CN110193083A - 抗肿瘤药物及其制备方法 - Google Patents

抗肿瘤药物及其制备方法 Download PDF

Info

Publication number
CN110193083A
CN110193083A CN201910232636.1A CN201910232636A CN110193083A CN 110193083 A CN110193083 A CN 110193083A CN 201910232636 A CN201910232636 A CN 201910232636A CN 110193083 A CN110193083 A CN 110193083A
Authority
CN
China
Prior art keywords
tumor drug
photosensitizer
drug
carrier
tumor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910232636.1A
Other languages
English (en)
Inventor
王瑀
燕双仟
刘小钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201910232636.1A priority Critical patent/CN110193083A/zh
Publication of CN110193083A publication Critical patent/CN110193083A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种功能化纳米探针用于癌症联合治疗的应用,涉及纳米医学领域。其中,该纳米材料利用光热光动力联合治疗的方法消除原发肿瘤,同时该方法能增强机体的抗肿瘤免疫反应。以小鼠为模型,结合程序性死亡受体蛋白PD‑1抗体,该方法能显著地抑制小鼠肿瘤的生长与转移,进而提高小鼠的寿命。进一步,该探针可以用于核磁共振成像,可用于肿瘤的监测。

Description

抗肿瘤药物及其制备方法
技术领域
本发明涉及一种抗癌药物,具体涉及一种光热光动力治疗抗癌药物及其制 备方法。
背景技术
肿瘤治疗技术主要包括手术切除、化疗、放射性治疗及光学治疗等。其中, 光学治疗主要有光热治疗和光动力治疗。光热治疗是利用具有光热转换的材料, 在外部光源的激发下能用产生的热能来杀死癌细胞的方法。而光动力治疗是在 外部光源的作用下激发光敏剂产生活性氧进而导致细胞损伤及坏死的治疗方 法。虽然光热治疗与光动力治疗得到了广泛的研究与报道,但是肿瘤具有很强 异质性及其复杂的微环境,一般的光热治疗及光动力学治疗很难将其完全消除。
光热与光动力学联合治疗方法能有效克服肿瘤细胞的异质性,已被科学家 们证实。但是,现今的联合光学治疗大多都是用较短波长光激发或多种波长激 发光源,降低了治疗的效果以及操作性。而光热与光动力治疗的核心就是光敏 剂。现今的光敏剂只能用于光动力治疗,而无法兼具光热与光动力治疗两方面。
因此,设计一种光热与光动力抗肿瘤药物具有非常重要的研究意义与应用 价值。
发明内容
本发明的目的是提供一种抗癌药物及其制备方法,以解决现有抗癌药物的 种类不够丰富以及抗癌新途径较为单一的技术问题。
为了解决上述问题本发明提供了一种抗肿瘤药物,包括一种光热光敏剂, 所述光敏剂,包括载体和结合于所述载体上的光敏剂功能成分;
所述光敏剂载体为纳米级的核壳结构,所述核壳结构包括核体和包覆于所 述核体的壳体,所述核体为聚多巴胺纳米颗粒,所述壳体包括Gd离子化合物、 Yb离子化合物和Er离子化合物。
优选地,所述Gd元素、Yb元素和Er元素的摩尔比例为78%:20%:2%。
优选地,所述光敏剂载体的粒径为120-160nm;
所述核体粒径为50-70nm;
所述壳体的厚度为70-90nm。
优选地,所述上转换光敏剂功能成分包括光敏剂Ce6分子。
优选地,所述光敏剂功能成分与载体比值10%-15%。
优选地,所述抗肿瘤药物的制备方法包括如下步骤:
在聚多巴胺纳米颗粒上包裹稀土碳酸氢氧物层;
将稀土碳酸氢氧物层转换成上转换发光层;
在所述的上转换发光层上修饰活性基团;
在修饰有活性基团的上转换发光层上装载光敏剂;
添加其他辅料。
优选地,所述活性基团包括羟基、羧基和氨基中的任意一种或多种。
优选地,所述抗癌药物的用量为.
优选地,所述抗癌药物还修饰有靶向癌细胞的物质。
优选地,所述靶向癌细胞的物质包括叶酸。
与现有技术相比,本发明的抗癌药物一方面采用光热材料,聚多巴胺纳米 颗粒做核心起到光热治疗的作用;另一方面以稀土元素作为光动力治疗的上转 换能量中间站,使得可以用低能量的近红外光,对生物体伤害小。经上转换成 为波长较短能量较高的光,通过光敏剂激活单线态氧,达到治疗目的。两者联 合使用,互相补充效果更佳。
本发明的抗癌药物的制备方法,步骤少,操作简单,每个步骤转化率高, 且制备所得的药物性能优越,兼具两者治疗功能。
附图说明
图1本发明实施例所述光敏剂载体的合成步骤示意图;
图2为本发明实施例聚多巴胺纳米粒子和光敏剂载体的扫描电镜图;
图3本发明实施例提供的PDA@UCNP的光热效果评价图;
图4是本发明实施例提供的PDA@UCNP在980nm近红外光激发下的发 射光谱及光敏分子的吸收光谱图。
图5为探针及不用对照组进行治疗的结果;
图6为纳米探针与PD-1免疫治疗结合用于肿瘤的治疗的效果图;
图7是纳米探针进行核磁共振成像的结果图(a为未注射探针,b为注射探 针后)。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以 下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体 实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例一方面提供了一种抗肿瘤药物,包括一种光热光敏剂,所述 光敏剂,包括载体和结合于所述载体上的光敏剂功能成分;
所述光敏剂载体为纳米级的核壳结构,所述核壳结构包括核体和包覆于所 述核体的壳体,所述核体为聚多巴胺纳米颗粒,所述壳体包括Gd离子化合物、 Yb离子化合物和Er离子化合物。本发明的光敏剂载体采用的是光热纳米材料, 具有很强的光热性能,而不是像其他的光敏剂材料核体也是采用的上转换纳米 材料。因此多具备一种光热性能。而采用的稀土元素的吸收波长是近红外区, 并且通过上转化将两份长波长的近红外光转化为波长为一半的五百纳米以下的 光,高能激发单线态氧,同时产生较强的光热效应。两者相互配合,达到消灭 病灶的目的。
所述Gd元素、Yb元素和Er元素的摩尔比例为78%:20%:2%。一方面多 元素的掺杂可以使的吸收范围变广;二来由于各种元素的吸收强度发射强度都 不尽相同,因此调整用量来平衡其总体强度。
所述光敏剂载体的粒径为120-160nm;
所述核体粒径为50-70nm;
所述壳体的厚度为70-90nm。
较小的粒径可以更充分的吸收能量传递能量,限于工艺条件,取条件所述 的粒径范围。
所述上转换光敏剂功能成分包括光敏剂Ce6分子。这几种光敏剂的吸收波 长与稀土元素上转换后的发射波长重合度较高,因此选取这几种光敏剂。
所述光敏剂功能成分与载体比值10%-15%。需要足够的光敏剂载体才能让 光敏剂功能发挥完全,过多的量则会造成浪费,因此选取此范围比例
所述抗肿瘤药物的制备方法包括如下步骤:
S01:在聚多巴胺纳米颗粒上包裹稀土碳酸氢氧物层;
S02:将稀土碳酸氢氧物层转换成上转换发光层。
S03:在所述的上转换发光层上修饰活性基团;
S04:在修饰有活性基团的上转换发光层上装载光敏剂;
S05:添加其他辅料。
在本发明实施例S01中,实现稀土碳酸氢氧物层的包裹是将包含稀土元素 的盐溶解,加入聚多巴胺纳米颗粒并与碱性容易挥发的物质共热回流,得到稀 土碳酸氢氧物层包裹的聚多巴胺颗粒。
在本发明实施例S02中,具体的所述稀土碳酸氢氧物层加入氟化物和氢氟 酸,形成稀土元素的氟化物。
本发明实施例步骤S03和S04中所述活性基团包括羟基、羧基和氨基中的 任意一种或多种。具体的选取带有两种活性基团的连接化合物,先选择性的连 接上稀土元素,然后通过另一个基团与光敏剂连接完成装载。
本发明实施例步骤S05可以添加缓释剂,可以添加生物相容性高的物质, 还可以添加一下基团改善溶解性等物理化学性能,根据具体的应用场景加以合 理变化。
所述活性基团包括羟基、羧基和氨基中的任意一种或多种。具体的选取带 有两种活性基团的连接化合物,先选择性的连接上稀土元素,然后通过另一个 基团与光敏剂连接完成装载。
所述抗癌药物的用量为。这只是试验范围,根据不同的病情,不同的性质 可以酌情改变用量来适应应用场景。
所述抗癌药物还修饰有靶向癌细胞的物质。
所述靶向癌细胞的物质包括叶酸。后续的研发中还可以加一些定位集团可 以使本发明实施例所述的药物更具靶向性,这里的叶酸是优选的基团,根据实 际需求可以选取别的基团。
与现有技术相比,本发明的抗癌药物一方面采用光热材料,聚多巴胺纳米 颗粒做核心起到光热治疗的作用;另一方面以稀土元素作为光动力治疗的上转 换能量中间站,使得可以用低能量的近红外光,对生物体伤害小。经上转换成 为波长较短能量较高的光,通过光敏剂激活单线态氧,达到治疗目的。两者联 合使用,互相补充效果更佳。
本发明的抗癌药物的制备方法,步骤少,操作简单,每个步骤转化率高, 且制备所得的药物性能优越,兼具两者治疗功能。
实施例1
光敏剂的合成步骤如图1所示。
在20mL的乙醇-水(1:1)的混合溶液中,加入1mL稀土元素比例为78%: 20%:2%(GdCl3:YbCl3:ErCl3)的溶液,磁力搅拌10-30min形成透明溶液。加 入步骤(1)中合成的3mg聚多巴胺纳米颗粒粉末,超声10-30min。随后将溶液 在90℃下回流6h,即得到PDA@Gd,Yb,Er(OH)CO3纳米颗粒。
将PDA@Gd,Yb,Er(OH)CO3纳米颗粒分散于5mL水中,加入5mL乙二醇 及20mg NaF,搅拌10min,转移至反应釜中,在180℃条件下处理8h。
将得到的纳米颗粒离心洗涤后分散于5-15mL乙醇-水溶液(1:1)中,加入 0.1-0.5mL 1mol/L NaF及0.1-0.5mL 3mol/L HF溶液,搅拌10-30min,在 100-180℃条件下处理4-12h,离心得到PDA@UCNP纳米颗粒。
图2b所示为所得到的上转换发光层包覆的聚多巴胺纳米颗粒 (PDA@UCNP)的形貌图。图3为上转换发光层包覆的聚多巴胺纳米颗粒 (PDA@UCNP)在980nm近红外光以1W/cm2功率激发下的光热升温图。
将(2)中合成的PDA@UCNP与多爪聚乙二醇(mPEG-PMHC18)按质量比1:1 混合搅拌24h,洗涤,得到PDA@UCNP-PEG纳米颗粒。
加入光敏分子Ce6乙醇溶液,搅拌12h,离心得到PDA@UCNP-PEG/Ce6 纳米探针。
图4为上转换发光层包覆的聚多巴胺纳米颗粒(PDA@UCNP)在980nm近 红外光激发下的发射光谱及光敏分子(Ce6)的吸收光谱图。
实施例2
在20mL的乙醇-水(1:1)的混合溶液中,加入1mL稀土元素比例为60%: 20%:20%(GdCl3:YbCl3:ErCl3)的溶液,磁力搅拌10-30min形成透明溶液。加 入步骤(1)中合成的3mg聚多巴胺纳米颗粒粉末,超声10-30min。随后将溶液 在90℃下回流6h,即得到PDA@Gd,Yb,Er(OH)CO3纳米颗粒。
将PDA@Gd,Yb,Er(OH)CO3纳米颗粒分散于5mL水中,加入5mL乙二醇 及20mg NaF,搅拌10min,转移至反应釜中,在180℃条件下处理8h。
将得到的纳米颗粒离心洗涤后分散于5-15mL乙醇-水溶液(1:1)中,加入 0.1-0.5mL 1mol/L NaF及0.1-0.5mL 3mol/L HF溶液,搅拌10-30min,在 100-180℃条件下处理4-12h,离心得到PDA@UCNP纳米颗粒。
图2b所示为所得到的上转换发光层包覆的聚多巴胺纳米颗粒 (PDA@UCNP)的形貌图。图3为上转换发光层包覆的聚多巴胺纳米颗粒 (PDA@UCNP)在980nm近红外光以1W/cm2功率激发下的光热升温图。
将(2)中合成的PDA@UCNP与多爪聚乙二醇(mPEG-PMHC18)按质量比1:1 混合搅拌24h,洗涤,得到PDA@UCNP-PEG纳米颗粒。
加入光敏分子Ce6乙醇溶液,搅拌12h,离心得到PDA@UCNP-PEG/Ce6 纳米探针。
实施例3
在20mL的乙醇-水(1:1)的混合溶液中,加入1mL稀土元素比例为78%: 12%:10%(GdCl3:YbCl3:ErCl3)的溶液,磁力搅拌10-30min形成透明溶液。加 入步骤(1)中合成的3mg聚多巴胺纳米颗粒粉末,超声10-30min。随后将溶液 在90℃下回流6h,即得到PDA@Gd,Yb,Er(OH)CO3纳米颗粒。
将PDA@Gd,Yb,Er(OH)CO3纳米颗粒分散于5mL水中,加入5mL乙二醇 及20mg NaF,搅拌10min,转移至反应釜中,在180℃条件下处理8h。
将得到的纳米颗粒离心洗涤后分散于5-15mL乙醇-水溶液(1:1)中,加入 0.1-0.5mL 1mol/L NaF及0.1-0.5mL 3mol/L HF溶液,搅拌10-30min,在 100-180℃条件下处理4-12h,离心得到PDA@UCNP纳米颗粒。
图2b所示为所得到的上转换发光层包覆的聚多巴胺纳米颗粒 (PDA@UCNP)的形貌图。图3为上转换发光层包覆的聚多巴胺纳米颗粒 (PDA@UCNP)在980nm近红外光以1W/cm2功率激发下的光热升温图。
将(2)中合成的PDA@UCNP与多爪聚乙二醇(mPEG-PMHC18)按质量比1:1 混合搅拌24h,洗涤,得到PDA@UCNP-PEG纳米颗粒。
加入光敏分子Ce6乙醇溶液,搅拌12h,离心得到PDA@UCNP-PEG/Ce6 纳米探针。
实施例4
纳米探针(PDA@UCNP-PEG/Ce6)用于皮下肿瘤治疗,其步骤是:
(1)小鼠肿瘤模型的制备:将5×105小鼠乳腺癌4T1细胞注射于Balb/c小鼠 后腿部,使肿瘤生长7-10天至100mm3左右待用。
(2)将2mg纳米探针(PDA@UCNP-PEG/Ce6分散于100μL PBS磷酸缓冲液 中)以瘤内注射的方式注射到小鼠肿瘤内部,然后对肿瘤部位进行光照(980nm, 1W/cm2,5min)。分别设置探针对照组与光照对照组。
(3)每隔一天记录小鼠的肿瘤体积及体重。如图1所示,实验组的肿瘤基本 消失,而其它组都有不同程度的生长,这一现象即说明了该纳米探针能有效地 治疗肿瘤。
实施例5
纳米探针与PD-1免疫治疗结合用于肿瘤的治疗及肿瘤转移抑制,其步骤 为:
(1)小鼠肿瘤模型的制备:将5×105小鼠乳腺癌4T1细胞注射于Balb/c小鼠 后腿部,使肿瘤生长7天后在小鼠的另一侧后腿部注射2×105小鼠乳腺癌4T1细 胞,继续使肿瘤生长3天。
(2)将2mg纳米探针(PDA@UCNP-PEG/Ce6分散于100μL PBS磷酸缓冲液 中)以瘤内注射的方式注射到小鼠第一次接种的肿瘤内部,然后对该肿瘤部位进 行光照(980nm,1W/cm2,5min),另一侧较小的肿瘤不做任何处理。分别设置探 针对照组、光照对照组及PD-1抗体对照组。
(3)每隔一天记录小鼠的两测肿瘤体积。如图2所示,实验组中治疗的肿瘤 基本消失,而且实验组另一侧的肿瘤生长都有不同程度的抑制。但是其它组两 侧的肿瘤都有不同程度的生长,这一现象即说明了该纳米探针不仅能有效地治 疗原发肿瘤也能抑制肿瘤的转移。
实施例6
体内核磁共振成像,其步骤为:
(1)小鼠肿瘤模型的制备:将5×105小鼠乳腺癌4T1细胞注射于Balb/c小鼠 后腿部,使肿瘤生长7-10天至100mm3左右待用。
(2)将纳米探针由静脉注射于小鼠体内,24h后在武汉物理与数学研究所进 行核磁共振成像,仪器型号为Bruker 4.5T,German。并以未注射纳米探针的小鼠 为空白试验。如图3所示,注射有纳米探针的小鼠肿瘤明显的信号增强,即说明 了该探针能用于肿瘤的成像与监测。

Claims (10)

1.一种抗肿瘤药物,包括一种光热光敏剂,其特征在于:所述光敏剂,包括载体和结合于所述载体上的光敏剂功能成分;
所述光敏剂载体为纳米级的核壳结构,所述核壳结构包括核体和包覆于所述核体的壳体,所述核体为聚多巴胺纳米颗粒,所述壳体包括Gd离子化合物、Yb离子化合物和Er离子化合物。
2.如权利要求1所述的抗肿瘤药物,其特征在于:所述Gd元素、Yb元素和Er元素的摩尔比例为78%:20%:2%。
3.如权利要求1所述的抗肿瘤药物,其特征在于:
所述光敏剂载体的粒径为120-160nm;
所述核体粒径为50-70nm;
所述壳体的厚度为70-90nm。
4.如权利要求1所述的抗肿瘤药物,其特征在于:所述上转换光敏剂功能成分包括光敏剂Ce6分子。
5.如权利要求1所述的抗肿瘤药物,其特征在于:所述光敏剂功能成分与载体比值10%-15%。
6.如权利要求1所述的抗肿瘤药物,其特征在于:所述抗肿瘤药物的制备方法包括如下步骤:
在聚多巴胺纳米颗粒上包裹稀土碳酸氢氧物层;
将稀土碳酸氢氧物层转换成上转换发光层;
在所述的上转换发光层上修饰活性基团;
在修饰有活性基团的上转换发光层上装载光敏剂;
添加其他辅料。
7.如权利要求6所述的抗肿瘤药物,其特征在于:所述活性基团包括羟基、羧基和氨基中的任意一种或多种。
8.如权利要求1所述的抗肿瘤药物,其特征在于:所述抗癌药物的用量为50-100mg/kg.
9.如权利要求1所述的抗肿瘤药物,其特征在于:所述抗癌药物的辅料包括缓释剂或靶向物质中的一种或多种。
10.如权利要求9所述的抗肿瘤药物,其特征在于:所述靶向物质包括叶酸。
CN201910232636.1A 2019-03-26 2019-03-26 抗肿瘤药物及其制备方法 Pending CN110193083A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910232636.1A CN110193083A (zh) 2019-03-26 2019-03-26 抗肿瘤药物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910232636.1A CN110193083A (zh) 2019-03-26 2019-03-26 抗肿瘤药物及其制备方法

Publications (1)

Publication Number Publication Date
CN110193083A true CN110193083A (zh) 2019-09-03

Family

ID=67751856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910232636.1A Pending CN110193083A (zh) 2019-03-26 2019-03-26 抗肿瘤药物及其制备方法

Country Status (1)

Country Link
CN (1) CN110193083A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104017581A (zh) * 2014-06-18 2014-09-03 东南大学 光热转换纳米材料及其制备及应用方法
CN108130069A (zh) * 2017-12-27 2018-06-08 深圳大学 稀土上转换纳米诊疗剂及其制备方法
CN109498807A (zh) * 2018-08-15 2019-03-22 西安电子科技大学 上转换纳米粒子非氧依赖性光动力学诊疗探针及制备方法
CN109730968A (zh) * 2019-03-15 2019-05-10 深圳大学 光敏剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104017581A (zh) * 2014-06-18 2014-09-03 东南大学 光热转换纳米材料及其制备及应用方法
CN108130069A (zh) * 2017-12-27 2018-06-08 深圳大学 稀土上转换纳米诊疗剂及其制备方法
CN109498807A (zh) * 2018-08-15 2019-03-22 西安电子科技大学 上转换纳米粒子非氧依赖性光动力学诊疗探针及制备方法
CN109730968A (zh) * 2019-03-15 2019-05-10 深圳大学 光敏剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANTONI RIBAS,ET AL.: "Cancer immunotherapy using checkpoint blockade", 《SCIENCE》 *
BEI LIU, ET AL.: "Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy", 《J. MATER. CHEM. B》 *
FUYAO LIU, ET AL.: "Facile Preparation of Doxorubicin-Loaded Upconversion@Polydopamine Nanoplatforms forSimultaneous In Vivo Multimodality Imaging and Chemophotothermal Synergistic Therapy", 《ADV. HEALTHCARE MATER.》 *
丁星: "多功能纳米诊疗剂的构建及其在肿瘤的成像与治疗中的应用研究", 《中国优秀博硕士学位论文全文数据库(硕士)医药卫生科技辑》 *

Similar Documents

Publication Publication Date Title
Wang et al. Upconverted metal–organic framework janus architecture for near-infrared and ultrasound co-enhanced high performance tumor therapy
Li et al. Nanoscale metal‐organic frameworks: synthesis, biocompatibility, imaging applications, and thermal and dynamic therapy of tumors
Zhou et al. Porphyrin-loaded nanoparticles for cancer theranostics
Xu et al. Recent advances in nanomaterials for sonodynamic therapy
Wang et al. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics
Shen et al. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy
Chen et al. Current and promising applications of Hf (IV)-based MOFs in clinical cancer therapy
Gu et al. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications
Poudel et al. Copper sulfide: An emerging adaptable nanoplatform in cancer theranostics
Lucky et al. Nanoparticles in photodynamic therapy
Hong et al. Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment
Lin et al. Nano-photosensitizers for enhanced photodynamic therapy
Yan et al. Progress in light‐responsive lanthanide nanoparticles toward deep tumor theranostics
Li et al. Emerging nanotherapeutics for facilitating photodynamic therapy
Lai et al. Molecular design of upconversion nanoparticles for gene delivery
Yang et al. Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging
Zhang et al. Low-dose x-ray excited photodynamic therapy based on naluf4: Tb 3+–rose bengal nanocomposite
JP2009544584A (ja) 治療及び画像化を目的とするコア・シェル構造ナノ粒子
Wang et al. Functionalization of bismuth sulfide nanomaterials for their application in cancer theranostics
Li et al. Degradable multifunctional porphyrin-based porous organic polymer nanosonosensitizer for tumor-specific sonodynamic, chemo-and immunotherapy
Luo et al. Surface engineering of lanthanide nanoparticles for oncotherapy
CN112566663A (zh) 采用长波长光激发的三重态-三重态能量转移及其方法
Sun et al. Nanosensitizer-mediated unique dynamic therapy tactics for effective inhibition of deep tumors
Li et al. Polydopamine-containing nano-systems for cancer multi-mode diagnoses and therapies: A review
Yu et al. Near-infrared light responsive upconversion nanoparticles for imaging, drug delivery and therapy of cancers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190903