CN110203106A - 一种应用于动力电池的主动型混合均衡电路 - Google Patents

一种应用于动力电池的主动型混合均衡电路 Download PDF

Info

Publication number
CN110203106A
CN110203106A CN201910388823.9A CN201910388823A CN110203106A CN 110203106 A CN110203106 A CN 110203106A CN 201910388823 A CN201910388823 A CN 201910388823A CN 110203106 A CN110203106 A CN 110203106A
Authority
CN
China
Prior art keywords
balanced device
winding
circuit
multiple coil
incoming end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910388823.9A
Other languages
English (en)
Inventor
何志伟
朱晓帅
高明裕
黄继业
胡燕华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201910388823.9A priority Critical patent/CN110203106A/zh
Publication of CN110203106A publication Critical patent/CN110203106A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种应用于动力电池的主动型混合均衡电路。本发明包括底层基于多绕组能量直接转移的主动均衡电路和上层基于多变压器的主动均衡电路。底层电路包括多个多绕组均衡器,每个多绕组均衡器包括多个单绕组均衡器,部分为正向绕组均衡器,部分为反向绕组均衡器。上层电路包括多个双向反激变换均衡器,每个双向反激变换均衡器包括一个原边侧电路和一个副边侧电路。多个原边侧电路并联,正极接第一个多绕组均衡器的正极,负极接最后一个多绕组均衡器的负极。多个副边侧电路串联,每个副边侧电路接对应的单绕组均衡器。本发明实现了两层主动均衡器之间的混合工作模式,加快了均衡速度与均衡效率,更具灵活性,可应用于较大规模的电池供电系统。

Description

一种应用于动力电池的主动型混合均衡电路
技术领域
本发明属于电池管理技术领域,涉及到电路与系统控制技术,特别是涉及到一种应用于动力电池的主动型混合均衡电路。
背景技术
动力电池作为新能源汽车的核心部件与动力源泉,在新能源汽车产业链上占据着重要位置。由于电池在生产制造以及使用过程中的差异,电池组中的单体电池之间存在着不一致性。这些不一致必然会导致电池包的可用容量的损失,最终造成寿命下降,甚至造成安全隐患。数据显示,单体电池的容量有百分之二十的差异,电池包会有百分之四十的容量损失。因此,需要一个功能完善的电池管理系统,确保动力电池组的安全性以及延长其使用寿命。
目前,电池均衡技术对锂电池的性能提升有着重要的意义。目前主流的电池均衡方案主要有被动均衡和主动均衡。其中,主动均衡的实现原理是将串联电池组中能量较高的单体电池的能量转移到容量较低的单体电池中。这种电路一般通过特殊的电容、电感或变压器的组合电路实现,根据实现原理的不同方案对应的主动均衡电路也大相庭径,但是普遍结构都比较复杂,因此在应用于较大规模的电池组的情况下实现比较困难。因为主动均衡中各个串联电池单元的电量都各有升降变化,原来的算法策略控制难度也变得更大。又因为这种均衡方式并不是简单的消耗掉高电量的单体电池的能量,而是将高于平均电量的部分转移到低于平均电量的电池单体,很大程度上减少了能量的损耗,故也称无损均衡,是当前领域学术研究的主要对象。
发明内容
本发明针对现有技术的不足,对传统的DC-DC拓扑进行改良,提出了一种能够加快电池组能量均衡的速度,提高能量均衡的效率,最终使电池单体之间的不一致性保持在合理范围内的一种应用于动力电池的主动型混合均衡电路。
本发明包括底层基于多绕组能量直接转移的主动均衡电路和上层基于多变压器的主动均衡电路。
所述的底层基于多绕组能量直接转移的主动均衡电路,包括m个多绕组均衡器,每个多绕组均衡器包括n个单绕组均衡器,其中k个为正向绕组均衡器,另外n-k个为反向绕组均衡器。
所述的正向绕组均衡器包括两个NMOS管和一个变压器正向绕组,第一NMOS管Q1的源极接第二NMOS管Q2的源极,第二NMOS管Q2的漏极接变压器正向绕组的异名端,第一NMOS管Q1的漏极作为电池负极接入端,变压器正向绕组的同名端作为电池正极接入端。
所述的反向绕组均衡器包括两个NMOS管和一个变压器反向绕组,第三NMOS管Q3的源极接第四NMOS管Q4的源极,第三NMOS管Q3的漏极接变压器反向绕组的同名端,第四NMOS管Q4的漏极作为电池负极接入端,变压器反向绕组的异名端作为电池正极接入端。
n个单绕组均衡器的变压器正向绕组或变压器反向绕组共用同一磁芯。
每个多绕组均衡器中,第一个正向绕组均衡器的电池正极接入端作为该多绕组均衡器的正极接入端,电池负极接入端接第二个正向绕组均衡器的电池正极接入端,依此将k个正向绕组均衡器串联。每个多绕组均衡器中,最后一个反向绕组均衡器的电池负极接入端作为该多绕组均衡器的负极接入端,电池正极接入端接前一个反向绕组均衡器的电池负极接入端,依此将n-k个反向绕组均衡器串联。最后一个正向绕组均衡器的电池负极接入端接第一个反向绕组均衡器的电池正极接入端,将一个多绕组均衡器中的n个单绕组均衡器串联。
所述的上层基于多变压器的主动均衡电路,包括m个双向反激变换均衡器,每个双向反激变换均衡器包括一个原边侧电路和一个副边侧电路。
所述的双向反激变换均衡器的原边侧电路包括两个NMOS管和一个变压器的原边侧绕组,第五NMOS管Q5的源极接第六NMOS管Q6的源极,第六NMOS管Q6的漏极接变压器的原边侧绕组的异名端,第五NMOS管Q5的漏极作为该双向反激变换均衡器的全部电池负极接入端,变压器的原边侧绕组的同名端作为该双向反激变换均衡器的全部电池正极接入端。
所述的双向反激变换均衡器的副边侧电路包括两个NMOS管和一个变压器的副边侧绕组,第七NMOS管Q7的源极接第八NMOS管Q8的源极,第七NMOS管Q7的漏极接变压器的副边侧绕组的同名端,第八NMOS管Q8的漏极作为该双向反激变换均衡器的负极接入端,变压器的副边侧绕组的异名端作为该双向反激变换均衡器的正极接入端。
每个双向反激变换器的原边侧绕组和副边侧绕组共用一个磁芯。
第一个双向反激变换均衡器的负极接入端接第二个双向反激变换均衡器的正极接入端,依此将m个双向反激变换均衡器的副边侧电路串联;底层基于多绕组能量直接转移的主动均衡电路中每个多绕组均衡器的正极接入端与对应的双向反激变换均衡器正极接入端连接,每个多绕组均衡器的负极接入端与对应的双向反激变换均衡器负极接入端连接;所有的双向反激变换均衡器的全部电池正极接入端连接后,与底层基于多绕组能量直接转移的主动均衡电路中的第一个多绕组均衡器的正极接入端连接;所有的双向反激变换均衡器的全部电池负极接入端连接后,与底层基于多绕组能量直接转移的主动均衡电路中的最后一个多绕组均衡器的负极接入端连接,将m个双向反激变换均衡器的原边侧电路并联。
底层基于多绕组能量直接转移的主动均衡电路中的多绕组均衡器采用基于多绕组的能量直接传递的双向DC/DC变换器,上层基于多变压器的主动均衡电路中的双向反激变换均衡器采用基于反激变换器的双向DC/DC电路,两级均衡单元中都设有PWM调制脉冲输出模块。
本发明采用了多层次结合的均衡电路,实现了两层主动均衡器之间的混合工作模式。由于采用多层次混合模式的设计,因此可以在单体电池数目规模比较大的系统上实现,另一方面因为不同层次可以同时进行均衡,因此大大加快了均衡速度。上层的双向反激变换器,可以在较大的均衡功率下完成二级电池组之间的均衡;下层能量直接传递的拓扑,可以更加灵活地实现单体电池之间的能量转移。总体来说本发明可以极大地提高电池均衡的均衡速度与均衡效率,更加具备灵活性,而且可以在较大规模的电池供电系统中实现。
附图说明
图1为本发明的电路图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。所描述的实例仅仅是一部分具体实例,而不是全部的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的其他实施例,都属于本发明保护的范围。
如图1所示,一种应用于动力电池的主动型混合均衡电路,包括上层基于多变压器的主动均衡电路、底层基于多绕组能量直接转移的主动均衡电路
底层基于多绕组能量直接转移的主动均衡电路包括m个多绕组均衡器,每个多绕组均衡器包括n个单绕组均衡器,其中k个为正向绕组均衡器,另外n-k个为反向绕组均衡器。
每个正向绕组均衡器包括两个NMOS管和一个变压器正向绕组,第一NMOS管Q1的源极接第二NMOS管Q2的源极,第二NMOS管Q2的漏极接变压器正向绕组的异名端,第一NMOS管Q1的漏极作为电池负极接入端,变压器正向绕组的同名端作为电池正极接入端。
图中,第一个多绕组均衡器中k个正向绕组均衡器的NMOS管分别为Q1-11、Q2-11,Q1-12、Q2-12,…Q1-1k、Q2-1k,对应的变压器正向绕组分别为L11,L12,…,L1k;第二个多绕组均衡器中k个正向绕组均衡器的NMOS管分别为Q1-21、Q2-21,Q1-22、Q2-22,…,Q1-2k、Q2-2k,对应的变压器正向绕组分别为L21,L22,…,L2k;…;第m个多绕组均衡器中k个正向绕组均衡器的NMOS分别为Q1-m1、Q2-m1,Q1-m2、Q2-m2,…,Q1-mk、Q2-mk,对应的变压器正向绕组分别为Lm1,Lm2,…,Lmk
每个反向绕组均衡器包括两个NMOS管和一个变压器反向绕组,第三NMOS管Q3的源极接第四NMOS管Q4的源极,第三NMOS管Q3的漏极接变压器反向绕组的同名端,第四NMOS管Q4的漏极作为电池负极接入端,变压器反向绕组的异名端作为电池正极接入端。
图中,第一个多绕组均衡器中n-k个反向绕组均衡器的NMOS管分别为Q3-1(k+1)、Q4-1(k+1),…,Q3-1(n-1)、Q4-1(n-1),Q3-1n、Q4-1n,对应的变压器反向绕组分别为L1(k+1),…,L1(n-1),L1n;第二个多绕组均衡器中n-k个反向绕组均衡器的NMOS管分别为Q3-2(k+1)、Q4-2(k+1),…,Q3-2(n-1)、Q4-2(n-1),Q3-2nQ4-2n,对应的变压器反向绕组分别为L2(k+1),…,L2(n-1),L2n;…;第m个多绕组均衡器中n-k个反向绕组均衡器的NMOS管分别为Q3-m(k+1)Q4-m(k+1),…,Q3-m(n-1)Q4-m(n-1),Q3-mnQ4-mn,变压器反向绕组分别为Lm(k+1),…,Lm(n-1),Lmn
n个单绕组均衡器的变压器正向绕组或变压器反向绕组共用同一磁芯。
每个多绕组均衡器中,第一个正向绕组均衡器的电池正极接入端作为该多绕组均衡器的正极接入端,电池负极接入端接第二个正向绕组均衡器的电池正极接入端,依此将k个正向绕组均衡器串联。每个多绕组均衡器中,最后一个反向绕组均衡器的电池负极接入端作为该多绕组均衡器的负极接入端,电池正极接入端接前一个反向绕组均衡器的电池负极接入端,依此将n-k个反向绕组均衡器串联。最后一个正向绕组均衡器的电池负极接入端接第一个反向绕组均衡器的电池正极接入端,将一个多绕组均衡器中的n个单绕组均衡器串联。
上层基于多变压器的主动均衡电路,包括m个双向反激变换均衡器,每个双向反激变换均衡器包括一个原边侧电路和一个副边侧电路。
每个双向反激变换均衡器的原边侧电路包括两个NMOS管和一个变压器的原边侧绕组,第五NMOS管Q5的源极接第六NMOS管Q6的源极,第六NMOS管Q6的漏极接变压器的原边侧绕组的异名端,第五NMOS管Q5的漏极作为该双向反激变换均衡器的全部电池负极接入端,变压器的原边侧绕组的同名端作为该双向反激变换均衡器的全部电池正极接入端。
图中,第一个反激变换均衡器的原边侧电路中的NMOS管分别为Q5-1和Q6-1,变压器原边侧绕组为L1-1;第二个反激变换均衡器的原边侧电路中的NMOS管分别为Q5-2和Q6-2,变压器原边侧绕组为L2-1;…;第m个反激变换均衡器的原边侧电路中的NMOS管分别为Q5-m和Q6-m,变压器原边侧绕组分别Lm-1
每个双向反激变换均衡器的副边侧电路包括两个NMOS管和一个变压器的副边侧绕组,第七NMOS管Q7的源极接第八NMOS管Q8的源极,第七NMOS管Q7的漏极接变压器的副边侧绕组的同名端,第八NMOS管Q8的漏极作为该双向反激变换均衡器的负极接入端,变压器的副边侧绕组的异名端作为该双向反激变换均衡器的正极接入端。
图中,第一个反激变换均衡器的副边侧电路中的NMOS管分别为Q7-1和Q8-1,变压器副边侧绕组为L1-2;第二个反激变换均衡器的副边侧电路中的NMOS管分别为Q7-2和Q8-2,变压器副边侧绕组为L2-2;…;第m个反激变换均衡器的副边侧电路中的NMOS管分别为Q7-m和Q8-m,变压器副边侧绕组分别Lm-2。每个双向反激变换器原边侧绕组和副边侧绕组共用一个磁芯。
第一个双向反激变换均衡器的负极接入端接第二个双向反激变换均衡器的正极接入端,依此将m个双向反激变换均衡器的副边侧电路串联;底层基于多绕组能量直接转移的主动均衡电路中每个多绕组均衡器的正极接入端与对应的双向反激变换均衡器正极接入端连接,每个多绕组均衡器的负极接入端与对应的双向反激变换均衡器负极接入端连接;所有的双向反激变换均衡器的全部电池正极接入端连接后,与底层基于多绕组能量直接转移的主动均衡电路中的第一个多绕组均衡器的正极接入端连接;所有的双向反激变换均衡器的全部电池负极接入端连接后,与底层基于多绕组能量直接转移的主动均衡电路中的最后一个多绕组均衡器的负极接入端连接,将m个双向反激变换均衡器的原边侧电路并联。
底层基于多绕组能量直接转移的主动均衡电路中的多绕组均衡器采用基于多绕组的能量直接传递的双向DC/DC变换器,上层基于多变压器的主动均衡电路中的双向反激变换均衡器采用基于反激变换器的双向DC/DC电路,两级均衡单元中都设有PWM调制脉冲输出模块。
工作中,将串联的动力电池分为m个锂电池组,每个锂电池组为串联的n节锂电池。每个锂电池组对应一个多绕组均衡器,一个锂电池组中的k节锂电池正负极,分别与该多绕组均衡器中对应的k个正向绕组均衡器的电池正、负极接入端连接。另外的n-k节锂电池正负极,分别与该多绕组均衡器中对应的n-k个反向绕组均衡器的电池正、负极接入端连接。这样,串联的m×n节锂电池(第一组锂电池为B11,B12,···,B1k,B1(k+1),···,B1(n-1),B1n;第二组锂电池为B21,B22,···,B2k,B2(k+1),···,B2(n-1),B2n;第三组锂电池为B31,B32,···,B3k,B3(k+1),···,B3(n-1),B3n;…;第m组锂电池为Bm1,Bm2,···,Bmk,Bm(k+1),···,Bm(n-1),Bmn)全部接入该电路。
电路中每个锂电池组使用一个MCU控制器,MCU通过内部自带的PWM模块产生控制信号,然后通过MOS驱动电路控制Q1-11、Q2-11、Q1-12、Q2-12…、Q3-1(n-1)、Q4-1(n-1)、…、Q1-m1、Q2-m1、…、Q3-mn、Q4-mn的开关状态,进而控制每个锂电池组内底层主动均衡的均衡状态。
该电路可以实现多级均衡电路的混合模式均衡。当锂电池组之间能量差异比较大的时候,由MCU产生控制信号来控制最上层的主动均衡器工作,通过控制MOS的开关使得能量由高电量的锂电池组转移到全部电池组成的电池组中,或者使能量由全部电池组成的电池组转移到低电量的锂电池组中,能量的转移通过反激变换来实现,通过控制MOS管的导通时间可以控制均衡电流的大小。当锂电池组内部电池单体之间电量差异较大的时候,通过控制底层的主动均衡器的工作状态,可以使能量高的电池单体直接转移能量给能量较低的能量单体,如果目标电池与源电池所连接的的底层单绕组均衡器中的变压器绕组的连接方向相反,即一个对应的均衡器为正向绕组均衡另一个对应的均衡器为反向均衡器,能量通过反激变换实现在两者之间的转移;如果目标电池与源电池所连接的的底层单绕组均衡器中的变压器绕组的连接方式相同,即在两个电池单体对应的均衡器都为正向绕组均衡器或者反向绕组均衡器,则通过正激变换或者两次反激变换实现能量的转移。最终,通过两层主动均衡电路的协同工作,在保证均衡效率与均衡速度的前提下,达到整个电池组内部的所有电池的剩余能量相同的目标。
该电路通过将电池组划分层次,分而治之的均衡模式,突破了原有主动均衡电路过于庞大,在大规模的电池组中难以实现的限制,并且大大加快了电池均衡的速度与效率。

Claims (6)

1.一种应用于动力电池的主动型混合均衡电路,其特征在于:包括底层基于多绕组能量直接转移的主动均衡电路和上层基于多变压器的主动均衡电路;
所述的底层基于多绕组能量直接转移的主动均衡电路,包括m个多绕组均衡器,每个多绕组均衡器包括n个单绕组均衡器,其中k个为正向绕组均衡器,另外n-k个为反向绕组均衡器;
所述的正向绕组均衡器包括两个NMOS管和一个变压器正向绕组,第一NMOS管Q1的源极接第二NMOS管Q2的源极,第二NMOS管Q2的漏极接变压器正向绕组的异名端,第一NMOS管Q1的漏极作为电池负极接入端,变压器正向绕组的同名端作为电池正极接入端;
所述的反向绕组均衡器包括两个NMOS管和一个变压器反向绕组,第三NMOS管Q3的源极接第四NMOS管Q4的源极,第三NMOS管Q3的漏极接变压器反向绕组的同名端,第四NMOS管Q4的漏极作为电池负极接入端,变压器反向绕组的异名端作为电池正极接入端;
每个多绕组均衡器中,第一个正向绕组均衡器的电池正极接入端作为该多绕组均衡器的正极接入端,电池负极接入端接第二个正向绕组均衡器的电池正极接入端,依此将k个正向绕组均衡器串联;每个多绕组均衡器中,最后一个反向绕组均衡器的电池负极接入端作为该多绕组均衡器的负极接入端,电池正极接入端接前一个反向绕组均衡器的电池负极接入端,依此将n-k个反向绕组均衡器串联;最后一个正向绕组均衡器的电池负极接入端接第一个反向绕组均衡器的电池正极接入端,将一个多绕组均衡器中的n个单绕组均衡器串联;
所述的上层基于多变压器的主动均衡电路,包括m个双向反激变换均衡器,每个双向反激变换均衡器包括一个原边侧电路和一个副边侧电路;
所述的双向反激变换均衡器的原边侧电路包括两个NMOS管和一个变压器的原边侧绕组,第五NMOS管Q5的源极接第六NMOS管Q6的源极,第六NMOS管Q6的漏极接变压器的原边侧绕组的异名端,第五NMOS管Q5的漏极作为该双向反激变换均衡器的全部电池负极接入端,变压器的原边侧绕组的同名端作为该双向反激变换均衡器的全部电池正极接入端;
所述的双向反激变换均衡器的副边侧电路包括两个NMOS管和一个变压器的副边侧绕组,第七NMOS管Q7的源极接第八NMOS管Q8的源极,第七NMOS管Q7的漏极接变压器的副边侧绕组的同名端,第八NMOS管Q8的漏极作为该双向反激变换均衡器的负极接入端,变压器的副边侧绕组的异名端作为该双向反激变换均衡器的正极接入端;
第一个双向反激变换均衡器的负极接入端接第二个双向反激变换均衡器的正极接入端,依此将m个双向反激变换均衡器的副边侧电路串联;底层基于多绕组能量直接转移的主动均衡电路中每个多绕组均衡器的正极接入端与对应的双向反激变换均衡器正极接入端连接,每个多绕组均衡器的负极接入端与对应的双向反激变换均衡器负极接入端连接;所有的双向反激变换均衡器的全部电池正极接入端连接后,与底层基于多绕组能量直接转移的主动均衡电路中的第一个多绕组均衡器的正极接入端连接;所有的双向反激变换均衡器的全部电池负极接入端连接后,与底层基于多绕组能量直接转移的主动均衡电路中的最后一个多绕组均衡器的负极接入端连接,将m个双向反激变换均衡器的原边侧电路并联。
2.如权利要求1所述的一种应用于动力电池的主动型混合均衡电路,其特征在于:每个多绕组均衡器中的k个正向绕组均衡器的变压器正向绕组,与n-k个反向绕组均衡器的变压器反向绕组共用同一磁芯。
3.如权利要求1所述的一种应用于动力电池的主动型混合均衡电路,其特征在于:每个双向反激变换器的原边侧绕组和副边侧绕组共用一个磁芯。
4.如权利要求1所述的一种应用于动力电池的主动型混合均衡电路,其特征在于:所述的底层基于多绕组能量直接转移的主动均衡电路中的多绕组均衡器采用基于多绕组的能量直接传递的双向DC/DC变换器。
5.如权利要求1所述的一种应用于动力电池的主动型混合均衡电路,其特征在于:所述的上层基于多变压器的主动均衡电路中的双向反激变换均衡器采用基于反激变换器的双向DC/DC电路。
6.如权利要求1所述的一种应用于动力电池的主动型混合均衡电路,其特征在于:所述的底层基于多绕组能量直接转移的主动均衡电路和上层基于多变压器的主动均衡电路中都设有PWM调制脉冲输出模块。
CN201910388823.9A 2019-05-10 2019-05-10 一种应用于动力电池的主动型混合均衡电路 Pending CN110203106A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910388823.9A CN110203106A (zh) 2019-05-10 2019-05-10 一种应用于动力电池的主动型混合均衡电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910388823.9A CN110203106A (zh) 2019-05-10 2019-05-10 一种应用于动力电池的主动型混合均衡电路

Publications (1)

Publication Number Publication Date
CN110203106A true CN110203106A (zh) 2019-09-06

Family

ID=67785647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910388823.9A Pending CN110203106A (zh) 2019-05-10 2019-05-10 一种应用于动力电池的主动型混合均衡电路

Country Status (1)

Country Link
CN (1) CN110203106A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112217253A (zh) * 2020-09-28 2021-01-12 长安大学 一种电池组双层拓扑结构均衡电路及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437609A (zh) * 2011-12-14 2012-05-02 上海交通大学 串联电池组的能量同步转移复合型自动均衡电路及均衡方法
CN103618360A (zh) * 2013-12-05 2014-03-05 哈尔滨工业大学 串联电池组多单体直接均衡装置及方法
CN105449772A (zh) * 2015-12-28 2016-03-30 大连理工大学 摇摆飞渡电容的电压均衡装置、系统及方法
CN106712211A (zh) * 2017-02-21 2017-05-24 山东大学 一种基于多输入变换的双层主动均衡电路及实现方法
CN107195993A (zh) * 2017-07-07 2017-09-22 东莞中汽宏远汽车有限公司 用于电池组的主动均衡装置
WO2018075793A1 (en) * 2016-10-19 2018-04-26 San Diego State University Research Foundation Methods and circuitry for fault detection and automatic equalizers for battery packs
CN108134429A (zh) * 2018-01-18 2018-06-08 杭州电子科技大学 一种主被动混合降压均衡电路
CN208460913U (zh) * 2018-08-25 2019-02-01 安徽特凯新能源科技有限公司 一种电池管理系统的被动均衡控制电路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437609A (zh) * 2011-12-14 2012-05-02 上海交通大学 串联电池组的能量同步转移复合型自动均衡电路及均衡方法
CN103618360A (zh) * 2013-12-05 2014-03-05 哈尔滨工业大学 串联电池组多单体直接均衡装置及方法
CN105449772A (zh) * 2015-12-28 2016-03-30 大连理工大学 摇摆飞渡电容的电压均衡装置、系统及方法
WO2018075793A1 (en) * 2016-10-19 2018-04-26 San Diego State University Research Foundation Methods and circuitry for fault detection and automatic equalizers for battery packs
CN106712211A (zh) * 2017-02-21 2017-05-24 山东大学 一种基于多输入变换的双层主动均衡电路及实现方法
CN107195993A (zh) * 2017-07-07 2017-09-22 东莞中汽宏远汽车有限公司 用于电池组的主动均衡装置
CN108134429A (zh) * 2018-01-18 2018-06-08 杭州电子科技大学 一种主被动混合降压均衡电路
CN208460913U (zh) * 2018-08-25 2019-02-01 安徽特凯新能源科技有限公司 一种电池管理系统的被动均衡控制电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112217253A (zh) * 2020-09-28 2021-01-12 长安大学 一种电池组双层拓扑结构均衡电路及方法

Similar Documents

Publication Publication Date Title
CN104868725B (zh) 一种升压型非隔离三端口直流变换器及其控制方法
CN106899030B (zh) 一种原边集成式模块化独立控制电池储能系统
CN202856386U (zh) 一种主动均衡充放电的智能电池模组及系统
CN103427462B (zh) 一种具有电压均衡能力的超级电容器组用充电电路
CN111200307A (zh) 一种能量均衡控制装置、电池系统及其能量均衡控制方法
CN209088560U (zh) 一种含反激变换器的电池主动均衡装置
CN110126675A (zh) 一种应用于动力电池的主被动结合型混合均衡电路
CN110707783B (zh) 基于LLC和Buck-Boost的复合型层级电池均衡电路
CN103595092A (zh) 一种电动汽车电池组的可控电流均衡系统
CN108923508A (zh) 一种含反激变换器的电池主动均衡装置
CN205509600U (zh) 一种新型锂电池组双层均衡控制装置
CN108011425A (zh) 一种电池组主动均衡电路及方法
CN106961220A (zh) 一种具有均流特性的高效并联llc谐振变换器
CN113725973A (zh) 一种主动变压器电容和被动电阻电池均衡电路
CN202435080U (zh) 多单体串联电池组主动均衡电路
Shan et al. Analysis and design of multilayer multiphase interleaved converter for battery pack equalization based on graph theory
CN106208236A (zh) 一种电池的均衡管理系统及主动均衡控制方法
CN203674735U (zh) 一种电动汽车电池组的可控电流均衡系统
CN110203106A (zh) 一种应用于动力电池的主动型混合均衡电路
Nie et al. A High Efficiency Battery Equalizing Circuit Based on Half Bridge Topology With Multiport Transformer
CN208571618U (zh) 一种多绕组谐振独立电流控制的电池储能系统
CN207475204U (zh) 一种可用于光伏发电的储能系统
CN112769182A (zh) 高效快速的梯次电池主动均衡电路
CN205509535U (zh) 一种基于Sepic和Zeta斩波电路双桥臂串联蓄电池组双向能量均衡器
CN103236788A (zh) 自举式双输入直流变换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190906

WD01 Invention patent application deemed withdrawn after publication