CN110203880B - A kind of preparation method of optical-drive magnetron integrated micro-nano motor - Google Patents
A kind of preparation method of optical-drive magnetron integrated micro-nano motor Download PDFInfo
- Publication number
- CN110203880B CN110203880B CN201910498592.7A CN201910498592A CN110203880B CN 110203880 B CN110203880 B CN 110203880B CN 201910498592 A CN201910498592 A CN 201910498592A CN 110203880 B CN110203880 B CN 110203880B
- Authority
- CN
- China
- Prior art keywords
- micro
- solution
- nano
- anodized aluminum
- aluminum template
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims description 7
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000000151 deposition Methods 0.000 claims abstract description 8
- 230000008021 deposition Effects 0.000 claims abstract description 5
- 229910017390 Au—Fe Inorganic materials 0.000 claims abstract description 4
- 239000008367 deionised water Substances 0.000 claims abstract description 4
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 238000004544 sputter deposition Methods 0.000 claims abstract description 4
- 238000005406 washing Methods 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 19
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- 230000003287 optical effect Effects 0.000 claims description 11
- 238000000137 annealing Methods 0.000 claims description 3
- 238000004070 electrodeposition Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 3
- 239000011790 ferrous sulphate Substances 0.000 claims description 3
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 3
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 3
- 238000001556 precipitation Methods 0.000 claims description 3
- 230000005653 Brownian motion process Effects 0.000 claims description 2
- 238000005537 brownian motion Methods 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 abstract 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 abstract 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 2
- 238000005286 illumination Methods 0.000 abstract 1
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00134—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N11/00—Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
- H02N11/006—Motors
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Micromachines (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种光驱磁控一体化微纳马达的制备方法,属于微纳马达技术领域。The invention relates to a preparation method of an optical drive magnetron integrated micro-nano motor, which belongs to the technical field of micro-nano motors.
背景技术Background technique
2016年诺贝尔化学奖颁给了研究世界最小机器的分子机器,这为研究微纳米尺度的微小机器推向了高潮。微纳米马达是一种能够将其他形式的能量转化为动能产生自主运动的微纳米器件。由于这种独特的性质,因此在药物输送、生物传感、微修复等方面有着许多引人瞩目的应用前景。The 2016 Nobel Prize in Chemistry was awarded to the study of molecular machines, the smallest machines in the world, which culminated in the study of tiny machines at the micro-nano scale. A micro-nano motor is a micro-nano device that can convert other forms of energy into kinetic energy to generate autonomous motion. Due to this unique property, it has many attractive application prospects in drug delivery, biosensing, micro-repair, etc.
自从2004年Paxton等人发现微纳米Au-Pt双金属棒以来,研究学者对于微纳米马达已经了解甚多。人们发现微纳米马达个体运动模式多达数十种,到目前为止,人们发现马达能量来源主要来源于两类:一类是以胶体颗粒表面粒子浓度梯度为代表的化学场,另一类是通过施加额外的超声场、热场、磁场或光照等。化学驱动的微纳米马达一般具有比较快的速度,但是由于需要化学试剂和反应,这种微纳米马达在真正的生物医疗等领域面临巨大问题;外源驱动的微纳米马达,不仅不使用H2O2等化学试剂,同时还能够精确地控制马达的运动方向,所以目前微纳米马达较多通过外源物理场刺激马达,实现其自主运动。Since Paxton et al. discovered micro-nano Au-Pt bimetallic rods in 2004, researchers have learned a lot about micro-nano motors. It has been found that there are dozens of individual motion modes of micro-nano motors. So far, it has been found that the motor energy sources mainly come from two types: one is the chemical field represented by the particle concentration gradient on the surface of colloidal particles, and the other is through Apply additional ultrasonic field, thermal field, magnetic field or light etc. Chemically driven micro-nano motors generally have relatively fast speeds, but due to the need for chemical reagents and reactions, such micro-nano motors face huge problems in real biomedical and other fields; micro-nano motors driven by external sources not only do not use H 2 Chemical reagents such as O 2 can also precisely control the direction of movement of the motor, so at present, micro-nano motors mostly stimulate the motor through external physical fields to realize their autonomous movement.
发明内容Contents of the invention
为解决背景技术中存在的问题,本发明提供一种光驱磁控一体化微纳马达的制备方法。In order to solve the problems existing in the background technology, the present invention provides a preparation method of an optical drive magnetron integrated micro-nano motor.
实现上述目的,本发明采取下述技术方案:一种光驱磁控一体化微纳马达的制备方法,所述方法包括如下步骤:To achieve the above object, the present invention adopts the following technical solutions: a method for preparing an optical drive magnetron integrated micro-nano motor, said method comprising the following steps:
步骤一:在多孔阳极氧化铝模版每个放置孔的内表面均溅射Ag层;Step 1: sputtering an Ag layer on the inner surface of each placement hole of the porous anodized aluminum template;
步骤二:向多孔阳极氧化铝模版的每个放置孔内均浇筑Au溶液,并通过电沉积法进行沉积固定,沉淀时间为10-20分钟;Step 2: Pour Au solution into each placement hole of the porous anodized aluminum template, and deposit and fix it by electrodeposition, and the deposition time is 10-20 minutes;
步骤三:向多孔阳极氧化铝模版的每个放置孔内均浇筑Fe溶液,通过电解还原硫酸亚铁的方法进行沉积固定,沉淀时间为30分钟;Step 3: pour Fe solution into each placement hole of the porous anodized aluminum template, and deposit and fix it by electrolytic reduction of ferrous sulfate. The precipitation time is 30 minutes;
步骤四:对多孔阳极氧化铝模版进行退火加热处理,使得沉积固定后的Fe溶液转化为Fe的氧化物;Step 4: Annealing and heating the porous anodized aluminum template, so that the Fe solution after deposition and fixation is converted into Fe oxide;
步骤五:通过去离子水洗涤将多孔阳极氧化铝模版和Ag层进行溶解腐蚀,即可获得多个Au-Fe氧化物双金属棒,即微纳马达。Step 5: Dissolving and etching the porous anodized aluminum template and the Ag layer by washing with deionized water, to obtain multiple Au-Fe oxide bimetallic rods, that is, micro-nano motors.
与现有技术相比,本发明的有益效果是:本发明既能在光照下运动,又能在磁场控制下实现转向,同时具有比较可观的运动速度。Compared with the prior art, the beneficial effect of the present invention is that the present invention can not only move under light, but also realize turning under the control of a magnetic field, and has a considerable moving speed at the same time.
附图说明Description of drawings
图1是本发明的光驱磁控一体化微纳马达的制备流程示意图;1 is a schematic diagram of the preparation process of the optical drive magnetron integrated micro-nano motor of the present invention;
图2是本发明微纳马达的结构图。Fig. 2 is a structural diagram of the micro-nano motor of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the invention, not all of them. Based on the present invention All other embodiments obtained by persons of ordinary skill in the art without creative efforts, all belong to the scope of protection of the present invention.
具体实施方式一:如图1~图2所示,本发明公开了一种光驱磁控一体化微纳马达的制备方法,所述方法包括如下步骤:Specific Embodiment 1: As shown in Figures 1 to 2, the present invention discloses a method for preparing an optical drive magnetron integrated micro-nano motor. The method includes the following steps:
步骤一:在多孔阳极氧化铝模版1每个放置孔的内表面均溅射Ag层2;Step 1: sputtering an
步骤二:向多孔阳极氧化铝模版1的每个放置孔内均浇筑Au溶液4,并通过电沉积法进行沉积固定,沉淀时间为10-20分钟;Step 2: Pour Au solution 4 into each placement hole of the porous anodized aluminum template 1, and deposit and fix it by electrodeposition, and the deposition time is 10-20 minutes;
步骤三:向多孔阳极氧化铝模版1的每个放置孔内均浇筑Fe溶液3,通过电解还原硫酸亚铁的方法进行沉积固定,沉淀时间为30分钟;Step 3:
步骤四:对多孔阳极氧化铝模版1进行退火加热处理,使得沉积固定后的Fe溶液3转化为Fe的氧化物5;Step 4: annealing and heating the porous anodized aluminum template 1, so that the deposited and
步骤五:通过去离子水洗涤将多孔阳极氧化铝模版1和Ag层2进行溶解腐蚀,即可获得多个Au-Fe氧化物双金属棒,即微纳马达6。Step 5: Dissolving and etching the porous anodized aluminum template 1 and the
具体实施方式二:如图1所示,本实施方式是对具体实施方式一作出的进一步说明,所述Ag层2的厚度为200nm。Embodiment 2: As shown in FIG. 1 , this embodiment is a further description of Embodiment 1, and the thickness of the
具体实施方式三:如图1所示,本实施方式是对具体实施方式一作出的进一步说明,所述多孔阳极氧化铝模版1的每个放置孔内浇筑的Au溶液4和Fe溶液3的高度均相同。Specific embodiment three: As shown in Figure 1, this embodiment is a further description of specific embodiment one, the height of Au solution 4 and
具体实施方式四:本实施方式是对具体实施方式三作出的进一步说明,所述Au溶液4和Fe溶液3的浇筑高度均为1.5μm。Embodiment 4: This embodiment is a further description of
具体实施方式五:本实施方式是对具体实施方式一或具体实施方式三作出的进一步说明,所述多孔阳极氧化铝模版1的每个放置孔的直径均为500nm-40μm。Embodiment 5: This embodiment is a further description of Embodiment 1 or
具体实施方式六:本实施方式是对具体实施方式一作出的进一步说明,当所述微纳马达6悬浮在H2O2溶液中时,若没有光照时,微纳马达6只呈现布朗运动;若存在光照时,微纳马达6可以以每秒几十微米的速度向Fe的氧化物5的方向运动。具体的运动速度受光照强度和H2O2浓度影响。Embodiment 6: This embodiment is a further description of Embodiment 1. When the micro-nano motor 6 is suspended in the H 2 O 2 solution, if there is no light, the micro-nano motor 6 only exhibits Brownian motion; If there is light, the micro-nano motor 6 can move towards the
当施加外界磁场时,由于Fe3O4的存在,微纳马达6具有铁磁性,会按照磁场线方向排列,通过改变外界磁场,可以操纵微纳马达6的转向。When an external magnetic field is applied, due to the presence of Fe 3 O 4 , the micro-nano motor 6 has ferromagnetism and will be arranged in the direction of the magnetic field lines. By changing the external magnetic field, the steering of the micro-nano motor 6 can be manipulated.
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的装体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同条件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。It will be obvious to a person skilled in the art that the invention is not limited to the details of the exemplary embodiments described above, but that it can be implemented in other configurations without departing from the spirit or essential characteristics of the invention. Accordingly, the embodiments should be regarded in all points of view as exemplary and not restrictive, the scope of the invention being defined by the appended claims rather than the foregoing description, and it is therefore intended that the scope of the invention be defined by the appended claims rather than by the foregoing description. All changes within the meaning and range of equivalents are included in the invention. Any reference sign in a claim should not be construed as limiting the claim concerned.
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。In addition, it should be understood that although this specification is described according to implementation modes, not each implementation mode only contains an independent technical solution, and this description in the specification is only for clarity, and those skilled in the art should take the specification as a whole , the technical solutions in the various embodiments can also be properly combined to form other implementations that can be understood by those skilled in the art.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2019104833943 | 2019-06-04 | ||
CN201910483394 | 2019-06-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110203880A CN110203880A (en) | 2019-09-06 |
CN110203880B true CN110203880B (en) | 2022-11-11 |
Family
ID=67791646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910498592.7A Expired - Fee Related CN110203880B (en) | 2019-06-04 | 2019-06-10 | A kind of preparation method of optical-drive magnetron integrated micro-nano motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110203880B (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101192002B (en) * | 2007-12-12 | 2011-06-01 | 吉林大学 | Preparation method of magnetic remote control actuated microstructure |
CN102925933B (en) * | 2012-11-05 | 2015-03-04 | 福州大学 | Au-FeNi double-section type alloy nano motor and production method thereof |
WO2018146537A1 (en) * | 2017-02-11 | 2018-08-16 | Mahmoud Amouzadeh Tabrizi | Fabrication of nanomotors and applications thereof for surface writing |
CN108462407B (en) * | 2018-03-13 | 2019-07-12 | 武汉理工大学 | A method for guiding micro-nanomotors using magnetically responsive topological orbitals |
CN108609578B (en) * | 2018-05-03 | 2020-11-10 | 华南师范大学 | A kind of preparation method of multistage micro-nano motor |
CN108448943A (en) * | 2018-05-03 | 2018-08-24 | 华南师范大学 | Photoinitiated self-electrophoretic driven Janus micro-nano motor and its preparation method and performance control method |
CN108669091B (en) * | 2018-05-03 | 2021-01-19 | 华南师范大学 | Preparation method of spirulina-based micron motor for sterilization |
CN109504953A (en) * | 2018-12-10 | 2019-03-22 | 华南师范大学 | A kind of ZnO-Ni optical drive micro-pipe motor and preparation method thereof |
CN109534407B (en) * | 2019-01-04 | 2022-07-08 | 哈尔滨工业大学(深圳) | Preparation method and application of rod-shaped magnetic ferroferric oxide material |
CN109568591B (en) * | 2019-01-14 | 2020-08-25 | 中国科学院化学研究所 | A kind of soft micro-nano motor and preparation method thereof |
-
2019
- 2019-06-10 CN CN201910498592.7A patent/CN110203880B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN110203880A (en) | 2019-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107973268B (en) | A kind of processing method of nanometer and micron openings | |
CN105776125B (en) | A kind of super wellability surface of wedge shaped patternization and preparation method thereof | |
Qiu et al. | Fabrication of TiO2 nanotube film by well-aligned ZnO nanorod array film and sol–gel process | |
CN104492509B (en) | There is the preparation method of the micro-fluidic chip of nanodendrites Raman substrate | |
JP2013512178A (en) | Surface structuring method by ion beam etching, structured surface and utilization | |
CN104030238B (en) | Fabrication method of patterned ZnO nanowire arrays realized by microcontact imprinting | |
WO2017080496A1 (en) | Method for manufacturing three-dimensional ordered porous microstructure | |
CN101746714A (en) | Preparation method for metal Nano structure array | |
JP2004066447A (en) | Method of manufacturing structure, functional structure, and magnetic recording medium | |
CN105926014A (en) | Preparation method of large-area highly-ordered porous oxide films based on nano soft embossing | |
CN109795979A (en) | The preparation method of nano-pore array structure with embedded metal ring | |
CN110308513A (en) | A method for realizing large-area fabrication of nanodisk arrays on inclined fiber end faces based on nano-transfer printing technology | |
CN110203880B (en) | A kind of preparation method of optical-drive magnetron integrated micro-nano motor | |
CN107986230B (en) | Preparation method of patterned bionic magnetic micro-nano robot | |
CN105692546B (en) | A kind of preparation method of diversification metal Nano structure | |
CN102671730A (en) | Polymeric microfluidic chip integrating nickel column microarrays and preparation method thereof | |
CN102050422A (en) | Method for arranging nano wires by combining fiber aid and contact impression | |
CN104766724B (en) | A kind of button capacitor microfabrication based on cobaltosic oxide nano structure | |
CN110182756B (en) | A preparation method of a multi-link visible light optical drive micro-nano motor | |
CN108417475A (en) | A Fabrication Method of Metal Nanostructure Arrays Based on Interface Induced Growth | |
CN106374335A (en) | Preparation method of integrated electrode electro-optic tuned whispering gallery mode microcavity | |
CN110607220A (en) | An array structure for precisely modifying biomolecules and its modification method | |
CN103204463B (en) | Method for assembling ordered quantum dot matrix based on electrostatic potential well | |
CN109487318A (en) | A method of in untapered optical fiber end face, large area uniformly prepares gold nano disk array | |
CN113213421B (en) | Method and device for preparing large-area array nanoneedle structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190906 Assignee: Guangxi Baixin New Materials Co.,Ltd. Assignor: BAISE University Contract record no.: X2023980046196 Denomination of invention: A preparation method for optical drive magnetic control integrated micro nano motor Granted publication date: 20221111 License type: Common License Record date: 20231108 |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221111 |