CN110180022B - 一种具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料及其制备方法 - Google Patents

一种具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料及其制备方法 Download PDF

Info

Publication number
CN110180022B
CN110180022B CN201910634140.7A CN201910634140A CN110180022B CN 110180022 B CN110180022 B CN 110180022B CN 201910634140 A CN201910634140 A CN 201910634140A CN 110180022 B CN110180022 B CN 110180022B
Authority
CN
China
Prior art keywords
self
articular cartilage
monomer
shear force
lubrication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910634140.7A
Other languages
English (en)
Other versions
CN110180022A (zh
Inventor
宋文龙
张雪巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201910634140.7A priority Critical patent/CN110180022B/zh
Publication of CN110180022A publication Critical patent/CN110180022A/zh
Application granted granted Critical
Publication of CN110180022B publication Critical patent/CN110180022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/02Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
    • C08F261/04Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/10Materials for lubricating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/24Materials or treatment for tissue regeneration for joint reconstruction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

一种具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料及其制备方法,属于仿生自修复润滑关节软骨材料及其制备技术领域。受关节软骨的启发,我们将共价交联的高强度水凝胶网络、剪切力响应的超分子网络和本征自修复的结构基元有机结合,提出一种制备仿关节软骨活性功能的超分子智能水凝胶材料,其本身具有良好的力学性能和剪切自润滑功能作用;更重要的是材料通过剪切力响应的渗出润滑层与自修复基元的协同相互作用,在模拟动态渗出润滑机制的同时,实现了材料磨损后对三维网络结构和剪切力响应自润滑功能的双重修复。该设计理念可以应用于新型人造关节软骨或自修复润滑器件的制备,具有广泛的应用前景。

Description

一种具有动态润滑自修复能力的剪切力响应超分子仿生关节 软骨材料及其制备方法
技术领域
本发明属于仿生自修复润滑关节软骨材料及其制备技术领域,具体涉及一种具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料及其制备方法。
背景技术
关节软骨具有承受力学负荷的纤维网络结构和天然的动态润滑功能,能够在一定压力条件下使关节灵活运动满足人正常生理活动的需要。渗出润滑是一种经典的关节软骨润滑机制,即软骨在受到法向载荷力时软骨内润滑基质渗出到软骨表面形成润滑层,在水平方向的摩擦作用(剪切力作用)下,这一润滑层会达到超润滑的效果。我们可以通过具有剪切力响应触变功能的超分子网络水凝胶材料来模拟这一动态的自润滑过程以实现人造关节软骨仿生材料的制备。但是某些职业劳动、剧烈运动、膝内翻和外翻畸形等使整个关节局部磨损,导致软骨机制的拱形纤维网状结构被破坏,摩擦系数增大,软骨发生退变失去原有生理润滑功能。因此,解决损伤后的结构和润滑功能的修复是现今人造关节软骨材料设计的关键难题。
从关节本身结构来看,关节软骨由软骨组织及其周围的软骨膜组成,其中软骨组织是由软骨细胞和丰富的细胞外基质组成的具有弹性的结缔组织。最新研究表明,细胞外基质并不是一个静态的结构而是在一种动态的转换机制下维持平衡,软骨细胞和基质之间是双向互动的。对于健康的关节软骨来说,软骨细胞合成分泌的分子自组装形成润滑层,该润滑层在渗出润滑的过程中可以在一定程度上修复软骨损伤。受关节软骨这一生理功能的启发,我们引入可以本征自修复的结构基元,通过剪切力响应的渗出润滑层与自修复基元的协同相互作用,在模拟动态渗出润滑机制的同时,实现了人造软骨水凝胶材料磨损后对三维网络结构和剪切力响应自润滑功能的双重修复。
发明内容
本发明的目的是提供一种具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料及其制备方法。该材料设计体系中,共价交联的高强度水凝胶网络提供良好的力学支撑作用;剪切力响应的超分子网络部分在施加剪切力后,超分子网络解组装从三维网络结构中渗出到表面形成润滑层,使材料具有优异的自润滑功能;同时向材料中引入了自修复基元使材料具有本征自修复的特性,该特性使材料在受到损伤后可以实现结构和润滑性能的双重修复。该合成方法所用材料简单易得,无毒害具有良好的生物相容性,合成条件温和,操作简便。所得材料表面具有很低的摩擦系数,且材料在磨损后表面的润滑功能可以基本恢复。此设计理念可以应用于新型人造关节软骨或自修复润滑器件的制备,具有广泛的应用前景。
本发明所述的一种具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料的制备方法,其步骤如下:
(1)量取1~100 mL单体1于锥形瓶中,然后称取1~40g单体2固体粉末加入到单体1中,再向单体1中加入交联剂4和引发剂5,交联剂和引发剂的终浓度均为0.05 μg/mL~0.05g/mL,磁力搅拌(转速为100~2000 r/min)1~50 min使溶液混合均匀;
(2)取步骤(1)中配制溶液40 mL,加入0.02~32 g单体3,在35~95 ℃条件下磁力搅拌0.5~5 h使单体3溶解;溶解后将溶液冷却至室温,得到单体3浓度为0.5~800 mg/mL的溶液;将该溶液在40~80℃条件下水浴加热3~48 h或紫外光照5 min~ 12 h成胶,用去离子水冲洗胶体样品表面除去残留单体,得到的水凝胶即为本发明所述的具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料,该样品置于恒温恒湿箱中于室温条件下保存。
上述步骤(1)中的单体1和单体2反应后得到可自修复的高强度水凝胶材料,其中单体1具体包括:异丙基丙烯酰胺、胆酸、辛基酚聚乙氧基丙烯酸酯、环糊精、聚(乙二醇)甲基丙烯酸甲酯端封聚氨酯醚、甲基丙烯酸乙酯、乙烯吡咯烷酮、硫酸软骨素复合醛、琥珀酰壳聚糖、3-((2-(甲基丙烯酰氧基)乙基)二甲基胺)丙烯-1-磺酸盐、软木脂、丙烯酸、聚丙烯酸、甲基丙烯酸十八酯、氨乙基甲基丙烯酸酯、二环戊二烯、丙烯酰氨基己酸、萘丸、二茂铁、羟乙基丙烯酰胺等;单体2具体包括:海藻酸钠-二氧化硅、海藻酸钠、丙烯酰胺、N,N-二甲基丙烯酰胺、乙烯苯三唑、尿素、聚乙烯醇、壳聚糖、透明质酸钠、纤维素或琼脂、丙烯酸钠、丙烯酰甘氨酰胺、聚乙二醇二丙烯酸脂和N-异丙基丙烯酰胺等。
上述步骤(2)中的单体3反应后得到具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料,单体3具体包括:瓜尔豆胶-聚乙二醇二缩水甘油醚、芴甲氧羰基-L-色氨酸、藻胶-氨基己酸、腺嘌呤-核黄素磷酸钠、磷脂酰胆碱脂、甲基纤维素、壳聚糖-特比萘芬-丙二醇、壳聚糖、锂皂石、氧化乙烯、聚乳酸-聚乙烯胺、透明质酸、环糊精、金刚烷、氧化乙烯、苯基丙氨酸、芘、甲醇、赖氨酸、山嵛酸酰胺、芥子酸酰胺、蛋白聚糖。
上述步骤(1)中的交联剂4可以引发单体2聚合,交联剂4具体包括:戊二醛,京尼平,N,N-亚甲基双丙烯酰胺,1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐或N-羟基琥珀酰亚胺;
上述步骤(1)中的引发剂5可以为过硫酸钾或过硫酸铵,酮戊二酸。
附图说明
图1:为实施例1中制备的具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料在施加剪切力前(a)后(b)的扫描电镜照片;剪切后纤维状结构减少,证明施加剪切力过程中超分子网络对剪切力产生响应发生了解组装。
图2:为实施例1中制备的具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料的摩擦曲线图。施加剪切力(摩擦力)30个循环后,材料的摩擦系数会逐渐减小,说明超分子水凝胶材料能够有效调控仿生软骨材料表面的润滑性能。
图3:为实施例1中制备的具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料用手术刀在表面划出切口时材料表面的修复状态随时间变化的显微镜照片。从图中可以看出,6 h后切口基本消失,证明材料具备良好的修复功能。
图4:为实施例1制备的具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料切断(a)前和修复后(b)光学照片。可以看出六小时后切口修复并且具有一定的拉伸强度。
图5:为实施例1中制备的具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料切口处材料表面所受的摩擦力(浅灰色线段)与无切口位置摩擦力(深灰色线段)随修复时间(6小时)的对比图。由图可知,切口处的摩擦力明显增大,但修复六小时后摩擦力恢复到正常水平。说明该仿生自修复剪切力响应超分子润滑关节软骨材料可以实现润滑功能的修复作用。
具体实施方式
下面结合实施实例对本发明做进一步的阐述,而不是要以此对本发明进行限制。
实施例1
量取50 mL 羟乙基丙烯酰胺于锥形瓶中,然后称取5 g单体聚乙烯醇粉末加入到上述溶液中,向溶液加入交联剂戊二醛和引发剂酮戊二酸,交联剂和引发剂的终浓度均为0.5μg/mL,磁力搅拌(转速为800 r/min)50 min使溶液混合均匀。
(2)取步骤(1)中配制溶液40 mL,加入60 mg芴甲氧羰基-L-色氨酸;在85 ℃条件下磁力搅拌3 h使单体溶解;溶解后将溶液冷却至室温,得到芴甲氧羰基-L-色氨酸浓度为1.5 mg/mL的溶液,将上述溶液紫外光照5 h成胶,用去离子水冲洗样品表面除去残留单体,得到的水凝胶即为本发明所述的具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料,该样品置于恒温恒湿箱中在室温条件下保存。

Claims (2)

1.一种具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料的制备方法,其步骤如下:
(1)量取1~100 mL单体1于锥形瓶中,然后称取1~40g单体2固体粉末加入到单体1中,再向单体1中加入交联剂4和引发剂5,交联剂和引发剂的终浓度均为0.05 μg/mL~0.05 g/mL,磁力搅拌1~50 min使溶液混合均匀,转速为100~2000 r/min;
(2)取步骤(1)中配制溶液40 mL,加入0.02~32 g单体3,在35~95 ℃条件下磁力搅拌0.5~5 h使单体3溶解;溶解后将溶液冷却至室温,得到单体3浓度为0.5~800 mg/mL的溶液;将该溶液在40~80℃条件下水浴加热3~48 h或紫外光照5 min~ 12 h成胶,用去离子水冲洗胶体样品表面除去残留单体,得到的水凝胶即为所述的具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料,于恒温恒湿室温条件下保存;
上述步骤(1)中的单体1为羟乙基丙烯酰胺;单体2为聚乙烯醇;单体3为瓜尔豆胶-聚乙二醇二缩水甘油醚、芴甲氧羰基-L-色氨酸、藻胶-氨基己酸、腺嘌呤-核黄素磷酸钠、磷脂酰胆碱脂、透明质酸-甲基纤维素、壳聚糖-特比萘芬-丙二醇、壳聚糖-锂皂石-氧化乙烯、聚乳酸-聚乙烯胺、透明质酸-环糊精-金刚烷、环糊精-氧化乙烯、苯基丙氨酸-芘、甲醇-赖氨酸、山嵛酸酰胺-芥子酸酰胺或透明质酸-蛋白聚糖;交联剂4为戊二醛;引发剂5为过硫酸钾或过硫酸铵或酮戊二酸。
2.一种具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料,其特征在于:是由权利要求1所述的方法制备得到。
CN201910634140.7A 2019-07-15 2019-07-15 一种具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料及其制备方法 Active CN110180022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910634140.7A CN110180022B (zh) 2019-07-15 2019-07-15 一种具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910634140.7A CN110180022B (zh) 2019-07-15 2019-07-15 一种具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110180022A CN110180022A (zh) 2019-08-30
CN110180022B true CN110180022B (zh) 2021-11-05

Family

ID=67725737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910634140.7A Active CN110180022B (zh) 2019-07-15 2019-07-15 一种具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110180022B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112625269B (zh) * 2020-12-31 2022-04-05 中北大学 一种具有高强度、自润滑的聚乙烯醇水凝胶的制备方法
CN113388274B (zh) * 2021-06-24 2022-03-08 中国科学院兰州化学物理研究所 一种耐磨水润滑自修复涂层及其制备方法
CN113967287B (zh) * 2021-11-26 2022-11-08 广东省科学院微生物研究所(广东省微生物分析检测中心) 一种抗菌低毒牙/骨修复活性材料及其制备方法
CN114561237B (zh) * 2022-04-19 2022-10-28 中国科学院兰州化学物理研究所 一种剪切响应性水基凝胶润滑剂的制备方法
CN115569235B (zh) * 2022-06-29 2023-12-22 湖南工业大学 一种基于脂质润滑的水凝胶的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118662A2 (en) * 2011-02-28 2012-09-07 The General Hospital Corporation Highly porous polyvinyl alcohol hydrogels for cartilage resurfacing
WO2013103956A1 (en) * 2012-01-05 2013-07-11 President And Fellows Of Harvard College Interpenetrating networks with covalent and ionic crosslinks
CN105085817A (zh) * 2015-08-31 2015-11-25 华南理工大学 一种基于透明质酸的阴离子聚合物刷及其制备方法和应用
CN105582572A (zh) * 2016-02-18 2016-05-18 深圳市第二人民医院 一种可注射型软骨修复超分子水凝胶及其制备方法
CN106349412A (zh) * 2015-04-21 2017-01-25 天津大学 基于丙烯酰基甘氨酰胺的超分子水凝胶作为自修复材料的应用
CN107670104A (zh) * 2017-11-21 2018-02-09 吉林大学 一种具有剪切力响应自润滑仿生关节软骨的制备方法
CN108440772A (zh) * 2018-03-06 2018-08-24 长春工业大学 一种自修复导电双网络结构水凝胶及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9458357B2 (en) * 2011-03-02 2016-10-04 Massachusetts Institute Of Technology ph-sensitive sacrificial materials for the microfabrication of structures
EP3016637B1 (en) * 2013-07-04 2020-11-11 Yeda Research and Development Co., Ltd. Low friction hydrogels and hydrogel-containing composite materials
CN107007881B (zh) * 2017-05-12 2020-11-27 深圳华诺生物科技有限公司 可用于药物加载和释放的可注射型自愈合凝胶及其制备方法和应用
CN109880011A (zh) * 2019-02-19 2019-06-14 太原理工大学 一种关节软骨浅表层修复用高效自修复水凝胶及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118662A2 (en) * 2011-02-28 2012-09-07 The General Hospital Corporation Highly porous polyvinyl alcohol hydrogels for cartilage resurfacing
WO2013103956A1 (en) * 2012-01-05 2013-07-11 President And Fellows Of Harvard College Interpenetrating networks with covalent and ionic crosslinks
CN106349412A (zh) * 2015-04-21 2017-01-25 天津大学 基于丙烯酰基甘氨酰胺的超分子水凝胶作为自修复材料的应用
CN105085817A (zh) * 2015-08-31 2015-11-25 华南理工大学 一种基于透明质酸的阴离子聚合物刷及其制备方法和应用
CN105582572A (zh) * 2016-02-18 2016-05-18 深圳市第二人民医院 一种可注射型软骨修复超分子水凝胶及其制备方法
CN107670104A (zh) * 2017-11-21 2018-02-09 吉林大学 一种具有剪切力响应自润滑仿生关节软骨的制备方法
CN108440772A (zh) * 2018-03-06 2018-08-24 长春工业大学 一种自修复导电双网络结构水凝胶及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Autonomic self-healing in covalently crosslinked hydrogels containing;Deniz C;《Polymer》;20131101;第54卷(第23期);第6382页第2.1节第2段、21页第1段、第6387页左栏第2段 *
High-strength semi-crystalline hydrogels with self-healing and shape memory functions;Kurt, Burcu;《EUROPEAN POLYMER JOURNAL》;20160830;第81卷;第4页第2.2节、第20页第3段、21页第1段 *
Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage;Beddoes, Charlotte M,;《MATERIALS》;20160630;第9卷(第6期);全文 *
Super Bulk and Interfacial Toughness of Physically Crosslinked Double-Network Hydrogels;Chen, H;《ADVANCED FUNCTIONAL MATERIALS》;20171124;第27卷(第44期);全文 *
双层网络水凝胶的分子构造及摩擦性能研究;吴楚;《中国优秀硕士学位论文全文数据库医药卫生科技辑》;20140930;全文 *
基于超分子作用的自修复及形状记忆水凝胶;蔡挺挺;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;20181230;全文 *

Also Published As

Publication number Publication date
CN110180022A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
CN110180022B (zh) 一种具有动态润滑自修复能力的剪切力响应超分子仿生关节软骨材料及其制备方法
Li et al. Natural hydrogels for cartilage regeneration: Modification, preparation and application
Han et al. Mussel-inspired tissue-adhesive hydrogel based on the polydopamine–chondroitin sulfate complex for growth-factor-free cartilage regeneration
Tangsadthakun et al. The influence of molecular weight of chitosan on the physical and biological properties of collagen/chitosan scaffolds
Meng et al. Autonomous self-healing silk fibroin injectable hydrogels formed via surfactant-free hydrophobic association
Suh et al. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review
Yan et al. Construction of injectable double-network hydrogels for cell delivery
Lai et al. The preparation and characterisation of drug-loaded alginate and chitosan sponges
Serafin et al. Synthesis and evaluation of alginate, gelatin, and hyaluronic acid hybrid hydrogels for tissue engineering applications
Wang et al. Cell-laden photocrosslinked GelMA–DexMA copolymer hydrogels with tunable mechanical properties for tissue engineering
Haque et al. Super tough double network hydrogels and their application as biomaterials
Abeer et al. A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects
Jia et al. Hybrid multicomponent hydrogels for tissue engineering
Jiang et al. Preparation and characterization of hybrid double network chitosan/poly (acrylic amide-acrylic acid) high toughness hydrogel through Al3+ crosslinking
Morais et al. Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes
Zawko et al. Photopatterned anisotropic swelling of dual-crosslinked hyaluronic acid hydrogels
US20230098351A1 (en) Responsive elastic polymers and methods of making and using same
Pelletier et al. Amphiphilic derivatives of sodium alginate and hyaluronate for cartilage repair: rheological properties
CA2621824A1 (en) Interpenetrating networks, and related methods and compositions
CN107737370A (zh) 一种用于软骨修复的高强、超弹、导电水凝胶的制备方法
Yan et al. Preparation of self-assembled collagen fibrillar gel from tilapia skin and its formation in presence of acidic polysaccharides
Portnov et al. Injectable hydrogel-based scaffolds for tissue engineering applications
Koob et al. Mechanical and thermal properties of novel polymerized NDGA–gelatin hydrogels
Na Double network hydrogels with extremely high toughness and their applications
JP2008508959A5 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant