CN110194841A - 介电梯度材料的制备方法及电子元器件的灌封方法 - Google Patents
介电梯度材料的制备方法及电子元器件的灌封方法 Download PDFInfo
- Publication number
- CN110194841A CN110194841A CN201910515387.7A CN201910515387A CN110194841A CN 110194841 A CN110194841 A CN 110194841A CN 201910515387 A CN201910515387 A CN 201910515387A CN 110194841 A CN110194841 A CN 110194841A
- Authority
- CN
- China
- Prior art keywords
- inorganic particle
- suspension
- magnetic field
- electric field
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/28—Treatment by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
- C08J2363/10—Epoxy resins modified by unsaturated compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2463/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2265—Oxides; Hydroxides of metals of iron
- C08K2003/2275—Ferroso-ferric oxide (Fe3O4)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5435—Silicon-containing compounds containing oxygen containing oxygen in a ring
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
一种介电梯度材料的制备方法,包括以下步骤:混合无机颗粒及液态有机物,得到悬浊液,所述无机颗粒至少包括一种磁性材料;对所述悬浊液施加磁场,在磁场的作用下,第一部分无机颗粒受到的磁场力大于第一部分无机颗粒在悬浊液中受到的粘滞阻力,以使第一部分无机颗粒沿磁场方向富集;撤销所述磁场,施加交变电场于施加磁场后的悬浊液,以在悬浊液中产生交流电压,在交流电压的作用下,第二部分无机颗粒受到的电场力大于第二部分无机颗粒在悬浊液中受到的粘滞阻力,以使第二部分无机颗粒沿电场方向呈链状排列;对施加交变电场后的悬浊液进行固化处理,使悬浊液固化,得到介电梯度材料。本发明还提供一种电子元器件的灌封方法。
Description
技术领域
本发明涉及绝缘材料制备技术领域,尤其涉及一种介电梯度材料的制备方法及电子元器件的灌封方法。
背景技术
随着电力系统向超/特高压、大容量输电方向发展,以及脉冲功率、高功率微波、高功率半导体器件等高新技术装备向高电压、小型化方向发展,对电气绝缘性能的要求日趋严苛,设备运行过程中由于绝缘系统,特别是固体绝缘故障造成的问题也日益突出。一般认为,电场的不均匀度较高(局部电场畸变)是导致绝缘击穿、沿面闪络的根本原因。在不同介质的分界面,如电极、绝缘和气体三结合点处,由于介电参数的急剧变化,使得电场分布不均匀,局部电场畸变严重,容易产生一次电子导致局部放电,一方面加剧绝缘材料老化,另一方面引发沿面闪络。
利用功能梯度材料(Functionally Graded Material,FGM)的理念,构建的介电参数非均匀分布的绝缘结构,在均化交流电场以及脉冲电场分布、提升绝缘系统的耐电性能以及简化绝缘结构等方面优势明显,应用潜力巨大。然而介电梯度材料制备方法的操作性、灵活性、效率和成本决定了介电梯度材料应用前景。
目前,现有的介电梯度材料制备方法包括了离心浇注法、叠层法、电泳法以及磁控溅射法。通过离心浇注法制得的材料梯度结构分布受制于离心过程的物理规律,难以满足绝缘设计的需求,其灵活性和可控性较差,难以在工业中大规模应用。叠层方法制备的产品例如盘式及支柱介电梯度绝缘子,其介电常数随绝缘子半径或高度呈单调或U形变化,正极性雷电冲击电压下的沿面闪络强度提升了10%~25%;但叠层法无法实现一次一体成型,容易存在层间结合的缺陷,层与层之间的介电特性跳变与优化设计结果指向不符。利用电泳技术驱动带电粒子运动,实现颗粒物浓度的梯度变化,进而构建介电梯度材料。上述三种技术都是引入高介电常数的颗粒,并增大复合材料局部的颗粒物浓度来提高局部的介电常数。这类颗粒物无序分布时能够获得的最高介电常数受到限制,如果添加的体积分数较小,则复合材料的介电常数变化不大,优化电场的效果较弱;如果添加的体积分数过高,这会增大混合物的粘度,不利于浇注成型工艺。现还有一种制备方法利用磁控溅射法将靶材(二氧化钛和钛酸钡等)溅射到盆式绝缘子表面,通过控制不同区域的溅射时长,实现2D薄膜介电常数的梯度分布。然此技术实现的是2D的介电分布,对3D绝缘子的介电常数的影响有限,应用前景仍受到限制。
利用介电梯度材料均化电场并提高绝缘性能的有效性已经被众多研究所验证,然而通过离心浇注法、叠层法、电泳法以及磁控溅射法等手段,使颗粒在局部无序聚集,这种方法所获得的介电常数提升有限,无法提供极不均匀电场所需要的大梯度介电分布。
发明内容
有鉴于此,有必要提供一种介电梯度材料的制备方法,以解决上述获得的介电常数提升有限、无法提供极不均匀电场所需要的大梯度介电分布的问题。
另,还有必要提供一种电子元器件的灌封方法。
一种介电梯度材料的制备方法,包括以下步骤:
混合无机颗粒及液态有机物,得到一悬浊液,所述无机颗粒至少包括一种磁性材料,所述无机颗粒包括第一部分无机颗粒和第二部分无机颗粒;
对所述悬浊液施加磁场,在所述磁场的作用下,所述第一部分无机颗粒受到的磁场力大于所述第一部分无机颗粒在所述悬浊液中受到的粘滞阻力,以使所述第一部分无机颗粒沿磁场方向富集;
撤销所述磁场,施加交变电场于撤销所述磁场后的所述悬浊液,以在所述悬浊液中产生交流电压,在所述交流电压的作用下,所述第二部分无机颗粒受到的电场力大于所述第二部分无机颗粒在所述悬浊液中受到的粘滞阻力,以使所述第二部分无机颗粒沿电场方向呈链状排列,其中,所述第二部分无机颗粒包括至少部分所述第一部分无机颗粒;
对施加所述交变电场后的所述悬浊液进行固化处理,使所述悬浊液固化,得到所述介电梯度材料。
进一步地,至少一种所述无机颗粒的介电常数大于或等于40;所述无机颗粒的粒径小于100μm;所述液态有机物为可固化材料;所述悬浊液中的所述无机颗粒的体积分数小于或等于50%;所述悬浊液的粘度小于等于100Pa·s。
进一步地,所述无机颗粒为陶瓷、金属化合物以及非金属化合物中的至少一种,所述无机颗粒的颗粒粒径小于50μm;所述液态有机物为热固性材料、热塑性材料以及橡胶中的至少一种;所述悬浊液中的所述无机颗粒的体积分数小于或等于5%;所述悬浊液的粘度小于等于10Pa·s。
进一步地,所述无机颗粒为核壳结构,包括核心以及包覆所述核心的壳体,所述核心与所述壳体至少包括一种所述磁性材料。
进一步地,所述磁场在所述悬浊液中形成的磁场强度能够至少驱动一种所述无机颗粒运动,所述悬浊液中的所述磁场强度小于或等于1T。
进一步地,所述交流电压包括正弦电压、三角波电压以及双极性脉冲电压中的至少一种,当施加多种所述交流电压时,所述交流电压为同时或先后依次施加于所述悬浊液上,所述交流电压在所述悬浊液内部产生的电场强度的有效值小于或等于5kV/mm且大于0.1kV/mm。
进一步地,在施加所述磁场于所述悬浊液之前,还包括将所述悬浊液浇注于一浇注模具中或涂覆于一物体表面的步骤。
进一步地,所述制备方法还包括对所述无机颗粒进行偶联剂处理,所述偶联剂处理包括将所述无机颗粒置于乙醇与偶联剂共同组成的溶液中进行浸泡,或者在所述悬浊液中添加所述偶联剂,所述偶联剂的质量占所述偶联剂与所述无机颗粒总质量的0.5%-2%。
一种电子元器件的灌封方法,包括以下步骤:
提供至少两个电子元器件置于所述电子元器件的封装模块内;
加入无机颗粒及液态有机物于所述封装模块内,得到悬浊液,所述电子元器件浸入在所述悬浊液中,所述无机颗粒至少包括一种磁性材料,所述无机颗粒包含第一部分无机颗粒和第二部分无机颗粒;
对所述封装模块施加磁场,在所述磁场的作用下,所述第一部分无机颗粒受到的磁场力大于所述第一部分无机颗粒在悬浊液中受到的粘滞阻力,以使所述第一部分无机颗粒沿磁场方向富集;
撤销所述磁场,对所述封装模块施加交变电场,以在所述悬浊液中产生交流电压,在所述交流电压的作用下,所述第二部分无机颗粒受到的电场力大于所述第二部分无机颗粒在所述悬浊液中受到的粘滞阻力,以使所述第二部分无机颗粒沿电场方向呈链状排列,其中,所述第二部分无机颗粒包括至少部分所述第一部分无机颗粒;
对施加所述磁场后的所述悬浊液进行固化处理,使所述悬浊液固化,从而将所述电子元器件灌封在一起。
进一步地,所述磁场的施加方式包括由永磁体自身的磁场或者外部电流线圈产生的磁场;所述磁场在所述悬浊液中形成的磁场强度能够驱动至少一种所述无机颗粒运动,所述悬浊液中的所述磁场强度小于或等于1T;施加的所述交流电压小于或等于所述电子元器件所能承受的电压范围;施加的所述交流电压包括正弦电压、三角波电压以及双极性脉冲电压中的至少一种,当施加多种所述交流电压时,所述交流电压为同时或先后依次施加于所述悬浊液上,所述交流电压在所述悬浊液内部产生的电场强度有效值小于或等于5kV/mm且大于0.1kV/mm。
本发明所提供的介电梯度材料的制备方法,先通过磁场诱导部分无机颗粒富集于相对较强磁场强度的区域并呈链状排列,然后通过电场诱导再次诱导部分无机颗粒沿着电场方向呈链状排列,磁场与电场共同诱导,构建具有梯度排列的介电梯度材料的同时,还提高了无机颗粒的利用率;交变电场的电场强度大小以及电场强度梯度可以由交变电场的电压范围及频率精确控制,从而使无机颗粒更均匀的呈链状排列。
附图说明
图1为本发明实施例提供的基于磁场及电场协同诱导的介电梯度材料的制备方法流程图。
图2为本发明实施例的介电梯度材料根据不同模型计算的介电常数分布图。
图3为本发明提供的介电梯度材料的示意图。
图4为本发明具体实施例中施加磁场与电场的圆盘形模具示意图。
图5A为实施例制备的介电梯度材料的光学显微镜测试图;图5B为图5A所示的介电梯度材料在距离内电极最近区域的放大图;图5C为图5A所示的介电梯度材料在距离内电极居中区域的放大图;图5D实施例制备的介电梯度材料在距离内电极最远区域的光学显微镜测试图。
主要元件符号说明
第一区域 | S<sub>1</sub> |
第二区域 | S<sub>2</sub> |
第三区域 | S<sub>3</sub> |
原点 | A |
圆环 | B |
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的所有的和任意的组合。
在本发明的各实施例中,为了便于描述而非限制本发明,本发明专利申请说明书以及权利要求书中使用的术语"连接"并非限定于物理的或者机械的连接,不管是直接的还是间接的。"上"、"下"、"下方"、"左"、"右"等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
请参阅图1,为本发明实施例提供的一种基于磁场及电场协同诱导的介电梯度材料的制备方法,包括以下步骤:
步骤S1:混合无机颗粒及液态有机物,得到一悬浊液,所述无机颗粒至少包括一种磁性材料,所述无机颗粒包括第一部分无机颗粒和第二部分无机颗粒;
步骤S2:对所述悬浊液施加磁场,在所述磁场的作用下,所述第一部分无机颗粒受到的磁场力大于所述第一部分无机颗粒在所述悬浊液中受到的粘滞阻力,以使所述第一部分无机颗粒沿磁场方向富集;
步骤S3:撤销所述磁场,施加交变电场于撤销所述磁场后的所述悬浊液,以在所述悬浊液中产生交流电压,在所述交流电压的作用下,所述第二部分无机颗粒受到的电场力大于所述第二部分无机颗粒在所述悬浊液中受到的粘滞阻力,以使所述第二部分无机颗粒沿电场方向呈链状排列,其中,所述第二部分无机颗粒包括至少部分所述第一部分无机颗粒;
步骤S4:对施加所述交变电场后的所述悬浊液进行固化处理,使所述悬浊液固化,得到所述介电梯度材料。
所述无机颗粒分散于液态有机物中,第一部分无机颗粒的无机颗粒受到磁场力的作用并克服粘滞阻力而在悬浊液中运动和/或转向和/或排列,从而在磁场强度相对较强的区域富集并呈沿着磁场方向呈链状排列;撤销磁场后,呈链状排列的第一部分无机颗粒在无磁场的环境下断断续续且仍然呈富集状态存在;施加交变电场后,第二部分无机颗粒受到电场力的作用并克服粘滞阻力而在悬浊液中运动和/或转向和/或排列,所述第二部分无机颗粒在电场强度相对较强的区域呈连续地链状排列;通过固化处理得到介电梯度材料。其中,所述无机颗粒作为填料颗粒、所述液态有机物作为基体材料而形成所述介电梯度材料。
进一步地,第二部分无机颗粒包括部分或者包括全部所述第一部分无机颗粒。“包括全部”即为所有所述第一部分无机颗粒在磁场的作用下发生运动,又在电场的作用下发生运动;“包括部分”即为所述第一部分无机颗粒在磁场的作用下发生运动,然后在电场的作用下,部分所述第一部分无机颗粒发生运动。
先通过施加磁场对所述无机颗粒进行诱导,第一部分无机颗粒在较短时间运动到靠近磁极的区域,并在所述区域内富集,所述区域即磁场强度相对较强的区域,此时,所述区域内的无机颗粒的密度增大;撤销所述磁场,施加交变电场后,第二部分无机颗粒发生运动,最终在沿着电场的方向连续地呈链状排列,由于所述交变电场的电场强度大小以及电场强度梯度可以由交变电场的电压范围及频率精确控制,从而更有利地控制第二部分无机颗粒的运动以及提高无机颗粒的利用率。
在步骤S1中,将所述无机颗粒置于液态有机物中,通过超声和/或机械搅拌等机械处理的方式,使所述无机颗粒更均匀的分散于所述液态有机物中,形成所述悬浊液。
所述磁性材料为能对磁场作出某种方式反应的材料,例如具有铁磁性、顺磁性、抗磁性或反磁性的材料。所述无机颗粒包括但不限于金属化合物之类的陶瓷和/或非金属化合物与磁性材料颗粒制备的核壳结构粒子,例如金属钛酸盐、金属硫酸盐、金属氧化物、非金属氧化物、金属氟化物、金属氮化物、金属碳化物和非金属碳化物与过渡元素所述磁性材料为铁、钴、镍、合金及其化合物中的至少一种。等磁性物质构建的核壳结构粒子,也可以是磁性物质本身,如金属及合金磁性材料或铁氧体磁性材料。
所述无机颗粒还包括陶瓷、金属化合物及非金属化合物中的至少一种,例如金属钛酸盐、金属硫酸盐、金属氧化物、非金属氧化物、金属氟化物、金属氮化物、金属碳化物和非金属碳化物等。
进一步地,所述无机颗粒的介电常数大于或等于40,所述无机颗粒为钙钛矿结构,例如钛酸钡、钛酸锶钡等,或者二氧化钛等高介电常数的无机颗粒,具有高介电常数的无机颗粒有利于降低所述悬浊液中无机颗粒的含量,即降低填料的添加比例。
优选地,至少一种所述无机颗粒的介电常数大于或等于100。
优选地,所述无机颗粒为核壳结构,包括核心以及包覆所述核心的壳体,所述核心与所述壳体至少包括一种所述磁性材料以及一种无机非磁性材料,所述无机非磁性材料的介电常数大于或等于40。例如所述无机颗粒为二氧化钛与四氧化三铁(TiO2@Fe3O4)或者钛酸钡与四氧化三铁(BaTiO3@Fe3O4)组成的核壳结构,在本实施例中,二氧化钛及碳酸钡分别作为核心,四氧化三铁作为壳体包覆所述核心,在磁场中,四氧化三铁受磁场的影响而运动,从而带动整个核壳结构运动。选择二氧化钛或钛酸钡等高介电常数的无机颗粒与磁性材料共同构建核壳结构粒子作为无机颗粒可以降低填料颗粒的添加比例。
所述无机颗粒的粒径小于100μm,例如为50μm、30μm、20μm、10μm、5μm、1μm或者纳米尺寸,较小的粒径有利于所述无机颗粒分散于液态有机物中。所述无机颗粒的粒径可以通过激光衍射或等同方法确定粒径,至少95%的颗粒处于或低于所制定的粒径。
在一具体实施例中,粒度为1μm的TiO2@Fe3O4与粘度1Pa·s的环氧树脂(型号为E51/MeHHPA)混合,在利用钕铁硼磁铁以及交流电压进行诱导时,10分钟的时间排列成链状。
进一步地,所述悬浊液中至少包括一粒径小于1μm的无机颗粒,这有利于稳定所述悬浊液。粒径小于1μm的无机颗粒可以通过采用球磨、磨碎研磨、振动研磨和喷射研磨方法中的一种来研磨无机颗粒,从而减小所述无机颗粒的粒径。
进一步地,所述无机颗粒包括零维球状、一维线状、二维片状。
进一步地,所述悬浊液中的无机颗粒的体积分数小于或等于50%。
优选地,所述悬浊液中的无机颗粒的体积分数小于或等于5%。
在其他的实施例中,还包括对所述无机颗粒进行偶联剂处理步骤。所述偶联剂处理步骤包括将所述无机颗粒置于乙醇与偶联剂共同组成的溶液中进行浸泡,或者在所述悬浊液中添加偶联剂。所述无机颗粒在经过偶联剂处理后,能够提高所述无机颗粒与所述液态有机物的相容性,从而提高无机颗粒与所述液态有机物的结合强度。
所述偶联剂的质量占所述偶联剂与所述无机颗粒总质量的0.5%-2%。
在一具体实施例中,所述偶联剂为γ-(2,3-环氧丙氧)丙基三甲氧基硅烷(KH-560),所述偶联剂的添加量为占无机颗粒及所述偶联剂总质量的1.5%。
所述液态有机物为可固化的材料,即通过一定的固化条件,使所述液态有机物固化,所述有机物包括热固性塑料(例如环氧树脂或酚醛树脂)、热塑性塑料(例如聚乙烯)以及橡胶(例如硅橡胶、丁腈橡胶、三元乙丙橡胶或硫化硅橡胶)中的至少一种。
进一步地,所述液态有机物的粘度小于或等于10Pa·s。优选地,所述液态有机物的粘度小于或等于1Pa·s或者100mPa·s。
进一步地,所述悬浊液的粘度小于或等于100Pa·s,较小的粘度有利于提高磁场诱导效率。所述悬浊液的粘度可以通过降低所述无机颗粒的填料分数、降低所述无机颗粒的粒径、加热、添加消泡剂等方式降低。
优选地,所述悬浊液的粘度小于等于10Pa·s。
进一步地,所述悬浊液中还包括促进剂及固化剂中的一种或多种。所述促进剂用于降低固化条件及提高固化速度,例如降低固化所需要的温度或者时间。所述固化剂用于使所述液态有机物固化。
进一步地,所述悬浊液中还包括酸以及碱中的一种或多种。所述酸或碱用于调节所述悬浊液的pH值,调节所述悬浊液中无机颗粒的Zeta电位,从而对所述悬浊液施加直流场时在所述悬浊液内部产生静电场,有利于所述填料颗粒在静电场中的移动。
在步骤S2中,施加磁场于所述悬浊液置后,悬浊液中的无机颗粒在磁场的作用下,磁性材料被磁化,此时,所述无机颗粒可视为磁偶极子,被磁化的部分无机颗粒之间相互作用而转向从而呈链状排列,同时,磁性颗粒定向运动(例如朝磁铁N/S极运动)是由于磁场梯度引起的,从而呈梯度排列。因此所述无机颗粒在磁场的作用下具有梯度的呈链状排列,在磁场的作用下而运动的无机颗粒被定义为第一部分无机颗粒。
第一部分无机颗粒在悬浊液中受到的磁场力为第一部分无机颗粒运动时在悬浊液中受到粘滞阻力为F=6πηvr,则第一部分无机颗粒的运动速度为其中,V为第一部分无机颗粒的体积,r为第一部分无机颗粒的半径,μ0表示真空磁导率,χ填料表示第一部分无机颗粒的比磁化率,χ基体表示液态有机物的比磁化率。第一部分无机颗粒运动的方向由第一部分无机颗粒与液态有机物的磁化率的差值以及磁场的分布有关。具体地,当χ填料>χ基体时,第一部分无机颗粒将朝磁场变强的方向运动,强磁场区域颗粒的体积分数增大;当χ填料<χ基体时,第一部分无机颗粒将朝磁场变弱的方向运动,弱磁场区域颗粒的体积分数增大。
具体地,第一部分无机颗粒在悬浊液中的运动会受到粘滞阻力,所以施加磁场时,颗粒在基体中的排列是一个时间和空间的函数。当χ填料>χ基体时,向高磁场强度区域的运动沉积以及磁性颗粒的排列成链。而且磁场越强的区域,颗粒的体积分数越高,颗粒的排列速度越快;磁场越弱的区域,颗粒的排列速度越慢,甚至当磁场小到一定阈值时,被磁化偶极子间的静磁力小于基体的粘滞阻力(比如表面张力),颗粒将被限制在原来的位置无法排列成链。
利用这个特点,在绝缘件的加工过程中,根据绝缘系统结构形状,施加与绝缘系统电场分布相似的磁场,例如在绝缘系统电场较强区域的磁感应强度也较高,而且方向相同或相近,并控制合适的作用时间,在电场强度高的局部区域精准构建出几倍甚至几十倍于其他区域的相对介电常数,高介电常数的大小以及高介电常数区域的大小,均可以通过磁场大小、磁场不均匀度以及施加时间精准控制,以达到预期设计。此种方法,在高电场强度的局部,通过增大局部颗粒体积分数以及构建链状排列,提高该区域沿电场方向的介电常数。同时其他区域的填料体积分数不用很高,既节约成本,又利于产品的加工(整体的粘度较小)。
一般地,无机颗粒均匀无序分散在基体材料中,介电梯度材料的介电常数可以通过一些经验公式,例如麦克斯韦-格内特(Maxwell-Garnett)模型、Looyenga模型、Bruggeman模型等混合模型计算。所列计算公式如下:
Maxwell-Garnett公式:
Bruggeman公式:
Looyenga公式:
logε复合=φlogε填料+(1-φ)logε基体
其中是添加无机颗粒的体积分数,ε复合是所述介电梯度材料的介电常数,ε填料是所述无机颗粒的介电常数,ε基体是所述液态有机物的介电常数。
如果无机颗粒与液态有机物材料形成串联结构或者并联结构,那么介电梯度材料的介电常数可以用串联模型或并联模型计算,其公式如下:
串联模型:
并联模型:
ε复合=φε填料+(1-φ)ε基体
其中,并联模型在无机颗粒具有低填充体积分数的情况下,可以实现介电常数远大于其他模型。无机颗粒在磁场诱导下排列成链状便是与液态有机物形成了并联模型,可以在低填充比例下获得较高的介电常数(相对于混合模型)。
请参阅图2,以钛酸钡(相对介电常数1250)/环氧树脂(相对介电常数为4.5)复合材料为例,可以看出,当钛酸钡的体积分数10%时,并联模型的介电梯度材料的相对介电常数是混合模型的20倍;当钛酸钡的体积分数为20%时,并联模型的相对介电常数是混合模型的30倍。而且在低体积分数(小于30%)下,混合模型的介电梯度材料的相对介电常数未得到有效提升,例如,添加体积分数为30%,按照Maxwell-Garnett公式计算的复合材料相对介电常数为10.3,相对于环氧树脂只提高了2.28倍。而利用并联模型,仅需体积分数为0.5%的钛酸钡颗粒便可以将复合材料介电常数提高至10.8。可以看出利用并联模型来提高介电常数,可以大幅节省原料成本。同时,钛酸钡的体积分数过高,会导致悬浊液的粘度增加,流动性变差,不利于产品的浇注加工。
所述磁场的施加方式包括由永磁体自身的磁场或者外部电流线圈产生的磁场。
进一步地,所述磁场强度不超过所述介电梯度材料或者所述介电梯度材料用于一电子元器件时内部能够承受的临界值,例如一电子元器件中内部精密结构由磁性材料(例如金属铁)构成,强磁场可能会造成内部形变。
进一步地,所述磁场强度能够驱动至少一种无机颗粒在悬浊液中运动、转向或排列,例如驱动悬浊液中至少一种无机颗粒的磁场强度可以是低于1T、低于0.5T、低于0.1T、低于0.01T。
进一步地,磁场诱导无机颗粒在悬浊液中运动、转向或者排列,所述无机颗粒的分布可以是诸如在某个区域富集、在某个区域耗尽或者排列成规则链状。无机颗粒的分布可以通过光学显微镜、扫描电子显微镜、光率测量仪或者等效设备进行确定。
在一具体实施例中,在对所述悬浊液施加不超过10分钟的磁场后,利用光学显微镜观察到无机颗粒呈链状排列。在其他的一些实施例中,在施加不超过20分钟的磁场后,利用光学显微镜在特定区域观察到无机颗粒的富集或者耗尽现象。
在另一实施方式中,在向所述悬浊液施加交流电压前还包括将所述悬浊液浇注于一浇注模具中或者涂覆于一物体表面的步骤。
所述浇注于一浇注模具中,即将所述悬浊液浇注于一浇注模具中,所述悬浊液在浇注模具中固化处理后固化成一用户所需要的介电梯度材料的形状,所述介电梯度材料包括但不限于盆式绝缘子、支撑绝缘子、悬式绝缘子和电缆附件。
进一步地,所述浇注模具的表面涂覆有脱模剂,有利于浇注后的悬浊液脱离所述浇注模具。
进一步地,所述浇注模具是由低磁导率及非良导电材料制成,避免造成静电屏蔽和铁磁屏蔽,例如聚四氟乙烯。
在步骤S3中,撤销磁场后,施加电场于所述悬浊液,悬浊液中部分无机颗粒在交变电场的作用下受到的电场力大于粘滞阻力而发生运动,最终沿电场方向呈链状排列,在电场的作用下而运动的无机颗粒被定义为第二部分无机颗粒。
进一步地,所述电场方向与磁场方向一致;呈链状排列的所述第二部分无机颗粒在空间上可以是相互连通,也可以是相互分离的。
所述交流电压包括正弦电压、三角波电压以及双极性脉冲电压中的至少一种,当施加多种所述交流电压时,所述交流电压为同时或先后依次施加于所述悬浊液上。
优选地,施加不同形式的交流电压会驱动至少一种无机颗粒在液态有机物中运动、转向或排列,从而得到有利于均匀电场的无机颗粒的分布。
所述交流电压在所述悬浊液内部产生的最大电场强度有效值小于或等于5kV/mm。在有效电场强度小于或等于5kV/mm的条件下,可以降低制备的介电梯度材料发生闪络的风险。
进一步地,在一具体实施例中,所述悬浊液的粘度为0.4Pa·s(此时环境温度为40℃),对所述悬浊液施加一交变加压,当电场强度低于0.1kV/mm,所述电场强度无法驱动无机颗粒进行排列,而高于0.1kV/mm时,所述无机颗粒在30分钟内完成链状排列,故,对所述悬浊液施加的电场强度应大于0.1kV/mm。
进一步地,所述交流电压的选择频率区间为1~10kHZ,所选择频率区间可有效提高电场诱导转向以及所述无机颗粒的排列效率。
当施加交流电压时,所述无机颗粒被交变电场极化,非零维球状的所述无机颗粒可以等效为电偶极子,由于理想的零维球状是完全对称的,即使发生旋转,偶极矩也不会变化,自身能量也不会变化,而理想的球状在实际中存在的可能性极小,故所述无机颗粒基本可以等效为电偶极子。当两个所述电偶极子的中心线与电场方向的夹角在0~90°之间,所述电偶极子将彼此吸引而产生转向力矩,否则,将会互相排斥,最终第二部分无机颗粒倾向于在平行于电场的方向上形成取向链结构。此时沿交变电场方向,第二部分无机颗粒与基体材料形成并联结构,介电梯度材料在交变电场方向的介电常数符合并联模型的计算公式。
由于无机颗粒在所述液态有机物中的运动会受到粘滞阻力,所以施加交变电场时,无机颗粒在基体中的排列是一个时间和空间的函数,所述无机颗粒受到的作用力与颗粒的形状、大小、施加交流电压的形状及施加交流电压的大小有关。交变电场越强的区域,无机颗粒的排列速度越快;电场越弱的区域,无机颗粒的排列速度越慢,甚至当交变电场场强小到一定阈值时,被极化偶极子间的静电力小于基体的粘滞阻力(比如表面张力),无机颗粒将被限制在原来的位置无法排列成链。利用这个特点,在绝缘件的加工过程中,在绝缘系统原有的电极结构上原位施加合适的交流电压,并控制合适的作用时间,在电场强度高的局部区域精准构建出几倍甚至几十倍于其他区域的相对介电常数,高介电常数的大小以及高介电常数区域的大小,均可以通过交流电压大小、施加交流电压时间精准控制,以达到预期设计。
进一步地,在施加一交变电场于所述悬浊液之前还包括施加一直流电压于所述悬浊液的步骤。所述无机颗粒与液态有机物混合形成所述悬浊液,所述无机颗粒表面会存在扩散双电层。当施加直流电压时,悬浊液中的无机颗粒在静电场的作用发生电泳运动,具有正Zeta电位的颗粒会向负电极移动,具有负Zeta电位的颗粒会向正电极移动。Zeta电位的绝对值越大,颗粒的运动速度越快,使无机颗粒在悬浊液定向移动,在靠近电极区域的无机颗粒数量相对增多,在远离电极区域的无机颗粒数量相对减少,从而使距离所述电极较近的区域无机颗粒呈富集状态存在。然后在交变电场的作用下,所述无机颗粒沿电场方向呈链状排列,如此更有利于构造介电常数以及密度呈梯度分布的介电梯度材料;同时,其他区域的填料体积分数不用很高,既节约成本,又利于产品的加工(整体的粘度较小)。
在步骤S4中,所述固化处理包括但不限于静置、加热、光照(例如紫外或者可见光)、机械加压等。
在一具体实施例中,所述液态有机物为E51环氧树脂和甲基六氢苯酐,所述固化条件为首先在100℃一次固化2小时,然后在120℃二次固化2小时。
进一步地,固化处理在时间上可以与磁场诱导和/或电场诱导重叠。
优选地,固化处理在时间上与电场诱导重叠。
本发明还提供一种电子元器件的灌封方法,包括以下步骤:
步骤S101:提供至少两个电子元器件置于所述电子元器件的封装模块内;
步骤S102:加入所述无机颗粒及所述液态有机物于所述封装模块内,得到悬浊液,所述电子元器件浸入在所述悬浊液中,所述无机颗粒至少包括一种磁性材料,所述无机颗粒包含第一部分无机颗粒和第二部分无机颗粒;
步骤S103:对所述封装模块施加磁场,在所述磁场的作用下,所述第一部分无机颗粒受到的磁场力大于所述第一部分无机颗粒在悬浊液中受到的粘滞阻力,以使所述第一部分无机颗粒沿磁场方向富集;
步骤S104:撤销所述磁场,对所述封装模块施加交变电场,以在所述悬浊液中产生交流电压,在所述交流电压的作用下,所述第二部分无机颗粒受到的电场力大于所述第二部分无机颗粒在所述悬浊液中受到的粘滞阻力,以使所述第二部分无机颗粒沿电场方向呈链状排列,其中,所述第二部分无机颗粒包括至少部分所述第一部分无机颗粒;
步骤S105:对施加所述磁场后的所述悬浊液进行固化处理,使所述悬浊液固化,从而将所述电子元器件灌封在一起。
在步骤S101中,所述电子元器件包括但不限于绝缘栅双极型晶体(InsulatedGate Bipolar Transistor、IGBT)、金属-氧化物半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor、MOSFET)等。
在步骤S103中,施加的磁场的强度不超过介电梯度材料或者所述电子元器件时内部能够承受的临界值。
进一步地,在施加磁场的过程中,可以对所述电子元器件进行通电,如此能够使灌封于所述电子元器件的悬浊液固化后能够适应后续电子元器件运行时工作条件。
在步骤S104中,施加的交变电压在悬浊液中产生的交流电压小于或等于所述电子元器件所能承受的电压范围。优选地,施加的交流电压小于或等于所述电子元器件的额定电压。
进一步地,在施加交变电场的过程中,可以对所述电子元器件进行通电,如此能够使灌封于所述电子元器件的悬浊液固化后能够适应后续电子元器件运行时工作条件。
进一步地,在施加交变电场于所述悬浊液之前还包括施加一直流电压于所述悬浊液的步骤。
本发明还提供一种介电梯度材料,所述介电梯度材料基于电场诱导的介电梯度材料的制备方法所制得。所述介电梯度材料应用于多种领域,例如用于使电子器元件内绝缘、电子器元件外绝缘、电力装备外绝缘及电力装备内电绝缘。
具体地,所述电子器元件内绝缘包括灌封胶,例如用于绝缘栅双极型晶体(Insulated Gate Bipolar Transistor、IGBT)模块中应用的绝缘灌封胶及电缆附件等;所述电子器元件外绝缘包括印刷电路板;所述电力装备内绝缘包括用于干式复合套管、电力电缆、电机内绝缘等;所述电力装备外绝缘包括多种绝缘子,例如复合悬式绝缘子、复合空心绝缘子、复合支柱绝缘子、盆式绝缘子及支撑绝缘子等。
在一具体实施例中,所述介电梯度材料用于连接至少两个电子元器件,所述电子元器件通过所述介电梯度材料连接但相互绝缘。所述电子元器件包括但不限于绝缘栅双极型晶体、金属-氧化物半场效晶体管(Metal-Oxide-Semiconductor Field-EffectTransistor、MOSFET)等。
在另一具体实施例中,所述介电梯度材料用于断路器及气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)中应用的盆式绝缘子。
另外,所述介电梯度材料还作为灌封材料用于连接至少两个电子元器件,所述电子元器件通过所述介电梯度材料连接但相互绝缘。所述电子元器件包括但不限于绝缘栅双极型晶体、金属-氧化物半场效晶体管(Metal-Oxide-Semiconductor Field-EffectTransistor、MOSFET)等。
进一步地,所述介电梯度材料还作为绝缘涂层应用于所述电力装备及所述电子元器件上。
所述介电梯度材料包括基体材料及填料颗粒,所述填料颗粒分散于所述基体材料中,所述填料颗粒为颗粒状,所述填料颗粒至少包括一种磁性材料。所述填料颗粒即为所述无机颗粒,所述基体材料即为所述液态有机物经过固化而成。
所述介电梯度材料包括第一区域S1、第二区域S2及位于第一区域与第二区域S2之间的第三区域S3,所述第三区域S3即为第一区域S1与第二区域S2的过渡区域,介电常数及无机颗粒的排列度从第一区域S1至第二区域S2逐渐降低。
在所述第一区域S1中的所述填料颗粒包括第一部分无机颗粒及第二部分无机颗粒,所述第一部分无机颗粒呈富集状态,所述第二部分无机颗粒呈链状排列,所述填料颗粒在所述第二区域S2中呈无序分布;其中,所述第二部分无机颗粒自所述第一区域S1至所述第二区域S2的方向呈链状排列。
所述填料颗粒的介电常数大于或等于40,所述填料颗粒的介电常数是所述基体材料的介电常数的1-50倍。
在一具体实施例中,所述第一区域S1、第二区域S2及第三区域S3是根据在制备所述介电梯度材料的过程中产生所述磁场的内电极和外电极的位置进行划分,所述外电极环绕着所述内电极设置,距离所述内电极越近的区域的磁场强度越大,距离所述内电极越远的区域磁场强度越小。请参阅图3,以制备时放置的内电极为原点A,外电极为圆环B,所述第一区域S1围绕所述原点A向外延伸,距离所述原点A越近的区域(即距离圆环B越远的区域),所述填料颗粒的排列越呈链状排列,且介电梯度材料在越靠近原点A的第一区域S1的介电常数越大;距离所述原点A越远的区域(即距离圆环B越近的区域),所述填料颗粒的排列越呈无序分布,且介电梯度材料在越远离原点A的第二区域S2的介电常数越小;介于所述第一区域S1与第二区域S2之间的区域为第三区域S3,第三区域S3内的无机颗粒的排列情况介于有序排列及无序分布之间。因此,所述介电梯度材料的介电常数成梯度分布。
在其他实施例中,所述介电梯度材料并不限于图3所示的圆形,实际形状可以根据需要进行变更,如,还可以为方形、椭圆形以及其他不规则形状。
进一步地,位于第二区域S2的所述介电梯度材料的介电常数是基体的1-5倍,位于第一区域S1的所述介电梯度材料的介电常数是位于第二区域S2的所述介电梯度材料的介电常数的1-50倍,位于所述第三区域S3的所述介电梯度材料的介电常数介于位于第一区域S1的所述介电梯度材料的介电常数和位于第二区域的所述介电梯度材料的介电常数之间。所述介电梯度材料在实际应用中,位于第一区域S1的所述介电梯度材料优先置于相对高的电场场强区域,位于第二区域S2的所述介电梯度材料置于相对低的电场场强区域。
进一步地,至少一种所述填料颗粒的介电常数大于或等于所述基体材料的介电常数的40倍。
进一步地,填料颗粒的密度呈梯度分布于所述基体材料中,位于第一区域S1的填料颗粒的密度大于或等于位于第三区域S3的填料颗粒的密度,位于第三区域S3的填料颗粒的密度大于或等于位于第二区域S2的填料颗粒的密度。
所述基体材料中还包括促进剂、固化剂、消泡剂及偶联剂中的一种或多种。
下面通过具体的实施例来对本发明进行具体说明。
实施例
以光敏双酚A型环氧丙烯酸酯树脂作为液态有机物,加入一混合罐中,加入环氧树脂TL-X60作为消泡剂,其中液态有机物与消泡剂的质量比分100:0.4,在超声环境中以600转/分的速度搅拌0.5小时,并在50℃的真空环境中脱气0.5小时。向上述混合物中加入粒径为1μm核壳结构的BaTiO3@Fe3O4作为无机颗粒,并加入KH-560硅烷偶联剂,所述混合物、无机颗粒及偶联剂的质量比为100:0.5:0.0075,在超声环境中以600转/分的速度搅拌0.5小时,并在50℃的真空环境中脱气0.5小时,得到一均匀悬浊液。
请参阅图4,将所述悬浊液浇注至一圆盘形模具中,所述模具由聚四氟乙烯材料制成,所述模具表面涂覆佳丹作为脱模剂,中心处同轴贯穿半径5mm的管状不锈钢电极作为内电极,外边缘箍有同轴圆筒不锈钢电极作为外电极。
然后将钕铁硼磁铁的一极接近内电极顶部,保持10分钟并撤去,磁铁的剩磁为0.9T,单个磁铁的中心表磁计算值约为0.3T;撤去磁铁后,通过内电极与外电极对所述悬浊液施加900V、6kHz的交流电压,1h后撤去。
将所述模具放入紫外灯箱中照射2h,然后脱模得到磁场及电场协同诱导介电梯度材料。
请参阅图5A、图5B、图5C及图5D,其中,图5A为实施例制备的介电梯度材料的光学显微镜测试图,图5B、图5C及图5D分别为实施例制备的介电梯度材料在距离内电极最近、居中以及最远区域光学显微镜测试图,即图5B、图5C及图5D分别为第一区域S1、第三区域S3及第二区域S2的光学显微镜测试图,其中图5D在图5A中未示出。
从图5A及图5B中可以看出,距离中心区域即内电极最近的第一区域S1,由于此区域内的磁场强度及电场强度最强,无机颗粒受影响最大,无机颗粒最密集,且呈连续的链状排列;从图5A及图5C中可以看出,距离中心区域居中的第三区域S3,无机颗粒的密度相较于第一区域S1降低,同时无机颗粒呈不连续的链状排列;从图5A及图5D中可以看出,距离中心区域最远的第二区域S1,此区域内的磁场强度及电场强度最弱,无机颗粒最少,且呈无序分布。
本发明所提供的介电梯度材料的制备方法,先通过磁场诱导部分无机颗粒富集于相对较强磁场强度的区域并呈链状排列,然后通过电场诱导再次诱导部分无机颗粒沿着电场方向呈链状排列,磁场与电场共同诱导,构建具有梯度排列的介电梯度材料的同时,还提高了无机颗粒的利用率;交变电场的电场强度大小以及电场强度梯度可以由交变电场的电压范围及频率精确控制,从而使无机颗粒更均匀的呈链状排列。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。
Claims (10)
1.一种介电梯度材料的制备方法,其特征在于,包括以下步骤:
混合无机颗粒及液态有机物,得到一悬浊液,所述无机颗粒至少包括一种磁性材料,所述无机颗粒包括第一部分无机颗粒和第二部分无机颗粒;
对所述悬浊液施加磁场,在所述磁场的作用下,所述第一部分无机颗粒受到的磁场力大于所述第一部分无机颗粒在所述悬浊液中受到的粘滞阻力,以使所述第一部分无机颗粒沿磁场方向富集;
撤销所述磁场,施加交变电场于撤销所述磁场后的所述悬浊液,以在所述悬浊液中产生交流电压,在所述交流电压的作用下,所述第二部分无机颗粒受到的电场力大于所述第二部分无机颗粒在所述悬浊液中受到的粘滞阻力,以使所述第二部分无机颗粒沿电场方向呈链状排列,其中,所述第二部分无机颗粒包括至少部分所述第一部分无机颗粒;
对施加所述交变电场后的所述悬浊液进行固化处理,使所述悬浊液固化,得到所述介电梯度材料。
2.根据权利要求1所述的介电梯度材料的制备方法,其特征在于,至少一种所述无机颗粒的介电常数大于或等于40;所述无机颗粒的粒径小于100μm;所述液态有机物为可固化材料;所述悬浊液中的所述无机颗粒的体积分数小于或等于50%;所述悬浊液的粘度小于等于100Pa·s。
3.根据权利要求1所述的介电梯度材料的制备方法,其特征在于,所述无机颗粒为陶瓷、金属化合物以及非金属化合物中的至少一种,所述无机颗粒的颗粒粒径小于50μm;所述液态有机物为热固性材料、热塑性材料以及橡胶中的至少一种;所述悬浊液中的所述无机颗粒的体积分数小于或等于5%;所述悬浊液的粘度小于等于10Pa·s。
4.根据权利要求1所述的介电梯度材料的制备方法,其特征在于,所述无机颗粒为核壳结构,包括核心以及包覆所述核心的壳体,所述核心与所述壳体至少包括一种所述磁性材料。
5.根据权利要求1所述的介电梯度材料的制备方法,其特征在于,所述磁场在所述悬浊液中形成的磁场强度能够至少驱动一种所述无机颗粒运动,所述悬浊液中的所述磁场强度小于或等于1T。
6.根据权利要求1所述的介电梯度材料的制备方法,其特征在于,所述交流电压包括正弦电压、三角波电压以及双极性脉冲电压中的至少一种,当施加多种所述交流电压时,所述交流电压为同时或先后依次施加于所述悬浊液上,所述交流电压在所述悬浊液内部产生的电场强度的有效值小于或等于5kV/mm且大于0.1kV/mm。
7.根据权利要求1所述的介电梯度材料的制备方法,其特征在于,在施加所述磁场于所述悬浊液之前,还包括将所述悬浊液浇注于一浇注模具中或涂覆于一物体表面的步骤。
8.根据权利要求1所述的介电梯度材料的制备方法,其特征在于,所述制备方法还包括对所述无机颗粒进行偶联剂处理,所述偶联剂处理包括将所述无机颗粒置于乙醇与偶联剂共同组成的溶液中进行浸泡,或者在所述悬浊液中添加所述偶联剂,所述偶联剂的质量占所述偶联剂与所述无机颗粒总质量的0.5%-2%。
9.一种电子元器件的灌封方法,其特征在于,包括以下步骤:
提供至少两个电子元器件置于所述电子元器件的封装模块内;
加入无机颗粒及液态有机物于所述封装模块内,得到悬浊液,所述电子元器件浸入在所述悬浊液中,所述无机颗粒至少包括一种磁性材料,所述无机颗粒包含第一部分无机颗粒和第二部分无机颗粒;
对所述封装模块施加磁场,在所述磁场的作用下,所述第一部分无机颗粒受到的磁场力大于所述第一部分无机颗粒在悬浊液中受到的粘滞阻力,以使所述第一部分无机颗粒沿磁场方向富集;
撤销所述磁场,对所述封装模块施加交变电场,以在所述悬浊液中产生交流电压,在所述交流电压的作用下,所述第二部分无机颗粒受到的电场力大于所述第二部分无机颗粒在所述悬浊液中受到的粘滞阻力,以使所述第二部分无机颗粒沿电场方向呈链状排列,其中,所述第二部分无机颗粒包括至少部分所述第一部分无机颗粒;
对施加所述磁场后的所述悬浊液进行固化处理,使所述悬浊液固化,从而将所述电子元器件灌封在一起。
10.根据权利要求9所述的电子元器件的灌封方法,其特征在于,所述磁场的施加方式包括由永磁体自身的磁场或者外部电流线圈产生的磁场;所述磁场在所述悬浊液中形成的磁场强度能够驱动至少一种所述无机颗粒运动,所述悬浊液中的所述磁场强度小于或等于1T;施加的所述交流电压小于或等于所述电子元器件所能承受的电压范围;施加的所述交流电压包括正弦电压、三角波电压以及双极性脉冲电压中的至少一种,当施加多种所述交流电压时,所述交流电压为同时或先后依次施加于所述悬浊液上,所述交流电压在所述悬浊液内部产生的电场强度有效值小于或等于5kV/mm且大于0.1kV/mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910515387.7A CN110194841B (zh) | 2019-06-14 | 2019-06-14 | 介电梯度材料的制备方法及电子元器件的灌封方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910515387.7A CN110194841B (zh) | 2019-06-14 | 2019-06-14 | 介电梯度材料的制备方法及电子元器件的灌封方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110194841A true CN110194841A (zh) | 2019-09-03 |
CN110194841B CN110194841B (zh) | 2022-02-25 |
Family
ID=67754694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910515387.7A Active CN110194841B (zh) | 2019-06-14 | 2019-06-14 | 介电梯度材料的制备方法及电子元器件的灌封方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110194841B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111161931A (zh) * | 2020-01-03 | 2020-05-15 | 西安交通大学 | 一种表层功能梯度绝缘子及其制备方法和应用 |
CN112940456A (zh) * | 2021-03-15 | 2021-06-11 | 南方电网科学研究院有限责任公司 | 一种功能梯度绝缘件的制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101003701A (zh) * | 2006-12-31 | 2007-07-25 | 大连理工大学 | 填料颗粒梯度分散的功能性涂层的改性方法及应用 |
CN101231287A (zh) * | 2008-02-22 | 2008-07-30 | 东南大学 | 外场诱导电极中排列纳米颗粒制备生物传感器的方法 |
CN102067248A (zh) * | 2008-05-23 | 2011-05-18 | 诺基亚公司 | 磁力控制的聚合物纳米复合材料和用于施加和固化此材料的方法以及用于rf应用的纳米磁性复合物 |
CN102964531A (zh) * | 2012-10-31 | 2013-03-13 | 中国计量学院 | 一种梯度导电材料及其制备方法 |
JP2013129560A (ja) * | 2011-12-21 | 2013-07-04 | Tdk Corp | 誘電体磁器組成物および電子部品 |
CN104292764A (zh) * | 2014-10-31 | 2015-01-21 | 常熟市微尘电器有限公司 | 一种用于高储能电容器的复合介电材料及其制备方法 |
CN105006329A (zh) * | 2015-07-20 | 2015-10-28 | 重庆科技学院 | 一种多铁性液体及其制备方法 |
CN105097177A (zh) * | 2015-07-20 | 2015-11-25 | 重庆科技学院 | 一种多铁性液体及其制备方法 |
CN109467883A (zh) * | 2018-11-06 | 2019-03-15 | 哈尔滨理工大学 | 一种基于电场诱导排序的环氧/无机纳米复合高导热绝缘材料及其制备方法 |
-
2019
- 2019-06-14 CN CN201910515387.7A patent/CN110194841B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101003701A (zh) * | 2006-12-31 | 2007-07-25 | 大连理工大学 | 填料颗粒梯度分散的功能性涂层的改性方法及应用 |
CN101231287A (zh) * | 2008-02-22 | 2008-07-30 | 东南大学 | 外场诱导电极中排列纳米颗粒制备生物传感器的方法 |
CN102067248A (zh) * | 2008-05-23 | 2011-05-18 | 诺基亚公司 | 磁力控制的聚合物纳米复合材料和用于施加和固化此材料的方法以及用于rf应用的纳米磁性复合物 |
JP2013129560A (ja) * | 2011-12-21 | 2013-07-04 | Tdk Corp | 誘電体磁器組成物および電子部品 |
CN102964531A (zh) * | 2012-10-31 | 2013-03-13 | 中国计量学院 | 一种梯度导电材料及其制备方法 |
CN104292764A (zh) * | 2014-10-31 | 2015-01-21 | 常熟市微尘电器有限公司 | 一种用于高储能电容器的复合介电材料及其制备方法 |
CN105006329A (zh) * | 2015-07-20 | 2015-10-28 | 重庆科技学院 | 一种多铁性液体及其制备方法 |
CN105097177A (zh) * | 2015-07-20 | 2015-11-25 | 重庆科技学院 | 一种多铁性液体及其制备方法 |
CN109467883A (zh) * | 2018-11-06 | 2019-03-15 | 哈尔滨理工大学 | 一种基于电场诱导排序的环氧/无机纳米复合高导热绝缘材料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
GOLLAPUDI SREENIVASULU ET AL.: "Multiferroic Core-Shell Nanofibers, Assembly in a Magnetic Field, and Studies on Magneto-Electric Interactions", 《MATERIALS》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111161931A (zh) * | 2020-01-03 | 2020-05-15 | 西安交通大学 | 一种表层功能梯度绝缘子及其制备方法和应用 |
CN111161931B (zh) * | 2020-01-03 | 2021-06-25 | 西安交通大学 | 一种表层功能梯度绝缘子及其制备方法和应用 |
CN112940456A (zh) * | 2021-03-15 | 2021-06-11 | 南方电网科学研究院有限责任公司 | 一种功能梯度绝缘件的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110194841B (zh) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110183825A (zh) | 介电梯度材料及其应用 | |
US10381149B2 (en) | Composite material, reactor, converter, and power conversion device | |
CN110265176A (zh) | 介电梯度材料及其应用 | |
CN110253801A (zh) | 介电梯度材料的制备方法及电子元器件的灌封方法 | |
CN110256813A (zh) | 介电梯度材料的制备方法及电子元器件的灌封方法 | |
US10770932B2 (en) | Magnetizable concrete composite for road-embedded wireless power transfer | |
CN107871594B (zh) | 太极式石墨烯滤波扼流圈及其制作方法 | |
CN110194841A (zh) | 介电梯度材料的制备方法及电子元器件的灌封方法 | |
JP2017037888A (ja) | 磁性粉モールドコイル及びその製造方法 | |
US20180241260A1 (en) | Fixtures and methods for forming aligned magnetic cores | |
JP2017224851A (ja) | 複合材料、磁気部品、及びリアクトル | |
CN107004483A (zh) | 复合材料、磁部件用的磁性铁芯、电抗器、转换器及电力转换装置 | |
CN110229469A (zh) | 介电梯度材料及其应用 | |
JP2013153025A (ja) | リアクトル、コンバータ、及び電力変換装置 | |
CN102408680A (zh) | 一种在高频磁场中实现中高温加热并固化的热固性树脂及制备方法 | |
JP2014239120A (ja) | リアクトル、リアクトル用のコア片、コンバータ、および電力変換装置 | |
CN111724963A (zh) | 一种磁性填料定向排列的流延成型方法、装置及产品 | |
JP5110624B2 (ja) | 線輪部品 | |
CN111354559A (zh) | 用于形成对准的磁芯的固定装置和方法 | |
CN104575947A (zh) | 一种电感及其制造方法 | |
CN204802653U (zh) | 一种用于软磁铁氧体加工的电磁式输送装置 | |
WO2013168538A1 (ja) | リアクトル、コンバータ、電力変換装置、および樹脂コア片の製造方法 | |
JP6226047B2 (ja) | 複合材料、リアクトル用コア、及びリアクトル | |
US20190148994A1 (en) | Fixtures and methods for forming aligned magnetic cores | |
JP6288809B2 (ja) | 線輪部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |