,-1),b13=(-1,0),b14=(1,1),b21=(1,1),b22=(1,0),b23=(-1,-1),b24=(-1,0);计算距离s11=|a11-b11|=|1-1|+|0-0|=0,s12=|a12-b12|=|1+1|+|-1+1|=2,s13=|a13-b13|=|-1+1|+|0-0|=0,s14=|a14-b14|=|1-1|+|1-1|=0,s21=|a21-b21|=|1-1|+|0-0|=0,s22=|a22-b22|=|1-1|+|1-0|=1,s23=|a23-b23|=|-1+1|+|-1+1|=0,s24=|a24-b24|=|-1+1|+|0-0|=0。
判断水表是否受到干扰及识别干扰位置:判断距离sij是否大于事先设置的距离阈值S,若是,则识别该距离对应的子周期编号,记为X,判断不同次级线圈对的距离siX是否都大于距离阈值S,若是,则判定水表受到干扰,根据子周期X对应的非圆金属片相对初始点的转动角度识别干扰的位置;否则判定水表未受到干扰(可能是水表本身线圈存在损坏或检测误差)。本实施例中,事先设置的距离阈值S=0.2,其中s12=2>S,s22=1>S,识别对应的子周期编号X=2,s12和s22都大于S,判定水表受到干扰,该子周期2对应的非圆金属片相对初始点的转动角度为90°到180°,即识别干扰的位置为非圆金属片相对于初始点转动90°到180°之间所对应的位置。
实施例三、一种线圈感应式水表识别干扰及位置的方法。
本实施例三中,非圆金属片为半圆的金属片,6个次级线圈分为三对相互串联且反相连接。
本实施例的线圈感应式水表识别干扰及位置的方法,包括以下步骤:
获取感应电压差数据及计算电压差计量值:次级线圈对的数量记为N,按照事先设置的采样时间间隔T0获取各次级线圈对的感应电压差,用变量vi表示,其中i是次级线圈对的编号,1≤i≤N;判断感应电压差vi与事先设置的计量阈值V的大小,若vi>V,则该感应电压差的计量值为1,若vi=V,则该感应电压差的计量值为0,vi<V,则该感应电压差的计量值为-1。
所述事先设置的采样时间间隔T0小于非圆金属片的转动半圈所用的时间。本实施例中,次级线圈的对数N=3,分别编号为1、2、3;事先设置的采样时间间隔T0=0.1秒,某时刻获取每对次级线圈的感应电压差数据,v1=7毫伏、v2=10毫伏、v3=1毫伏,事先设置的计量阈值V=5毫伏,则三对次级线圈的感应电压差计量值分别为1、1、-1。
生成分段电压差向量序列:统计各次级线圈对的感应电压差计量值并以此计算周期值,用变量p表示;将每个周期分为多段子周期,子周期的数量记为m,将子周期按照时间先后顺序编号为j,1≤j≤m;获取各次级线圈对各子周期内采样的感应电压差计量值,子周期内感应电压差计量值的数量用变量n表示,各子周期内的感应电压差计量值用变量vijk表示,1≤k≤n;根据各次级线圈对各子周期内的感应电压差计量值生成分段电压差向量序列aij=(vij1,vij2,…,vijk,…vijn)。
所述子周期的数量其中D是事先设置的分段阈值且满足D≥T0;所述子周期内感应电压差计量值的数量本实施例中,统计各次级线圈对的感应电压差计量值,并以此计算周期p=0.8秒,事先设置的分段阈值D=0.2,m=0.8/0.2=4,每个周期分为4段子周期,将子周期按照时间先后顺序编号为j,1≤j≤m;获取各次级线圈对每段子周期内的感应电压差计量值,子周期内感应电压差计量值的数量各子周期内的感应电压差计量值用变量vijk表示,1≤k≤2,以此生成各次级线圈对的分段电压差向量序列,a11=(1,0),a12=(1,-1),a13=(-1,0),a14=(1,1),a21=(1,1),a22=(1,1),a23=(-1,-1),a24=(-1,0),a31=(-1,1),a32=(0,-1),a33=(1,-1),a34=(0,1)。
计算电压差向量序列之间的距离:获取事先设置的水表正常工作时一个周期内各次级线圈对的电压差向量序列,将其按照子周期分段得到标准分段电压差向量序列,用bij表示,标准分段电压差向量序列中的感应电压差计量值用变量uijk表示,1≤k≤n;计算各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离,用变量sij表示。
所述各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离
所述各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离本实施例中,事先设置的水表正常工作时一个周期内各次级线圈对的电压差向量序列分别为,b1=(1,0,-1,-1,-1,0,1,1),b2=(1,1,1,0,-1,-1,-1,0),b3=(-1,1,1,-1,1,-1,0,1),将其按照子周期分段得到标准分段电压差向量序列为b11=(1,0),b12=(-1,-1),b13=(-1,0),b14=(1,1),b21=(1,1),b22=(1,0),b23=(-1,-1),b24=(-1,0),b31=(-1,1),b32=(1,-1),b33=(1,-1),b34=(0,1);计算距离
判断水表是否受到干扰及识别干扰位置:判断距离sij是否大于事先设置的距离阈值S,若是,则识别该距离对应的子周期编号,记为X,判断不同次级线圈对的距离siX是否都大于距离阈值S,若是,则判定水表受到干扰,根据子周期X对应的非圆金属片相对初始点的转动角度识别干扰的位置;否则判定水表未受到干扰(可能是水表本身线圈存在损坏或检测误差)。本实施例中,事先设置的距离阈值S=0.2,其中s12=2>S,s22=1>S,s32=1>S,识别对应的子周期编号X=2,s12、s22、s32都大于S,判定水表受到干扰,该子周期2对应的非圆金属片相对初始点的转动角度为60°到120°,即识别干扰的位置为非圆金属片相对于初始点转动60°到120°之间所对应的位置。
本发明实施例的一种线圈感应式水表,包括:
水表本体;
一个或多个处理器;
可读存储介质;以及
一个或多个程序,其中所述一个或多个程序被存储在可读存储介质中,并且被配置成由所述一个或多个处理器执行,所述程序包括用于执行实施例一或实施例二所述的方法。
当然,本技术领域中的普通技术用户应当认识到,以上实施例仅是用来说明本发明的,而并非作为对本发明的限定,只要在本发明的范围内,对以上实施例的变化、变型都将落入本发明的保护范围。

Claims (7)

1.一种线圈感应式水表识别干扰及位置的方法,其特征在于包括以下步骤:
获取感应电压差数据及计算电压差计量值:次级线圈对的数量记为N,按照事先设置的采样时间间隔T0获取各次级线圈对的感应电压差,用变量vi表示,其中i是次级线圈对的编号,1≤i≤N;判断感应电压差vi与事先设置的计量阈值V的大小,若vi>V,则该感应电压差的计量值为1,若vi=V,则该感应电压差的计量值为0,vi<V,则该感应电压差的计量值为-1;
生成分段电压差向量序列:统计各次级线圈对的感应电压差计量值并以此计算周期值,用变量p表示;将每个周期分为多段子周期,子周期的数量记为m,将子周期按照时间先后顺序编号为j,1≤j≤m;获取各次级线圈对各子周期内采样的感应电压差计量值,子周期内感应电压差计量值的数量用变量n表示,各子周期内的感应电压差计量值用变量vijk表示,1≤k≤n;根据各次级线圈对各子周期内的感应电压差计量值生成分段电压差向量序列aij=(vij1,vij2,…,vijk,…vijn);
计算电压差向量序列之间的距离:获取事先设置的水表正常工作时一个周期内各次级线圈对的电压差向量序列,将其按照子周期分段得到标准分段电压差向量序列,用bij表示,标准分段电压差向量序列中的感应电压差计量值用变量uijk表示,1≤k≤n;计算各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离,用变量sij表示;
判断水表是否受到干扰及识别干扰位置:判断距离sij是否大于事先设置的距离阈值S,若是,则识别该距离对应的子周期编号,记为X,判断各次级线圈对的距离siX是否都大于距离阈值S,若是,则判定水表受到干扰,根据子周期X对应的非圆金属片相对初始点的转动角度识别干扰的位置;否则判定水表未受到干扰。
2.根据权利要求1所述的线圈感应式水表识别干扰及位置的方法,其特征在于,所述事先设置的采样时间间隔T0小于非圆金属片的转动半圈所用的时间。
3.根据权利要求1所述的线圈感应式水表识别干扰及位置的方法,其特征在于,所述子周期的数量其中D是事先设置的分段阈值且满足D≥T0
4.根据权利要求3所述的线圈感应式水表识别干扰及位置的方法,其特征在于,所述子周期内感应电压差计量值的数量
5.根据权利要求1所述的线圈感应式水表识别干扰及位置的方法,其特征在于,所述各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离
6.根据权利要求1所述的线圈感应式水表识别干扰及位置的方法,其特征在于,所述各次级线圈对的分段电压差向量序列aij与标准分段电压差向量序列bij之间的距离
7.一种线圈感应式水表,包括:
水表本体;
一个或多个处理器;
可读存储介质;以及
一个或多个程序,其中所述一个或多个程序被存储在可读存储介质中,并且被配置成由所述一个或多个处理器执行,所述程序包括用于执行如权利要求1-6所述的方法。
CN201910606759.7A 2019-07-06 2019-07-06 一种可识别干扰及位置的线圈感应式水表 Active CN110207770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910606759.7A CN110207770B (zh) 2019-07-06 2019-07-06 一种可识别干扰及位置的线圈感应式水表

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910606759.7A CN110207770B (zh) 2019-07-06 2019-07-06 一种可识别干扰及位置的线圈感应式水表

Publications (2)

Publication Number Publication Date
CN110207770A true CN110207770A (zh) 2019-09-06
CN110207770B CN110207770B (zh) 2020-10-09

Family

ID=67796403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910606759.7A Active CN110207770B (zh) 2019-07-06 2019-07-06 一种可识别干扰及位置的线圈感应式水表

Country Status (1)

Country Link
CN (1) CN110207770B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110686733A (zh) * 2019-10-15 2020-01-14 杭州乾博科技有限公司 一种不锈钢水表表壳及水表

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201177524Y (zh) * 2008-03-07 2009-01-07 沈阳太宇机电设备有限公司 高精度高稳定流量计无磁传感器
US7559012B2 (en) * 2002-11-04 2009-07-07 Neptune Technology Group, Inc. Method for error detection and flow direction determination in a measuring meter
CN102494729A (zh) * 2011-11-25 2012-06-13 杭州先锋电子技术股份有限公司 一种智能燃气表计量装置及信号处理系统
CN107817023A (zh) * 2017-10-31 2018-03-20 福州东日信息技术有限公司 一种无磁感应水表及其使用方法
CN108603769A (zh) * 2016-01-25 2018-09-28 萨基姆通讯能源及电信联合股份公司 用于轮转数的计数方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559012B2 (en) * 2002-11-04 2009-07-07 Neptune Technology Group, Inc. Method for error detection and flow direction determination in a measuring meter
CN201177524Y (zh) * 2008-03-07 2009-01-07 沈阳太宇机电设备有限公司 高精度高稳定流量计无磁传感器
CN102494729A (zh) * 2011-11-25 2012-06-13 杭州先锋电子技术股份有限公司 一种智能燃气表计量装置及信号处理系统
CN108603769A (zh) * 2016-01-25 2018-09-28 萨基姆通讯能源及电信联合股份公司 用于轮转数的计数方法
CN107817023A (zh) * 2017-10-31 2018-03-20 福州东日信息技术有限公司 一种无磁感应水表及其使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
贝能国际有限公司: "节能、高效、抗干扰,全新无磁水表方案", 《ELECTRONIC ENGINEERING & PRODUCT WORLD》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110686733A (zh) * 2019-10-15 2020-01-14 杭州乾博科技有限公司 一种不锈钢水表表壳及水表
CN110686733B (zh) * 2019-10-15 2022-07-12 鹰潭道朴智能科技有限责任公司 一种不锈钢水表表壳及水表

Also Published As

Publication number Publication date
CN110207770B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
CN106679741B (zh) 基于涡街流量计抗干扰信号的处理方法及系统
CN102116646B (zh) 流量测量装置
CN203798389U (zh) 正反转计量的智能水表
JP5324848B2 (ja) アダプタ
CN102494729B (zh) 一种智能燃气表计量装置及信号处理系统
CN106441466B (zh) 一种磁电式水表
CN103278218B (zh) 一种用于机械式水表的流量监测装置
CN109716074A (zh) 超声波流量计及使用部分流量测量的方法
RU2337320C1 (ru) Счетчик для учета воды
CN110207770A (zh) 一种可识别干扰及位置的线圈感应式水表
CN110346000B (zh) 一种具有异常检测功能的线圈感应式水表
CN112050865B (zh) 无磁感应测量装置及转动板组件转动信息的计算方法
CN201707114U (zh) 一种高精度快速脉冲计量装置
CN110207769A (zh) 一种可检测及修正数据误差的线圈感应式水表
CN110332964A (zh) 一种可检测故障的线圈感应式水表
CN110345998A (zh) 一种可检测逆流的线圈感应式水表
CN110375817A (zh) 一种可预测水流量变化的线圈感应式水表
CN207894462U (zh) 一种宽量程比电磁流量传感器
CN205373784U (zh) 一种流体计量器具及流体平衡测算系统
CN208579818U (zh) 具有自适应校表功能的水表组件
CN105841765A (zh) 基于短时自相关算法的膜式燃气表回转体积获得的方法
CN110345999A (zh) 一种可消除水质引起数据抖动的水表
CN106595782B (zh) 阶梯多值励磁的电磁流量计
CN209230742U (zh) 一种可以判断燃气表正反转计数的装置
CN214224222U (zh) 一种涡轮流量计

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant