CN110167449A - 便携式超声系统 - Google Patents

便携式超声系统 Download PDF

Info

Publication number
CN110167449A
CN110167449A CN201780080708.4A CN201780080708A CN110167449A CN 110167449 A CN110167449 A CN 110167449A CN 201780080708 A CN201780080708 A CN 201780080708A CN 110167449 A CN110167449 A CN 110167449A
Authority
CN
China
Prior art keywords
touch
user
image
computer
screen display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780080708.4A
Other languages
English (en)
Inventor
A·M·江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Della Industries
TeraTech Corp
Original Assignee
Della Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Della Industries filed Critical Della Industries
Publication of CN110167449A publication Critical patent/CN110167449A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4427Device being portable or laptop-like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4405Device being mounted on a trolley
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4433Constructional features of the ultrasonic, sonic or infrasonic diagnostic device involving a docking unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/465Displaying means of special interest adapted to display user selection data, e.g. icons or menus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04886Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the display area of the touch-screen or the surface of the digitising tablet into independently controllable areas, e.g. virtual keyboards or menus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04842Selection of displayed objects or displayed text elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

示例性实施例提供用于便携式医疗超声成像的系统和方法。优选实施例利用手提式电池供电的系统,所述系统具有用来控制成像和显示器操作的显示器和用户界面。可单独或与触摸屏控件组合使用键盘控制面板,以致动图形用户界面。示例性实施例还提供一种包含一或多个多芯片模块的超声引擎电路板,以及一种包含超声引擎电路板的便携式医疗超声成像系统。

Description

便携式超声系统
相关申请的交叉引用
本申请要求2017年9月29日提交的第62/565,846号美国申请和2016年11月16日提交的第62/422,808号美国申请的优先权,第62/422,808号美国申请是2014年9月25日提交的第15/025,058号美国申请的部分接续申请,也是2013年9月25日提交的第14/037,106号美国申请的部分接续申请,第14/037,106号美国申请要求2013年3月26日提交的国际申请PCT/US2013/033941和2013年3月15日提交的第13/838,694号美国申请的优先权,并要求2012年3月26日提交的第61/615,627号美国临时申请和2012年9月21日提交的第61/704,254号美国临时申请的优先权,这些申请以全文引用的方式并入本文中。
背景技术
医疗超声成像已经成为许多医学成像应用的行业标准。近年来,越来越需要便携的医疗超声成像设备,使得医务人员能够轻易地将设备运送到和运送离开医院和/或现场位置,并且需要医疗超声成像设备更加用户友好,以便适应可能具有一系列技术水平的医务人员。
常规的医疗超声成像设备通常包含至少一个超声探头/换能器、键盘和/或旋钮、计算机和显示器。在典型的操作模式中,超声探头/换能器生成可基于频率级穿透组织到不同深度的超声波。另外,医务人员可以通过键盘和/或旋钮将系统输入输入到计算机,并在显示器上查看组织结构的超声图像。
然而,采用这种键盘和/或旋钮的常规医疗超声成像设备可能很笨重,因此可能不宜便携到医院和/或现场位置。此外,因为这种键盘和/或旋钮通常具有不均匀的表面,所以它们可能难以在医院和/或现场环境中保持洁净,但是在那些环境中,无菌场地的保持对患者健康来说可为至关重要的。一些常规医疗超声成像设备已并有触摸屏技术以提供部分用户输入界面。然而,采用这种触摸屏技术的常规医疗超声成像设备结合传统的键盘和/或旋钮一般只提供有限的触摸屏功能性,因此可能不仅难以保持洁净,而且使用复杂。
发明内容
根据本申请,公开医疗超声成像的系统和方法。本发明所公开的医疗超声成像的系统和方法采用医疗超声成像设备,所述设备包含具有膝上型计算机或平板计算机外观尺寸的手持式壳体。用户界面可包含键盘控制面板或多点触摸式触摸屏。所述系统可包含在系统壳体内的图形处理单元,所述图形处理单元连接到用以执行超声成像操作的中央处理器。优选实施例可采用用于处理由所述系统生成的超声图像数据和定量数据的神经网络。例如,另一实施例可处理来自第二成像模态(例如,相机或其它医学成像系统)的图像数据,其中所述系统处理多模态图像数据以提供关注区域的覆叠图像。
触摸屏实施例可辨识和区分触摸屏显示器的表面上的一或多个单点触摸、多点触摸和/或同时触摸,从而允许使用手势作为医疗超声成像设备的用户输入,所述手势在简单的单点手势到复杂的多点移动手势范围内。
根据一个方面,示例性医疗超声成像系统包含:壳体,其具有以平行平面形式刚性地安装到彼此的前面板和后面板;触摸屏显示器;计算机,其具有至少一个处理器和至少一个存储器;超声波束成形系统;及电池。医疗超声成像设备的壳体实施为平板计算机外观尺寸。触摸屏显示器安置在壳体的前面板上,且包含多点触摸式LCD触摸屏,所述触摸屏可辨识和区分触摸屏显示器的表面上的一或多个单点触摸或手势、多点触摸或手势和/或同时触摸或手势。计算机、超声波束成形系统或引擎及电池以操作方式安置在壳体内。医疗超声成像设备可使用在壳体内以操作方式连接于计算机和超声引擎之间的火线连接及具有探头附接/拆离控制杆的探头连接器,以便连接至少一个超声探头/换能器。此外,示例性医疗超声成像系统包含I/O端口连接器和DC电力输入。
在示例性操作模式中,医务人员可采用简单的单点手势和/或更复杂的多点手势作为多点触摸式LCD触摸屏的用户输入,以控制示例性医疗超声成像设备的操作模式和/或功能。此类单点/多点手势可对应于映射到可由计算机和/或超声引擎执行的一或多个预定操作的单个和/或多点触摸事件。医务人员可在触摸屏显示器的表面上通过各个手指、手掌和/或触笔运动做出此类单点/多点手势。多点触摸式LCD触摸屏接收单点/多点手势作为用户输入,并将所述用户输入提供到计算机,所述计算机使用处理器执行存储于存储器中的程序指令以结合超声引擎至少在某些时间实行与单点/多点手势相关联的预定操作。触摸屏显示器的表面上的此类单点/多点手势可包含但不限于点击手势、夹捏手势、滑动手势、旋转手势、双击手势、扩展手势、拖动手势、按压手势、按压并拖动手势,及手掌手势。相比于依赖于通过机械切换、键盘元件或触摸板轨迹球界面操作的众多控件特征的现有超声系统,本发明的优选实施例采用单个开/关开关。所有其它操作使用触摸屏控件来实施。此外,优选实施例采用电容式触摸屏显示器,所述显示器对由用户无遮盖的手指以及用户戴着手套的手指致动的检测触摸手势足够敏感。通常,医务人员在医疗程序期间必须佩戴无菌塑料手套。因此,极其需要提供一种可供戴手套的手使用的便携式超声装置;但是,这在之前导致在超声系统中一直无法将触摸屏显示器控件功能用于要求无菌防护的许多应用。本发明的优选实施例提供对戴手套的人员使用经编程触摸手势在触摸屏显示器上进行的所有超声成像操作的控制。
根据一个示例性方面,至少一个滑动手势可用于控制由超声探头/换能器生成的超声波的组织穿透深度。例如,触摸屏显示器表面上沿着“向上”方向的单滑动手势可使穿透深度增加一(1)厘米或任何其它合适的量,且触摸屏显示器表面上沿着“向下”方向的单滑动手势可使穿透深度减小一(1)厘米或任何其它合适的量。另外,触摸屏显示器表面上沿着“向上”或“向下”方向的拖动手势可使穿透深度增加或减小一(1)厘米或任何其它合适的量的倍数。受触摸屏显示器表面上的特定单点/多点手势控制的额外操作模式和/或功能可包含但不限于冻结/存储操作、2维模式操作、增益控制、颜色控制、分屏控制、PW成像控制、电影/时间序列图像剪辑滚动控制、变焦和平移控制、全屏控制、多普勒和2维波束转向控制和/或人体标记控制。示例性医疗超声成像设备的操作模式和/或功能中的至少一些可受实施于触摸屏显示器上的一或多个触摸控件控制,其中波束成形参数可以通过移动触摸手势来重置。医务人员可按要求和/或按需要在触摸屏显示器上提供一或多个特定单点/多点手势作为用户输入以指定待实施的触摸控件的至少一个选定子集。当以全屏模式操作时,如果只有几个或更多个虚拟按钮或图标可以使用,那么大量的触摸屏控件能实现更大的功能性。
根据另一示例性方面,可以在触摸屏显示器的区域内部采用按压手势,并且,响应于按压手势,可在触摸屏显示器上提供虚拟窗口以显示在触摸屏显示器上显示的超声图像的至少一放大部分。根据又一示例性方面,可以在触摸屏显示器的区域内部采用按压并拖动手势,并且,响应于按压并拖动手势,可跟踪超声图像的预定特征。另外,可以在触摸屏显示器的区域内部大体上与按压并拖动手势的一部分同时地采用点击手势,并且响应于点击手势,可以完成超声图像的预定特征的跟踪。这些操作可在单个显示格式的不同区域中操作,使得图像内的关注区域内的移动手势(例如)可执行与图像内但在关注区域外部执行的相同手势不同的功能。
通过向医疗超声成像设备提供多点触摸式触摸屏,医务人员可以使用简单的单点手势和/或更复杂的多点手势来控制设备,而无需传统的键盘或旋钮。因为多点触摸式触摸屏不再需要传统的键盘或旋钮,所以此类医疗超声成像设备在医院和/或现场环境中更容易保持洁净,提供直观的用户友好界面,同时提供全功能操作。此外,通过提供呈平板计算机外观尺寸的此类医疗超声成像设备,医务人员可以轻易地在医院和/或现场位置之间运送设备。
某些示例性实施例提供用于便携式医疗超声成像系统的超声引擎的多芯片模块,其中传输/接收(TR)芯片、前置放大器/时间增益补偿(TGC)芯片和波束成形器芯片组装成竖直堆叠的配置。传输电路向换能器元件提供高电压电气驱动脉冲以生成传输波束。当传输芯片在大于80V的电压下操作时,利用1微米设计规则的CMOS工艺已被用于传输芯片,且亚微米设计规则已被用于低电压接收电路(小于5V)。
本发明的优选实施例利用亚微米工艺来提供具有在多个电压(例如,2.5V、5V和60V或更高)下操作的子电路的集成电路。根据本发明的某些优选实施例,这些特征可与双平面换能器探头结合使用。
因此,可以利用在单个芯片中并有高电压传输、低电压放大器/TGC和低电压波束成形电路的单个IC芯片。使用0.25微米设计规则,此混合信号电路可适应面积小于0.7x0.7(0.49)cm2的芯片中的32换能器通道的波束成形。因此,128通道可以在总面积小于1.5x1.5(2.25)cm2的电路板中使用四个32通道芯片来处理。
如本文中所使用,术语“多芯片模块”是指其中多个集成电路(IC)用统一衬底封装以便它们作为单个组件(即,作为封装于小得多的体积中的高处理容量IC)使用的电子封装。每个IC可包括在薄化半导体晶片中制造的电路。示例性实施例还提供包含一或多个此类多芯片模块的超声引擎,以及包含具有一或多个多芯片模块的超声引擎电路板的便携式医疗超声成像系统。示例性实施例还提供用于本文所传授的制造和组装多芯片模块的方法。在电路板上竖直堆叠TR芯片、前置放大器/TGC芯片和波束成形器芯片最大限度地减小了电路板上的芯片所占用的封装大小(例如,长度和宽度)和占据面积。
多芯片模块中的TR芯片、前置放大器/TGC芯片和波束成形器芯片可各自包含多个通道(例如,每芯片8个通道到每芯片64个通道)。在某些实施例中,高电压TR芯片、前置放大器/TGC芯片和样品内插接收波束成形器芯片可各自包含8个、16个、32个、64个通道。在优选实施例中,双层波束成形器模块中的每个电路具有32个波束成形器接收通道以提供64通道接收波束成形器。第二64通道双层模块可用于形成整体厚度小于2cm的128通道手持式平板计算机超声装置。还可使用在每一层中具有相同或类似通道密度的传输多芯片波束成形器。
竖直集成在多芯片模块中的芯片的示例性数目可包含但不限于两个、三个、四个、五个、六个、七个、八个等等。在超声装置的一个实施例中,在执行超声特定操作的超声引擎的电路板上提供单个多芯片模块。在其它实施例中,在超声引擎的电路板上提供多个多芯片模块。所述多个多芯片模块可以在超声引擎的电路板上竖直堆叠彼此顶部上,以进一步最小化电路板的封装大小和占据面积。
在超声引擎的电路板上提供一或多个多芯片模块在最小化总封装大小和占据面积的同时实现了高通道计数。例如,可以使用多芯片模块在约10cm x约10cm的示例性平面尺寸内组装128通道超声引擎电路板,这相比于常规超声电路的大得多的空间要求有显著改进。在一些实施例中,包含一或多个多芯片模块的超声引擎的单个电路板可具有16到128个通道。在某些实施例中,包含一或多个多芯片模块的超声引擎的单个电路板可具有16个、32个、64个、128个或192个通道等等。
附图说明
示例性实施例的前述和其它目的、方面、特征和优点将变得更加明显,并且可以通过结合附图参考以下描述被更好地理解,在附图中:
图1A是根据本申请的示例性实施例的示例性医疗超声成像设备的平面图;
图1B示出具有键盘控制面板和折叠显示器的电池供电的便携式系统;
图2A和2B是根据本发明的优选实施例的医疗超声成像系统的侧视图;
图3A示出根据本发明的优选实施例的可以用作医疗超声成像系统的用户输入的示例性单点和多点手势;
图3B示出根据本发明的优选实施例的用于操作平板计算机超声系统的过程流程图;
图3C-3K示出调整波束成形和显示器操作的触摸屏手势的细节;
图4A-4C示出根据本发明的优选实施例的可实施于医疗超声成像系统上的示例性触摸控件子集;
图5A和5B是根据本发明的优选实施例的具有囊性病灶的肝在医疗超声成像系统的触摸屏显示器上的示例性表示;
图5C和5D是图5A和5B的肝和囊性病灶在触摸屏显示器上的示例性表示,包含对应于肝的放大部分的虚拟窗口;
图6A是心脏的心尖四(4)腔图在医疗超声成像系统的触摸屏显示器上的示例性表示;
图6B-6E示出图6A的心脏的左心室的心内膜边界在触摸屏显示器上的示例性手动跟踪;
图7A-7C示出图5C和5D的虚拟窗口内的肝上的囊性病灶的大小的示例性测量;
图8A-8C示出图5C和5D的虚拟窗口内的肝上的囊性病灶的示例性卡尺测量;
图9A示出附接到处理器壳体上的多个换能器阵列中的一个;
图9B示出根据示例性实施例的换能器附接序列;
图9C示出示例性实施例的针感测定位系统的透视图;
图9D示出示例性实施例的针引导件的透视图;
图9E示出示例性实施例的针感测定位系统的透视图;
图9F示出具有蜂窝式通信卡的系统;
图10A示出测量心壁运动的方法;
图10B示出示例性实施例的集成超声探头的示意性框图;
图10C示出示例性实施例的集成超声探头的示意性框图;
图11是超声引擎(即,前端超声特定电路系统)的示例性实施例和示例性超声装置的计算机母板(即,主机)的示例性实施例的详细示意性框图;
图12描绘包含组装成竖直堆叠配置的多芯片模块的电路板的示意性侧视图;
图13是用于制造包含组装成竖直堆叠配置的多芯片模块的电路板的示例性方法的流程图;
图14A是包含四个竖直堆叠的裸片的多芯片模块的示意性侧视图,其中裸片通过具有二合一划片粘片膜(D-DAF)的无源硅层与彼此间隔开;
图14B是包含四个竖直堆叠的裸片的多芯片模块的示意性侧视图,其中裸片通过充当裸片间间隔物的DA膜粘合剂与彼此间隔开;
图14C是包含四个竖直堆叠的裸片的多芯片模块的示意性侧视图,其中裸片通过充当裸片间间隔物的DA浆或DA膜粘合剂与彼此间隔开;
图15是使用以下各项进行裸片间堆叠的另一示例性方法的流程图:(a)具有二合一划片粘片膜(D-DAF)的无源硅层,(b)DA浆,(c)厚DA膜,以及(d)包含二合一D-DAF的线上可流动膜(FOW);
图16是包含竖直集成成竖直堆叠配置的超声传输/接收IC芯片、放大器IC芯片和超声波束成形器IC芯片的多芯片模块的示意性侧视图;
图17是作为单板完整超声系统提供的超声引擎(即,前端超声特定电路系统)的示例性实施例和计算机母板(即,主机)的示例性实施例的详细示意性框图;
图18是根据示例性实施例提供的示例性便携式超声系统的透视图;
图19示出在图18的示例性便携式超声系统的触摸屏显示器上呈现的主要图形用户界面(GUI)的示例图;
图20a和20B是根据本发明的另一优选实施例的医疗超声成像系统的俯视图;
图21示出根据本发明的优选实施例9的平板计算机超声系统的优选手推车系统;
图22示出根据本发明的优选实施例的模块化超声成像系统的优选手推车系统;
图23A和23B示出根据本发明的优选实施例的模块化超声成像系统的优选手推车系统;
图24示出根据本发明的优选实施例的模块化超声成像系统的优选手推车系统;
图25A-25B示出平板计算机超声装置的多功能对接基底;
图26示出根据本发明的模块化超声成像系统的2D成像操作模式;
图27示出根据本发明的利用模块化超声成像系统的运动操作模式;
图28示出根据本发明的利用模块化超声成像系统的彩色多普勒操作模式;
图29示出根据本发明的利用模块化超声成像系统的脉冲波多普勒操作模式;
图30示出根据本发明的利用模块化超声成像系统的三工扫描操作模式;
图31示出根据本发明的利用模块化超声成像系统的用户操作模式的GUI主页屏幕界面;
图32示出根据本发明的利用模块化超声成像系统的用户操作模式的GUI菜单屏幕界面;
图33示出根据本发明的利用模块化超声成像系统的用户操作模式的GUI患者数据屏幕界面;
图34示出根据本发明的利用模块化超声成像系统的用户操作模式的GUI预设屏幕界面;
图35示出根据本发明的利用模块化超声成像系统的用户操作模式的GUI检视屏幕界面;
图36示出根据本发明的利用模块化超声成像系统的用户操作模式的GUI报告屏幕界面;
图37A-37C示出根据本发明的利用模块化超声成像系统的用户操作模式的GUI设置显示屏幕界面;
图38示出根据本发明的利用模块化超声成像系统的用户操作模式的GUI设置存储/获取屏幕界面;
图39A-39C示出根据本发明的优选实施例的包括双一维ID多元件阵列的XY双平面探头;
图40示出形成xy探头的双平面图像的操作;
图41示出形成xy探头的双平面图像的操作;
图42示出形成xy探头的双平面图像的高电压驱动器电路;
图43A-43B示出左心室状态的同时双平面评估;以及
图44A和44B示出根据本发明的优选实施例的射血分数探头测量技术;
图45示出作为以mm为单位的侧向距离的函数计算的在焦距处的组织在基波频率、2次谐波频率和超谐波频率下的声压级;
图46示出基波、2次和3次谐波波束特征曲线;
图47示出15Mhz基波图像、15Mhz传输波形、15Mhz接收A模式波形的A模式曲线;
图48示出幻影A模式图像、15Mhz接收基波图像、15Mhz传输波形的全宽半幅(FWHM)曲线;
图49示出GAMMAX 4040GS Phamtom、2次谐波全宽半幅(FWHM)、轴向维度上的销尺寸、15Mhz接收2次谐波图像的7.5Mhz传输波形;
图50示出GAMMAX 4040GS Phamtom、3次谐波FWHM、半高宽、轴向维度上的销尺寸、具有15Mhz接收波形的5Mhz传输波形;
图51A和51B示出方波形的频谱在基波频率以下约-4dB处具有三次谐波分量,即高三次谐波分量;因此常规方波并不适合用作用于高阶谐波成像的传输波形;
图52示出三分之二波形;
图53示出三分之二方波形和正弦波的频谱,这一经修改波形的三次谐波分量比规则方波的三次谐波分量低得多,且接近纯正弦波;
图54A和54B提供基波图像和超谐波成像比较,其中超谐波图像通过使用4.5Mhz传输三分之二经修改波形(利用脉冲相消技术)生成,并由3阶、4阶和5阶高次谐波组成;
图55示出标记有扫描方向和探头位置的水凝胶衬垫。每个矩形是50mm x 200mm,换能器放置在第1矩形的顶部处,且通过手自由移动到底部。且探头移动到第2矩形的起点,再次开始扫描,直到四个矩形区域都被覆盖为止。
图56示出根据本申请的各种实施例的具有完全连接的人造神经节点的计算神经网络模型。
图57示出根据本申请的各种实施例的用于使用多个模态成像的程序的流程图。
图58示出根据本文中所描述的各种实施例的用于执行多模态成像的系统。
图59示出根据本文中所描述的各种实施例的用于提供与外部应用的通信的共享存储器的使用。
图60描绘集成到示例性平板计算机或膝上型计算机超声系统中的分布式处理器系统4954。
图61示出用于执行距离门分析的三工扫描图像。
图62示出图像窗口显示器软键或触摸图标。
图63示出便携式超声系统的键盘控制面板。
图64示出在成像窗口上显示的多个软键。
图65示出添加有箭头和文本的子宫肌瘤的成像。
图66示出随深度变化的时间增益控制(TGC)曲线。
图67示出使用触摸屏或控制面板启动修改的ROI窗口。
图68示出图像上的椭圆的测量。
图69示出图像上的形状的轨迹测量。
图70示出时间序列测量显示窗口。
图71示出解剖研究预设选择窗口。
图72示出使用经调整传输频率的针显像。
具体实施方式
公开医疗超声成像的系统和方法。本发明所公开的医疗超声成像的系统和方法采用包含呈平板计算机外观尺寸的壳体和安置在所述壳体的前面板上的触摸屏显示器的医疗超声成像设备。触摸屏显示器包含多点触摸式触摸屏,所述触摸屏可辨识和区分触摸屏显示器的表面上的一或多个单点触摸、多点触摸和/或同时触摸,从而允许使用手势作为医疗超声成像设备的用户输入,所述手势在简单的单点手势到复杂的多点手势范围内。关于平板计算机超声系统和操作的另外细节描述于2004年11月11日提交的第10/997,062号、2003年3月11日提交的第10/386,360号美国申请和第6,969,352号美国专利,这些专利和申请的全部内容以引用的方式并入本文中。
图1A和1B描绘根据本申请的示例性医疗超声成像设备10、100的说明性实施例。如图1A中所示,医疗超声成像设备100包含壳体102、触摸屏显示器104、具有实施于计算机母板上的至少一个处理器和至少一个存储器106的计算机、超声引擎108和电池110。例如,壳体102可以平板计算机外观尺寸或任何其它合适的外观尺寸形式实施。壳体102具有前面板101和后面板103。触摸屏显示器104安置在壳体102的前面板101上,且包含多点触摸式LCD触摸屏,所述触摸屏可辨识和区分触摸屏显示器104的表面105上的一或多个多点触摸和/或同时触摸。计算机母板106、超声引擎108和电池110以操作方式安置在壳体102内。医疗超声成像设备100进一步包含在壳体102内以操作方式连接于计算机母板106和超声引擎108之间的火线连接112(同样参见图2A),及具有探头附接/拆离控制杆115(同样参见图2A和2B)以便连接至少一个超声探头/换能器的探头连接器114。在某些优选实施例中,换能器探头壳体可包含电路组件,所述电路组件包含换能器阵列、传输和接收电路,以及波束成形器和波束成形器控制电路。此外,医疗超声成像设备100具有一或多个I/O端口连接器116(见图2A)和DC电力输入,所述I/O端口连接器116可包含但不限于一或多个USB连接器、一或多个SD卡、一或多个网络端口、一或多个微显示器端口。图1B中所示的另一实施例采用电池供电的手提式系统,其重量小于15lbs,且具有折叠显示器12和键盘控制面板14,所述键盘控制面板14具有键盘14控件和柄部16。
在示例性操作模式中,医务人员(在本文中也被称为“用户”)可采用简单的单点手势和/或更复杂的多点手势作为触摸屏显示器104的多点触摸式LCD触摸屏的用户输入,以控制医疗超声成像设备100的一或多个操作模式和/或功能。此类手势在本文定义为至少一个手指、触笔和/或手掌在触摸屏显示器104的表面105上的移动、划动或定位。例如,此类单点/多点手势可包含静态或动态手势、连续或分段手势和/或任何其它合适的手势。单点手势在本文定义为可由单个手指、触笔或手掌在触摸屏显示器104上利用单个触摸接触点执行的手势。多点手势在本文定义为可由多个手指或至少一个手指、触笔和手掌的任何合适的组合在触摸屏显示器104上利用多个触摸接触点执行的手势。静态手势在本文定义为不涉及至少一个手指、触笔或手掌在触摸屏显示器104的表面105上的移动的手势。动态手势在本文定义为涉及至少一个手指、触笔或手掌的移动的手势,例如通过在触摸屏显示器104的表面105上拖动一或多个手指产生的移动。连续手势在本文定义为可通过至少一个手指、触笔或手掌在触摸屏显示器104的表面105上的单个移动或划动执行的手势。分段手势在本文定义为可通过至少一个手指、触笔或手掌在触摸屏显示器104的表面105上的多个移动或划动执行的手势。
此类在触摸屏显示器104的表面105上执行的单点/多点手势可对应于单点或多点触摸事件,所述单点或多点触摸事件映射到可由计算机和/或超声引擎108执行的一或多个预定操作。用户可通过在触摸屏显示器104的表面105上进行各种单指、多指、触笔和/或手掌运动来做出此类单点/多点手势。多点触摸式LCD触摸屏接收单点/多点手势作为用户输入,并将所述用户输入提供到处理器,所述处理器执行存储于存储器中的程序指令以结合超声引擎108至少在某些时间实行与单点/多点手势相关联的预定操作。如图3A中所示,触摸屏显示器104的表面105上的此类单点/多点手势可包含但不限于点击手势302、夹捏手势304、滑动手势306、314、旋转手势308、316、双击手势310、扩展手势312、拖动手势318、按压手势320、按压并拖动手势322,和/或手掌手势324。例如,此类单点/多点手势可以存储在实施于计算机母板106上的存储器中的至少一个手势库中。用来控制系统操作的计算机程序可以存储在计算机可读媒体上,并且可以任选地使用连接到图像处理器的触摸处理器和连接到系统波束成形器的控制处理器实施。因此,与传输和接收两者相关联的波束成形器延迟可响应于静态和移动触摸手势两者而调整。
根据图1A的说明性实施例,至少一个滑动手势306或314可供医疗超声成像设备100的用户用于控制由超声探头/换能器生成的超声波的组织穿透深度。例如,触摸屏显示器104的表面105上沿着“向上”方向或任何其它合适的方向的动态连续滑动手势306或314可使穿透深度增加一(1)厘米或任何其它合适的量。另外,触摸屏显示器104的表面105上沿着“向下”方向或任何其它合适的方向的动态连续滑动手势306或314可使穿透深度减小一(1)厘米或任何其它合适的量。此外,触摸屏显示器104的表面105上的沿着“向上”或“向下”方向或任何其它合适的方向的动态连续拖动手势318可使穿透深度增加或减小数厘米或任何其它合适的量。
受触摸屏显示器104的表面105上的特定单点/多点手势控制的额外操作模式和/或功能可包含但不限于冻结/存储操作、2维模式操作、增益控制、颜色控制、分屏控制、PW成像控制、电影/时间序列图像剪辑滚动控制、变焦和平移控制、全屏控制、多普勒和2维波束转向控制,和/或人体标记控制。示例性医疗超声成像设备100的操作模式和/或功能中的至少一些可受实施于触摸屏显示器104上的一或多个触摸控件控制。另外,用户可按要求和/或按需要在触摸屏显示器104上提供一或多个特定单点/多点手势作为用户输入以指定待实施的触摸控件的至少一个选定子集。
图3B中所示的是其中响应于在触摸屏上输入的触摸手势而控制超声波束成形和成像操作340的过程序列。各种静态和移动触摸手势已经被编程到系统中,使得数据处理器可用于控制平板计算机装置内的波束成形和图像处理操作342。用户可选择344具有相关联的第一多个触摸手势的第一显示器操作。使用静态或移动手势,用户可以执行可用于控制成像操作的所述多个手势中的一个,并且可以特定选择可调整用于生成与第一显示器操作相关联的图像数据的波束成形参数346的多个手势中的一个。响应于经更新波束成形程序,更新和显示348所显示图像。用户可另外选择以执行具有不同速度特性(方向或速度或这两者)的不同手势,以调整350第一超声显示器操作的第二特性。接着,基于第二手势更新352所显示图像,所述第二手势可修改成像处理参数或波束成形参数。此过程的实例在本文中进一步详细描述,其中不同手势的速度和方向和改变可与所选显示器操作的独特成像参数相关联。
不管是彩色血流多普勒还是频谱多普勒,血流或组织移动的超声图像基本上都是从移动的测量获得的。在超声扫描仪中,传输一系列脉冲以检测血液移动。来自固定目标的回波针对不同脉冲是相同的。来自移动散射体的回波在信号返回到扫描仪的时间方面具有细微差异。
如从图3C-3H可见,在波束的方向上必须存在运动;如果血流垂直于波束,那么不存在从脉冲到脉冲接收的相对运动,也未检测到血流。这些差异可测量为直接时间差,或更通常来说,在获得‘多普勒频率’的相移方面进行测量。接着,对它们进行处理以产生彩色血流显示或多普勒语图。在图3C-3D中,血流方向垂直于波束方向,脉冲波频谱多普勒未测量到血流。在图3G-3H中,当超声波束转向到更好地对准血流的角度时,在彩色血流图中示出弱血流,另外通过脉冲波多普勒测量到血流。在图3H中,当超声波束响应于移动而转向到更好地对准血流方向的角度时,彩色血流图更强,另外当PWD的校正角度放置成对准血流时,PWD测量到更强血流。
在此平板计算机超声系统中,关注区域ROI还用于响应于超声传输波束的移动手势而限定方向。在图3I中示出处于彩色血流模式的具有肾血流的支路的肝图像,因为ROI从换能器笔直向下,所以血流方向几乎垂直于超声波束,因此检测到极弱的肾血流。因此,彩色血流模式用于使肝中的肾血流成像。如可见,波束几乎垂直于血流,且检测到极弱血流。利用在ROI外部的手指进行的滑动手势用于使波束转向。如图3J可见,通过重置波束成形参数使得波束方向更加对准血流方向来使ROI转向,在ROI内检测到强得多的血流。在图3J中,利用在ROI外部的手指进行的滑动手势用于使超声波束转向到更加对准血流方向的方向。可以在ROI内看到更强血流。利用在ROI内部的手指进行的平移手势将使ROI框移动到覆盖整个肾区域的位置中,即,平移允许ROI框平移移动,使得所述框覆盖整个目标区域。
图3K展示平移手势。利用在ROI内部的手指,它可以使ROI框移动到图像平面内的任何位置。在上述实施例中,易于区分利用在“ROI”框外部的手指进行的“滑动手势”意在使波束转向,利用在“ROI”内部的手指进行的“拖动并移动、平移”手势意在移动“ROI”框。然而,存在其中没有ROI作为参考区的应用,那么容易看到难以区分“滑动”或“平移”手势,在此情况下,触摸屏程序需要跟踪手指的初始速度或加速度以确定它是“滑动”手势还是“拖动并移动”手势。因此,从触摸屏传感器装置接收数据的触摸引擎编程成区分指示不同手势的速度阈值。因此,与不同移动手势相关联的时间、速度和方向可具有预设阈值。两指和三指静态和移动手势可具有不同阈值以区分这些控件操作。应注意,预设显示图标或虚拟按钮可具有不同的静压或持续时间阈值。当以全屏模式操作时,触摸屏处理器(优选地在执行例如扫描转换的其它成像操作的系统中央处理单元上操作)关闭静态图标。
图4A-4C描绘可由医疗超声成像设备100的用户在触摸屏显示器104上实施的触摸控件的示例性子集402、404、406。应注意,可以根据要求和/或需要在触摸屏显示器104上实施触摸控件的任何其它合适的子集。如图4A所示,子集402包含用于执行2维(2D)模式操作的触摸控件408、用于执行增益控制操作的触摸控件410、用于执行颜色控制操作的触摸控件412和用于执行图像/剪辑冻结/存储操作的触摸控件414。例如,用户可采用按压手势320来致动触摸控件408,将医疗超声成像设备100返回到2D模式。另外,用户可对着触摸控件410的一侧采用按压手势320以减小增益级,并对着触摸控件410的另一侧采用按压手势320以增加增益级。此外,用户可在触摸控件412上采用拖动手势318以使用预定颜色代码识别2D图像上的密度范围。此外,用户可采用按压手势320来致动触摸控件414以冻结/存储静态图像或获取电影图像剪辑。
如图4B所示,子集404包含用于执行分屏控制操作的触摸控件416、用于执行PW成像控制操作的触摸控件418、用于执行多普勒和2维波束转向控制操作的触摸控件420,和用于执行标注操作的触摸控件422。例如,用户可针对触摸控件416采用按压手势320,允许用户通过在分屏的每一侧上交替采用点击手势302而在经分割触摸屏显示器104的相对侧之间转换。另外,用户可采用按压手势320来致动触摸控件418并输入PW模式,这允许(1)用户控制角度校正,(2)通过采用按压并拖动手势322移动可在触摸屏显示器104上显示的基线(例如,“向上”或“向下”),和/或(3)通过在可在触摸屏显示器104上显示的比例尺上采用点击手势302来增加或减小比例。此外,用户可以对着触摸控件420的一侧采用按压手势320以便以五(5)个为增量或以任何其它合适的增量向“左”或向任何其它合适的方向执行2D波束转向,并对着触摸控件420的另一侧采用按压手势320以便以五(5)个为增量或以任何其它合适的增量向“右”或向任何其它合适的方向执行2D波束转向。此外,用户可在触摸控件422上采用点击手势302,从而允许用户通过弹出式键盘输入可以在触摸屏显示器104上显示的标注信息。
如图4C中所示,子集406包含用于执行动态范围操作的触摸控件424、用于执行TeravisionTM软件操作的触摸控件426、用于执行图谱操作的触摸控件428,和用于执行针引导操作的触摸控件430。例如,用户可对着触摸控件424采用按压手势320和/或按压并拖动手势322以控制或设置动态范围。另外,用户可在触摸控件426上采用点击手势302以选择将在计算机母板106上由处理器从存储器执行的所需级别的TeravisionTM软件。此外,用户可在触摸控件428上采用点击手势302以执行所需图谱操作。此外,用户可对着触摸控件430采用按压手势320以执行所需针引导操作。
根据本申请,可以在触摸屏显示器104的表面105上使用单点/多点手势执行在医疗超声成像设备100(见图1)的触摸屏显示器104上显示为超声图像的对象(例如器官、组织等)的各种测量和/或跟踪。用户可直接在所显示对象的原始超声图像上、在所显示对象的超声图像的放大版本上和/或在触摸屏显示器104上的虚拟窗口506(见图5C和5D)内的超声图像的放大部分上执行对象的此类测量和/或跟踪。
图5A和5B描绘在医疗超声成像设备100(见图1)的触摸屏显示器104上显示的示例性对象(即,具有囊性病灶504的肝502)的原始超声图像。应注意,此类超声图像可响应于由以操作方式连接到设备100的超声探头/换能器生成的超声波穿透肝组织而由医疗超声成像设备100生成。具有囊性病灶504的肝502的测量和/或跟踪可直接在显示于触摸屏显示器104(见图5A和5B)上的原始超声图像上或在超声图像的放大版本上执行。例如,用户可使用扩展手势(见例如扩展手势312;图3)通过在触摸屏显示器104的表面105上放置两(2)个手指并展开它们以放大原始超声图像来获得超声图像的此类放大版本。肝502和囊性病灶504的此类测量和/或跟踪还可在触摸屏显示器104上的虚拟窗口506(见图5C和5D)内的超声图像的放大部分上执行。
例如,使用他或她的手指(见例如手指508;图5A-5D),用户可以通过在关注区域(例如,对应于囊性病灶504的区域)附近对着触摸屏显示器104的表面105(见图5B)采用按压手势(见例如按压手势320;图3)来获得虚拟窗口506。响应于按压手势,虚拟窗口506(见图5C和5D)在触摸屏显示器104上显示,可能至少部分地叠加在原始超声图像上,从而向用户提供囊性病灶504附近的肝502的放大部分的视图。例如,图5C的虚拟窗口506可提供囊性病灶504的超声图像的放大部分的视图,所述囊性病灶504被压抵触摸屏显示器104的表面105的手指508覆盖。为了在虚拟窗口506内重新定位经放大囊性病灶504,用户可对着触摸屏显示器104的表面105(见图5D)采用按压并拖动手势(见例如按压并拖动手势322;图3),从而将囊性病灶504的图像移动到虚拟窗口506内的所需位置。在一个实施例中,医疗超声成像设备100可经配置以允许用户将虚拟窗口506内的放大级选择为2倍大、4倍大,或原始超声图像的任何其它合适倍数。用户可通过从触摸屏显示器104的表面105抬起他或她的手指(见例如手指508;图5A-5D)而从触摸屏显示器104中去除虚拟窗口506。
图6A描绘在医疗超声成像设备100(见图1)的触摸屏显示器104上显示的另一示例性对象(即,心脏602的心尖四(4)腔图)的超声图像。应注意,此类超声图像可响应于由以操作方式连接到设备100的超声探头/换能器生成的超声波穿透心脏组织而由医疗超声成像设备100生成。心脏602的测量和/或跟踪可直接在显示于触摸屏显示器104上的原始超声图像(见图6A-6E)上或在超声图像的放大版本上执行。例如,使用他或她的手指(见例如手指610、612;图6B-6E),用户可通过在触摸屏显示器104的表面105上采用一或多个多指手势来执行心脏602的左心室606(见图6B-6E)的心内膜边界604(见图6B)的手动跟踪。在一个实施例中,使用他或她的手指(见例如手指610、612;图6B-6E),用户可通过在触摸屏显示器104的表面105上采用双击手势(见例如双击手势310;图3A)来获得光标607(见图6B),并且可通过使用一个手指(例如手指610)采用拖动手势(见例如拖动手势318;图3A)来移动光标607,从而将光标607移动到触摸屏显示器104上的所需位置。本文中所描述的系统和方法可用于心壁运动的定量测量,并且可特定地用于心室不同步的测量,如2004年4月2日提交的第10/817,316号美国申请中详细描述,所述申请的全部内容以引用的方式并入本文中。
一旦光标607处于触摸屏显示器104上的所需位置,如通过手指610的位置确定,用户就可以通过使用另一手指(例如,手指612)采用点击手势(见例如点击手势302;见图3)将光标607固定在所述位置处。为了执行心内膜边界604(见图6B)的手动跟踪,用户可以使用手指610采用按压并拖动手势(见例如按压并拖动手势322;图3),如图6C和6D中所示。心内膜边界604的此类手动跟踪可以任何合适的方式在触摸屏显示器104上突显,例如通过虚线608(见图6C-6E)。心内膜边界604的手动跟踪可一直继续到手指610到达触摸屏显示器104上的任何合适位置为止,或到手指610返回到光标607的位置(如图6E中所示)为止。一旦手指610处于光标607的位置或任何其它合适的位置,用户就可通过使用手指612采用点击手势(见例如点击手势302;见图3)完成手动跟踪操作。应注意,此类手动跟踪操作可用以跟踪任何其它合适的特征和/或波形,例如脉冲波多普勒(PWD)波形。在一个实施例中,医疗超声成像设备100可经配置以至少部分地基于相应特征/波形的手动跟踪,执行与此类特征和/或波形有关的任何合适的计算和/或测量。
如上文所描述,用户可在触摸屏显示器104上的虚拟窗口内的所显示对象的原始超声图像的放大部分上执行对象的测量和/或跟踪。图7A-7C描绘在医疗超声成像设备100(见图1)的触摸屏显示器104上显示的示例性对象(即,具有囊性病灶704的肝702)的原始超声图像。图7A-7C进一步描绘提供囊性病灶704的超声图像的放大部分的视图的虚拟窗口706,所述囊性病灶704被用户压抵触摸屏显示器104的表面105的一个手指(例如,手指710)覆盖。使用他或她的手指(见例如手指710、712;图7A-7C),用户可通过在触摸屏显示器104的表面105上采用一或多个多指手势来执行虚拟窗口706内囊性病灶704的大小测量。
例如,使用他或她的手指(见例如手指710、712;图7A-7C),用户可通过在表面105上采用双击手势(见例如双击手势310;图3)获得第一光标707(见图7B、7C),并且可通过使用一个手指(例如,手指710)采用拖动手势(见例如拖动手势318;图3)移动第一光标707,从而将第一光标707移动到所需位置。一旦第一光标707处于所需位置,如通过手指710的位置确定,用户就可以通过使用另一手指(例如,手指712)采用点击手势(见例如点击手势302;见图3)将第一光标707固定在所述位置处。类似地,用户可通过在表面105上采用双击手势(见例如双击手势310;图3)获得第二光标709(见图7C),并且可通过使用手指710采用拖动手势(见例如拖动手势318;图3)移动第二光标709,从而将第二光标709移动到所需位置。一旦第二光标709处于所需位置,如通过手指710的位置确定,用户就可以通过使用手指712采用点击手势(见例如点击手势302;见图3)将第二光标709固定在所述位置处。在一个实施例中,医疗超声成像设备100可经配置以至少部分地基于第一光标707和第二光标709的位置而执行与囊性病灶704有关的任何合适的大小计算和/或测量。
图8A-8C描绘在医疗超声成像设备100(见图1)的触摸屏显示器104上显示的示例性对象(即,具有囊性病灶804的肝802)的原始超声图像。图8a-8c进一步描绘提供囊性病灶804的超声图像的放大部分的视图的虚拟窗口806,所述囊性病灶804被用户压抵触摸屏显示器104的表面105的一个手指(例如,手指810)覆盖。使用他或她的手指(见例如手指810、812;图8A-8C),用户可通过在触摸屏显示器104的表面105上采用一或多个多指手势执行虚拟窗口806内囊性病灶804的卡尺测量。
例如,使用他或她的手指(见例如手指810、812;图8A-8C),用户可通过在表面105上采用双击手势(见例如双击手势310;图3)获得第一光标807(见图8B、8C),并且可通过使用一个手指(例如,手指810)采用拖动手势(见例如拖动手势318;图3)移动光标807,从而将光标807移动到所需位置。一旦光标807处于所需位置,如通过手指810的位置确定,用户就可以通过使用另一手指(例如,手指812)采用点击手势(见例如点击手势302;见图3)将光标807固定在所述位置处。接着,用户可采用按压并拖动手势(见例如按压并拖动手势322;图3)以获得连接线811(见图8B、8C),并横跨囊性病灶804将连接线811从第一光标807延伸到囊性病灶804的另一侧上的所需位置。一旦连接线811横跨囊性病灶804延伸到囊性病灶804的另一侧上的所需位置,用户就可以使用手指812采用点击手势(见例如点击手势302;见图3)获得第二光标809(见图8C)并将其固定在所述所需位置处。在一个实施例中,医疗超声成像设备100可经配置以至少部分地基于在第一光标807和第二光标809的位置之间延伸的连接线811而执行与囊性病灶804有关的任何合适的卡尺计算和/或测量。
图9A示出其中具有换能器元件阵列152的换能器壳体150可在连接器114处附接到壳体102的系统140。每个探头150可具有唯一地识别所附接的探头的探头识别电路154。当用户插入具有不同阵列的不同探头时,系统识别探头操作参数。应注意,优选实施例可包含具有可连接到触摸处理器109的触摸传感器107的显示器104,所述触摸处理器109分析来自传感器107的触摸屏数据并向图像处理操作和波束成形器控制处理器(1116、1124)两者传输命令。在优选实施例中,触摸处理器可包含计算机可读媒体,所述计算机可读媒体存储操作超声触摸屏引擎的指令,所述超声触摸屏引擎可用于控制本文中所描述的显示器和成像操作。
图9B示出超声应用内的典型换能器管理模块902的软件流程图900。当检测到“换能器附接”事件904时,换能器管理软件模块902首先读取来自“识别段”的换能器类型ID906和硬件修改信息。所述信息用于从硬盘获取换能器配置文件数据特定集合908,并将其载入到应用程序的存储器中。接着,软件从“出厂段”读取调整数据910,并将所述调整应用到刚刚载入到存储器的配置文件数据912。然后,软件模块向主要超声应用程序发送“换能器附接消息”914,所述主要超声应用程序使用已载入的换能器配置文件。在确认916之后,执行超声成像序列并更新“使用”段918。接着,换能器管理软件模块等待“换能器拆离”事件920或等待5分钟。如果检测到921“换能器拆离“事件,那么发送924并确认926消息,从存储器去除928换能器配置文件数据集合,且所述模块重新等待另一“换能器附接”事件。如果5分钟的时间段过去且没有检测到“换能器拆离”事件,那么软件模块增加“使用段”中的累积使用计数922,并且再等待5分钟或“换能器拆离”事件。累积使用记录在用于维护和更换记录的存储器中。
存在许多类型的超声换能器。它们的区别在于几何结构、元件数目和频率响应。例如,具有10到15MHz的中心频率的线性阵列更加适合于胸部成像,而具有3到5MHz的中心频率的弯曲阵列更加适合于腹部成像。
对于相同或不同超声扫描阶段通常需要使用不同类型的换能器。对于仅具有一个换能器连接的超声系统,操作者将在新的扫描阶段开始之前更换换能器。
在一些应用中,在一个超声扫描阶段期间需要在不同类型的换能器之间进行切换。在此情况下,使多个换能器连接到同一超声系统更加方便,并且操作者可以通过在操作者控制台上按下按钮而快速地在这些连接的换能器之间进行切换,无需花费更长时间以物理方式拆离和重新附接换能器。本发明的优选实施例可包含平板计算机壳体内的多路复用器,所述多路复用器可在平板计算机壳体内的多个探头连接器端口之间进行选择,或者,平板计算机壳体可连接到外部多路复用器,所述外部多路复用器可安装在如本文中所描述的手推车上。
图9C是使用超声换能器同时传感器组合件中不需要任何有源电子器件的示例性针感测定位系统的透视图。传感器换能器可包含无源超声换能器元件。所述元件可以类似于典型换能器探头的方式使用,即利用超声引擎电子器件。系统958包含添加到针引导件962中的超声换能器元件960的添加,所述超声换能器元件960在图9C中表示但是它可以是任何合适的外观尺寸。超声换能器元件960和针引导件962可使用针引导件安装托架966安装到超声换能器探头声学柄部或超声成像探头组合件970。具有安装在暴露端部上的盘(即,超声反射器盘964)的针可以反射超声波。
针引导件962上的超声换能器元件960可连接到超声引擎。所述连接可通过通向引擎上的专用探头连接器的单独电缆进行,类似于共享铅笔CW探头连接器。在替代实施例中,可以将一根较小的短电缆插入到较大的图像换能器探头柄部或在引擎处连接到相同探头连接器的经分割电缆中。在另一替代实施例中,所述连接可以通过之间没有电缆的图像探头柄部和针引导件之间的电连接器进行。在替代实施例中,针引导件上的超声换能器元件可以通过将针引导件和换能器元件包封在成像探头柄部的相同机械外壳中而连接到超声引擎。
图9D是定位有换能器元件960和超声反射器盘964的针引导件962的透视图。反射器盘964的位置通过从针引导件962上的换能器元件960传输超声波972来定位。超声波972通过空气朝向反射器盘964行进并通过反射器盘964反射。经反射超声波974到达针引导件962上的换能器元件960。反射器盘964和换能器元件960之间的距离976根据经过的时间和空气中的声速来计算。
图9E是使用超声换能器同时在传感器组合件中不需要任何有源电子器件的示例性针感测定位系统的替代实施例的透视图。传感器换能器可包含无源超声换能器元件。所述元件可以类似于典型换能器探头的方式使用,即利用超声引擎电子器件。
系统986包含可以安装到针引导件安装托架966的针引导件962,所述针引导件安装托架966可以耦合到超声成像探头组合件以使患者身体982成像,或者针引导件962具有合适的外观尺寸。超声反射器盘964可以安装在针956的暴露端部处。在此实施例中,线性超声声学阵列978安装成平行于针956的移动方向。线性超声声学阵列978包含定位成平行于针956的超声换能器阵列980。在此实施例中,超声成像探头组合件982定位成用于使患者身体成像。用于使患者身体982成像的超声成像探头组合件配置有超声换能器阵列984。
在此实施例中,超声反射器盘964的位置可以通过使用耦合到用于成像的超声成像探头组合件978的超声换能器阵列980检测。反射器盘964的位置通过从用于成像的超声成像探头组合件978上的换能器元件980传输超声波972来定位。超声波972通过空气朝向反射器盘964行进,并被反射器盘964反射。经反射超声波974到达用于成像的超声成像探头组合件978上的换能器元件980。反射器盘964和换能器元件980之间的距离976根据经过的时间和空气中的声速来计算。在替代实施例中,可以使用替代算法依序扫描换能器阵列中的元件的极性,并分析每一换能器阵列元件产生的反射。在替代实施例中,多个扫描可在形成超声图像之前进行。
图9F示出其中SIM卡120可用于无线36/46蜂窝式服务以与如本文中所描述的便携式超声系统通信的系统,包含图1A和1B中所示的系统。卡120可以插入到壳体端口119中,壳体端口119使用电路系统118与系统处理器106通信。
图10A示出根据示例性实施例的用于监测心脏的同步的示例性方法。在所述方法中,参考模板被载入到存储器中并用于在识别成像平面时引导用户(根据步骤930)。随后,用户识别所需成像平面(根据步骤932)。通常使用心脏的心尖4腔图;然而,在不脱离本发明精神的情况下可使用其它视图。
有时,可能难以识别心内膜边界,并且当遇到这种困难时,可以采用相同视图的组织多普勒成像(根据步骤934)。提供用于识别中隔壁和侧向游离壁的参考模板(根据步骤936)。接下来,可使用预设速度比例为(比如)±30cm/s的标准组织多普勒成像(TDI)(根据步骤938)。
然后,可以提供所需三工图像的参考(根据步骤940)。可以使用B模式或TDI引导距离门(根据步骤942)。可使用B模式引导距离门(根据步骤944),或可使用TDI引导距离门(根据步骤946)。使用TDI或B模式引导距离门还允许使用方向校正角度,以便允许频谱多普勒显示中隔壁的径向平均速度。接着,使用第一脉冲波频谱多普勒利用双工或三工模式测量中隔壁平均速度(根据步骤948)。用于处理数据和计算不同步的软件可利用一位置(例如,中心点)自动设置心壁上的过时位置之间的角度,从而有助于简化参数的设置。
第二距离门位置还使用双工图像或TDI来引导(根据步骤950),并且如果需要,可使用方向校正角度。在步骤950之后,通过系统跟踪中隔壁和侧向游离壁的平均速度。接着,关注区域(例如,中隔壁和左心室游离壁)处的频谱多普勒平均速度的时间积分952分别提供中隔壁和左侧游离壁的移位。
上述方法步骤可结合在用于去除存在于收集信号中的任何基线干扰的相关技术中已知的高通滤波方法使用,不管是模拟还是数字的。此外,所公开的方法采用多个同时PW频谱多普勒线来跟踪室间隔和左心室游离壁的移动。另外,可以沿着每个光谱线采用多个门结构,从而允许区域壁运动的定量测量。使多个门平均化可允许测量全局壁移动。
图10B是可通过接口单元1020连接到任何PC 1010的集成超声探头1040的示例性实施例的详细示意性框图。超声探头1040经配置以传输超声波到一或多个图像目标1064和减小从一或多个图像目标1064反射的超声波。换能器1040可使用一或多个电缆1066、1068耦合到接口单元1020。接口单元1020可定位在集成超声探头1040和主机1010之间。两级波束成形系统1040和1020可通过USB连接1022、1012连接到任何PC。
超声探头1040可包含由孔口小于整个阵列的孔口的相邻元件组成的子阵列/孔口1052。返回回波由1D换能器阵列1062接收并传输到控制器1044。控制器通过将信号传输到存储器1058、1046来发起粗波束的形成。存储器1058、1046将信号传输到传输驱动器1 1050和传输驱动器m 1054。接着,传输驱动器1 1050和传输驱动器m 1054分别将信号发送到多路复用器1 1048和多路复用器m 1056。信号被传输到子阵列波束成形器1 1052和子阵列波束成形器n 1060。
每个粗波束成形操作的输出可包含通过接口单元1020中的第二级波束成形的进一步处理以将波束成形输出转换成数字表示。粗波束成形操作可进行相干求和以形成阵列的细波束输出。所述信号可从超声探头1040的子阵列波束成形器1 1052和子阵列波束成形器n 1060传输到接口单元1020内的A/D转换器1030和1028。在接口单元1020内存在用于将第一级波束成形输出转换成数字表示的A/D转换器1028、1030。数字转换可由自定义ASIC(例如FPGA 1026)从A/D转换器1030、1028接收,以完成第二级波束成形。FPGA数字波束成形1026可将信息传输到系统控制器1024。系统控制器可将信息传输到存储器1032,存储器1032可将信号发送回到FPGA数字波束成形1026。可替换地,系统控制器1024可将信息传输到自定义USB3芯片组1022。USB3芯片组1022可接着将信息传输到DC-DC转换器1034。随后,DC-DC转换器1034可将电力从接口单元1020传输到超声探头1040。在超声探头1040内,电源1042可接收电力信号并与传输驱动器1 1050介接以向前端集成探头提供电力。
接口单元1020的自定义或USB3芯片组1022可用于提供接口单元10220和主机1010之间的通信链路。自定义或USB3芯片组1022将信号传输到主机1010的自定义或USB3芯片组1012。自定义或USB3芯片组1012接着与微处理器1014介接。然后,微处理器1014可显示信息或将信息发送到装置1075。
在替代实施例中,可使用窄带波束成形器。例如,单独的模拟相位移位器应用到每一个接收到的回波。接着,每个子阵列内的经移相输出进行求和以形成粗波束。A/D转换可用于数字化每一个粗波束;接着,使用数字波束成形器来形成细波束。
在另一实施例中,形成64元件线性阵列可使用八个邻近元件来形成粗波束输出。此类布置可利用将集成探头的输出连接到接口单元的八个输出模拟电缆。粗波束可通过电缆发送到定位于接口单元中的对应A/D转换器。使用数字延迟来形成细波束输出。可能需要八个A/D转换器来形成数字表示。
在另一实施例中,形成128元件阵列可使用十六个子阵列波束成形电路。每个电路可从在到接口单元的第一级输出中提供的邻近八元件阵列形成粗波束。此类布置可利用将集成探头的输出连接到接口单元的十六个输出模拟电缆以数字化所述输出。可使用PC微处理器或DSP来执行下转换、基带化、扫描转换和后图像处理功能。还可使用微处理器或DSP来执行所有多普勒处理功能。
图10C是集成超声探头1040的示例性实施例的详细示意性框图,其中第一子阵列波束成形电路和第二级波束成形电路集成在主机1082内部。具有第二级波束成形电路的后端计算机可以是PDA、平板计算机或移动装置外壳。超声探头1040经配置以将超声波传输到一或多个图像目标1064和减小从一或多个图像目标1064反射的超声波。换能器1040使用一或多个电缆1066、1068耦合到主机1082。应注意,A/D电路元件还可放置在换能器探头壳体中。
超声探头1040包含由孔口小于整个阵列的孔口的相邻元件组成的子阵列/孔口1052。返回回波由1D换能器阵列1062接收并传输到控制器1044。控制器通过将信号传输到存储器1058、1046来发起粗波束的形成。存储器1058、1046将信号传输到传输驱动器1 1050和传输驱动器m 1054。接着,传输驱动器1 1050和传输驱动器m 1054分别将信号发送到多路复用器1 1048和多路复用器m 1056。信号被传输到子阵列波束成形器1 1052和子阵列波束成形器n 1060。
接着,每个粗波束成形操作的输出通过接口单元1020中的第二级波束成形以将波束成形输出转换成数字表示。粗波束成形操作进行相干求和以形成阵列的细波束输出。信号从超声探头1040的子阵列波束成形器1 1052和子阵列波束成形器n 1060传输到主机1082内的A/D转换器1030和1028。在主机1082内,存在用于将第一级波束成形输出转换成数字表示的A/D转换器1028、1030。数字转换由自定义ASIC(例如,FPGA 1026)从A/D转换器1030、1028接收,以完成第二级波束成形。FPGA数字波束成形1026将信息传输到系统控制器1024。系统控制器将信息传输到存储器1032,存储器1032可将信号发送回到FPGA数字波束成形1026。可替换地,系统控制器1024可将信息传输到自定义USB3芯片组1022。USB3芯片组1022可接着将信息传输到DC-DC转换器1034。随后,DC-DC转换器1034可将电力从接口单元1020传输到超声探头1040。在超声探头1040内,电源1042可接收电力信号并与传输驱动器11050介接,以向前端集成探头提供电力。电源可包含启用换能器组合件的无线操作的电池。无线收发器可集成到控制器电路或单独的通信电路中以启用图像数据和控制信号的无线传递。
主机1082的自定义或USB3芯片组1022可用于提供自定义或USB3芯片组1012之间的通信链路,以将信号传输到微处理器1014。接着,微处理器1014可显示信息或将信息发送到装置1075。
图11是超声引擎108(即,前端超声特定电路系统)的示例性实施例和图1和2A中所示的超声装置的计算机母板106(即,主机)的示例性实施例的详细示意性框图。超声引擎108和/或计算机母板106的组件可实施于专用集成电路(ASIC)中。示例性ASIC具有高通道计数,并且在一些示例性实施例中,可每一芯片包装32或更多个通道。所属领域的普通技术人员将认识到,超声引擎108和计算机母板106可包含比示出的更多或更少的模块。例如,超声引擎108和计算机母板106可包含图17中所示的模块。
换能器阵列152经配置以将超声波传输到一或多个图像目标1102和从一或多个图像目标1102接收经反射超声波。换能器阵列152使用一或多个电缆1104耦合到超声引擎108。
超声引擎108包含高电压传输/接收(TR)模块1106,其用于向换能器阵列152应用驱动信号并用于从换能器阵列152接收返回回波信号。超声引擎108包含前置放大器/时间增益补偿(TGC)模块1108,其用于放大返回回波信号并向信号应用合适的TGC函数。超声引擎108包含采样数据波束成形器1110,其延迟系数在返回回波信号已由前置放大器/TGC模块1108放大和处理之后用于每个通道。
在一些示例性实施例中,高电压TR模块1106、前置放大器/TGC模块1108和样品内插接收波束成形器1110可各自为每芯片具有8到64个通道的硅芯片,但是示例性实施例不限于此范围。在某些实施例中,高电压TR模块1106、前置放大器/TGC模块1108和样品内插接收波束成形器1110可各自为具有8个、16个、32个、64个通道等等的硅芯片。如图11中所示,示例性TR模块1106、示例性前置放大器/TGC模块1108和示例性波束成形器1110可各自采用包含32个通道的硅芯片的形式。
超声引擎108包含用于缓冲由波束成形器1110输出的经处理数据的先进先出(FIFO)缓冲器模块1112。超声引擎108还包含用于存储程序指令和数据的存储器1114,和用于控制超声引擎模块的操作的系统控制器1116。
超声引擎108通过通信链路112与计算机母板106介接,通信链路112可遵循标准高速通信协议,例如火线(IEEE 1394标准串行接口)或快速(例如,200-400兆比特/秒或更快)通用串行总线(USB 2.0、USB 3.0)协议。计算机母板的标准通信链路至少以400兆比特/秒或更高操作,优选地以800兆比特/秒或更高操作。可替换地,链路112可以是无线连接,例如红外(IR)链路。超声引擎108包含用于建立并维持通信链路112的通信芯片组1118(例如,火线芯片组)。
类似地,计算机母板106还包含用于建立并维持通信链路112的通信芯片组1120(例如,火线芯片组)。计算机母板106包含用于存储执行超声成像操作的数据和/或计算机可执行指令的核心计算机可读存储器1122。存储器1122形成计算机的主存储器,并且在示例性实施例中,可存储约4GB的DDR3存储器。计算机母板106还包含用于执行存储在核心计算机可读存储器1122上的计算机可执行指令以执行超声成像处理操作的微处理器1124。示例性微处理器1124可为现成的商业计算机处理器,例如英特尔酷睿i5处理器。另一示例性微处理器1124可以是基于数字信号处理器(DSP)的处理器,例如德州仪器公司(TexasInstruments)的一或多个DaVinciTM处理器。计算机母板106还包含用于控制可用于显示超声数据、扫描和图谱的显示装置的显示控制器1126。
由微处理器1124执行的示例性操作包含但不限于下转换(用于从接收到的超声数据生成I、Q样品)、扫描转换(用于将超声数据转换成显示装置的显示格式)、多普勒处理(用于根据超声数据确定和/或成像移动和/或血流信息)、彩色血流处理(用于在一个实施例中使用自相关生成叠加在B模式超声图像上的多普勒频移的经颜色译码的图谱)、能量多普勒处理(用于确定能量多普勒数据和/或生成能量多普勒图谱)、频谱多普勒处理(用于确定频谱多普勒数据和/或生成频谱多普勒图谱)和后信号处理。这些操作进一步详细地描述于2003年3月11日提交的标题为“具有集成电子器件的超声探头(Ultrasound Probe withIntegrated Electronics)”的WO 03/079038 A2,其全部内容明确地以引用的方式并入本文中。
为了实现更小且更轻的便携式超声装置,超声引擎108包含提供超声引擎108的电路板的总封装大小和占据面积的减小。为此目的,示例性实施例提供小且轻的便携式超声装置,所述装置最大限度地减小了总封装大小和占据面积,通俗提供高通道计数。在一些实施例中,示例性超声引擎的高通道计数电路板可包含其中每个芯片提供多个通道(例如,32个通道)的一或多个多芯片模块。如本文中所使用,术语“多芯片模块”是指其中多个集成电路(IC)封装到统一衬底中以便它们作为单个组件(即,作为较大IC)使用的电子封装。多芯片模块可用于示例性电路板,使得集成在高密度互连(HDI)衬底上的两个或更多个有源IC组件能够减小总封装大小。在示例性实施例中,多芯片模块可通过竖直堆叠超声引擎的传输/接收(TR)硅芯片、放大器硅芯片和波束成形器硅芯片来组装。超声引擎的单个电路板可包含这些多芯片模块中的一或多个,以提供高通道计数,同时最小化电路板的总封装大小和占据面积。
图12描绘包含组装成竖直堆叠配置的多芯片模块的电路板1200的一部分的示意性侧视图。有源电子集成电路组件的两个或更多个层竖直集成到单个电路中。IC层在成竖直堆叠配置的大体上彼此平行延伸的间隔平面中定向。在图12中,电路板包含用于支撑多芯片模块的HDI衬底1202。包含例如第一波束成形器装置的第一集成电路芯片1204使用任何合适的耦合机构(例如,环氧树脂涂覆和固化)耦合到衬底1202。第一间隔物层1206使用(例如)环氧树脂涂覆和固化耦合到第一集成电路芯片1204中与衬底1202相对的表面。具有(例如)第二波束成形器装置的第二集成电路芯片1208使用(例如)环氧树脂涂覆和固化耦合到第一间隔物层1206中与第一集成电路芯片1204相对的表面。提供金属框架1210用于集成电路芯片之间的机械和/或电连接。示例性金属框架1210可采用引线框架的形式。第一集成电路芯片1204可使用导线1212耦合到金属框架1210。第二集成电路芯片1208可使用导线1214耦合到相同的金属框架1210。提供封装1216以包封多芯片模块组合件并将多个集成电路芯片保持在彼此大体上成并联布置。
如图12中所示,第一集成电路芯片1204、第一间隔物层1206和第二集成电路芯片1208的竖直三维堆叠在电路板上提供高密度功能性,同时最大限度地减小了总封装大小和占据面积(相比于不采用竖直堆叠的多芯片模块的超声引擎电路板)。所属领域的普通技术人员将认识到,示例性多芯片模块不限于两个堆叠的集成电路芯片。竖直集成在多芯片模块中的芯片的示例性数目可包含但不限于二个、三个、四个、五个、六个、七个、八个等等。
在超声引擎电路板的一个实施例中,提供如图12中所示的单个多芯片模块。在其它实施例中,图12中还示出多个多芯片模块。在示例性实施例中,多个多芯片模块(例如,两个多芯片模块)可在超声引擎的电路板上竖直堆叠在彼此顶部上,以进一步最小化电路板的封装大小和占据面积。
除了需要减小占据面积之外,还需要减小多芯片模块的总封装高度。示例性实施例可采用晶片薄化到亚数百微米级来减小多芯片模块的封装高度。
可使用任何合适的技术在衬底上组装多芯片模块。示例性组装技术包含但不限于其中衬底是多层层合印刷电路板的层合MCM(MCM-L)、其中多芯片模块使用薄膜技术沉积在基底衬底上的沉积MCM(MCM-D),和其中若干导电层沉积在陶瓷衬底上且内嵌于玻璃层中的陶瓷衬底MCM(MCM-C),所述层在高温下共烧(HTCC)或低温下共烧(LTCC)。
图13是用于制造包含组装成竖直堆叠配置的多芯片模块的电路板的示例性方法的流程图。在步骤1302中,制造或提供HDI衬底。在步骤1304中,提供金属框架(例如,引线框架)。在步骤1306中,使用(例如)环氧树脂涂覆和固化将第一IC层耦合或接合到衬底。第一IC层线接合到金属框架。在步骤1308中,使用(例如)环氧树脂涂覆和固化将间隔物层耦合到第一IC层,使得层竖直堆叠且大体上彼此平行延伸。在步骤1310中,使用(例如)环氧树脂涂覆和固化将第二IC层耦合到间隔物层,使得所有层竖直堆叠且大体上彼此平行延伸。第二IC层线接合到金属框架。在步骤1312中,使用封装来包封多芯片模块组合件。
多芯片模块中的示例性芯片层可使用任何合适的技术彼此耦合。例如,在图12中所示的实施例中,间隔物层可设置于芯片层之间以隔开芯片层。无源硅层、粘片浆层和/或粘片膜层可用作间隔物层。在制造多芯片模块时可以使用的示例性间隔物技术进一步描述于Toh CH等人的“用于由相同大小的裸片堆叠的3D封装的粘片粘合剂(Die AttachAdhesives for 3D Same-Sized Dies Stacked Packages)”(第58届电子组件和技术会议(ECTC2008),第1538-43页,美国佛罗里达(2008年5月27日-30日))中,其全部内容明确地以引用的方式并入本文中。
对粘片(DA)浆或膜的重要要求是对邻近裸片的钝化材料的极佳粘合性。并且,对于较大裸片应用,需要均匀的接合连接厚度(BLT)。此外,出于可靠性目的,优选的是在高温下具有高粘结强度且具有低吸湿性。
图14A-14C是可根据示例性实施例使用的示例性多芯片模块的示意性侧视图,包含竖直堆叠的裸片。示出了外围和中心衬垫线接合(WB)封装两者,且它们可用于使多芯片模块中的示例性芯片层线接合。图14A是包含四个竖直堆叠的裸片的多芯片模块的示意性侧视图,其中裸片通过具有二合一划片粘片膜(D-DAF)的无源硅层与彼此间隔开。图14B是包含四个竖直堆叠的裸片的多芯片模块的示意性侧视图,其中裸片通过充当裸片间间隔物的DA膜粘合剂与彼此间隔开。图14C是包含四个竖直堆叠的裸片的多芯片模块的示意性侧视图,其中裸片通过充当裸片间间隔物的DA浆或膜粘合剂与彼此间隔开。在一些示例性实施例中,DA浆或膜粘合剂可具有线穿透能力。在图14C的示例性多芯片模块中,使用线上可流动膜(FOW),以允许较长线接合和中心接合垫堆叠裸片封装。FOW采用具有线穿透能力的粘片膜,以允许相同或类似大小的线接合裸片直接堆叠在彼此顶部上而不用无源硅间隔物。这解决了直接在彼此顶部上堆叠相同或类似大小的裸片的问题,不然这会是一个难题,因为不存在或没有足够的间隙用于下部裸片的接合线。
图14B和14C中所示的DA材料优选地保持接合线厚度(BLT),而在组装过程中几乎没有出气或出血。在组装后,包夹在裸片之间的DA材料保持到裸片的极佳粘合性。DA材料的材料特性经调整以保持针对高温可靠性应力的高粘结强度,而不会出现整体断裂。DA材料的材料特性经调整还最小化或优选地去除可产生封装可靠性故障的水分累积(例如,其中由于封装中的水分的压力累积而出现界面或整体断裂的爆米花现象)。
图15是使用以下各项进行裸片间堆叠的特定示例性方法的流程图:(a)具有二合一划片粘片膜(D-DAF)的无源硅层,(b)DA浆,(c)厚DA膜,以及(d)采用具有线穿透能力的粘片膜的线上可流动膜(FOW),所述粘片膜允许相同或类似大小的线接合裸片直接堆叠在彼此顶部上而不用无源硅间隔物。每一方法执行晶片背磨以减小晶片厚度,从而实现集成电路的堆叠和高密度封装。晶片经锯切以分离个别裸片。第一裸片在烘箱中使用(例如)环氧树脂涂覆和固化接合到多芯片模块的衬底。使用线接合将第一裸片耦合到金属框架。
在方法(A)中,使用划片粘片膜(D-DAF)以堆叠方式将第一无源硅层接合到第一裸片。使用D-DAF以堆叠方式将第二裸片接合到第一无源层。使用线接合将第二裸片耦合到金属框架。使用D-DAF以堆叠方式将第二无源硅层接合到第二裸片。使用D-DAF以堆叠方式将第三裸片接合到第二无源层。使用线接合将第三裸片耦合到金属框架。使用D-DAF以堆叠方式将第三无源硅层接合到第三裸片。使用D-DAF以堆叠方式将第四裸片接合到第三无源层。使用线接合将第四裸片耦合到金属框架。
在方法(B)中,针对多薄裸片堆叠应用重复粘片(DA)浆分配和固化。将DA浆分配到第一裸片上,并且将第二裸片设置于DA浆上并固化到第一裸片。使用线接合将第二裸片耦合到金属框架。将DA浆分配到第二裸片上,并且将第三裸片设置于DA浆上并固化到第二裸片。使用线接合将第三裸片耦合到金属框架。将DA浆分配到第三裸片上,并且将第四裸片设置于DA浆上并固化到第三裸片。使用线接合将第四裸片耦合到金属框架。
在方法(C)中,将粘片膜(DAF)切割并按压到底部裸片,接着将顶部裸片放置和热挤压到DAF上。例如,将DAF按压到第一裸片,并将第二裸片热挤压到DAF上。使用线接合将第二裸片耦合到金属框架。类似地,将DAF按压到第二裸片,并将第三裸片热挤压到DAF上。使用线接合将第三裸片耦合到金属框架。将DAF按压到第三裸片,并将第四裸片热挤压到DAF上。使用线接合将第四裸片耦合到金属框架。
在方法(D)中,线上可流动膜(FOW)采用具有线穿透能力的粘片膜,其允许相同或类似大小的线接合裸片直接堆叠在彼此顶部上而不用无源硅间隔物。以堆叠方式将第二裸片接合和固化到第一裸片。使用线上可流动膜接合将第二裸片耦合到金属框架。以堆叠方式将第三裸片接合和固化到第一裸片。使用线上可流动膜接合将第三裸片耦合到金属框架。以堆叠方式将第四裸片接合和固化到第一裸片。使用线上可流动膜接合将第四裸片耦合到金属框架。
在完成上述步骤之后,在每个方法(a)-(d)中,执行晶片模制和模制后固化(PMC)。随后,执行球形安装和单分。
关于上述粘片技术的另外细节提供于TOH CH等人的“用于由相同大小的裸片堆叠的3D封装的粘片粘合剂(Die Attach Adhesives for 3D Same-Sized Dies StackedPackages)”中,第58届电子组件和技术会议(ECTC2008),第1538-43页,美国佛罗里达(2008年5月27日-30日),其全部内容明确地以引用的方式并入本文中。
图16是多芯片模块1600的示意性侧视图,多芯片模块1600包含在衬底1614上竖直集成成竖直堆叠配置的TR芯片1602、放大器芯片1604和波束成形器芯片1606。可使用图12-15中所示的任何合适的技术来制造多芯片模块。所属领域的普通技术人员将认识到,堆叠芯片的特定次序在其它实施例中可以是不同的。提供第一间隔物层1608和第二间隔物层1610以隔开芯片1602、1604、1606。每个芯片耦合到金属框架(例如,引线框架)1612。在某些示例性实施例中,可以在多芯片模块中提供传热和散热机构,以维持高温可靠性应力而不会发生整体故障。图16的其它组件参考图12和14描述。
在此示例性实施例中,每个多芯片模块可针对大量通道(例如,32个通道)处理完整的传输、接收、TGC放大和波束成形操作。通过将这三个硅芯片竖直集成到单个多芯片模块中,印刷电路板所需的空间和占据面积进一步减小。多个多芯片模块可以设置于单个超声引擎电路板上,以进一步增加通道的数目,同时最小化封装大小和占据面积。例如,可以在约10cm x约10cm的示例性平面尺寸内制造128通道超声引擎电路板108,这相比于常规超声电路的空间要求有显著改进。在优选实施例中,包含一或多个多芯片模块的超声引擎的单个电路板可具有16到128个通道。在某些实施例中,包含一或多个多芯片模块的超声引擎的单个电路板可具有16个、32个、64个、128个通道等等。
图17是作为单板完整超声系统提供的超声引擎108(即,前端超声特定电路系统)的示例性实施例和计算机母板106(即,主机)的示例性实施例的详细示意性框图。如图17中所示的示例性单板超声系统可具有约25cm x约18cm的示例性平面尺寸,但是其它尺寸是可能的。图17的单板完整超声系统可实施于图1、2A、2B和9A中所示的超声装置中,并且可用于执行图3-8、9B和10中描绘的操作。
超声引擎108包含便于至少一个超声探头/换能器的连接的探头连接器114。在超声引擎108中,TR模块、放大器模块和波束成形器模块可以竖直堆叠以形成如图16中所示的多芯片模块,从而最小化超声引擎108的总封装大小和占据面积。超声引擎108可包含第一多芯片模块1710和第二多芯片模块1712,各自包含TR芯片、超声脉冲发生器和接收器、包含时间增益控制放大器的放大器芯片,及样品数据波束成形器芯片,它们竖直集成成堆叠配置,如图16中所示。第一多芯片模块1710和第二多芯片模块1712可竖直堆叠在彼此顶部上,以进一步最小化电路板上所需的面积。可替换地,第一多芯片模块1710和第二多芯片模块1712可水平安置在电路板上。在示例性实施例中,TR芯片、放大器芯片和波束成形器芯片各自是32通道芯片,且每个多芯片模块1710、1712具有32个通道。所属领域的普通技术人员将认识到,示例性超声引擎108可包含但不限于一个、两个、三个、四个、五个、六个、七个、八个多芯片模块。应注意,在优选实施例中,系统可配置有在换能器壳体中的第一波束成形器和在平板计算机壳体中的第二波束成形器。
ASIC和多芯片模块配置使得128通道完整超声系统能够实施于具有平板计算机格式大小的单个小型板上。例如,示例性128通道超声引擎108可以容纳在约10cm x约10cm的示例性平面尺寸内,这相比于常规超声电路的空间要求有显著改进。示例性128通道超声引擎108还可容纳在约100cm2的示例性区域内。
超声引擎108还包含用于生成使用换能器阵列执行超声扫描的定时时钟的时钟生成复杂可编程逻辑装置(CPLD)1714。超声引擎108包含用于将从换能器阵列接收的模拟超声波信号转换成数字RF形成的波束的模/数转换器(ADC)1716。超声引擎108还包含用于管理接收延迟特征曲线和生成传输波形的一或多个延迟特征曲线和波形生成器现场可编程门阵列(FPGA)1718。超声引擎108包含用于存储超声扫描的延迟特征曲线的存储器1720。示例性存储器1720可以是单个DDR3存储器芯片。超声引擎108包含扫描序列控制现场可编程门阵列(FPGA)1722,所述扫描序列控制现场可编程门阵列1722经配置以管理超声扫描序列、传输/接收定时、向/从存储器1720存储和获取特征曲线,以及数字RF数据流通过高速串行接口112到计算机母板106的缓冲和移动。高速串行接口112可包含计算机母板106和超声引擎108之间的火线或其它串行或并行总线接口。超声引擎108包含用于建立并维持通信链路112的通信芯片组1118(例如,火线芯片组)。
提供电源模块1724以向超声引擎108供电,管理电池充电环境和执行电力管理操作。电源模块1724可为超声电路系统生成稳定的低噪声电力,并且可为TR模块中的超声传输脉冲发生器生成高电压。
计算机母板106包含用于存储执行超声成像操作的数据和/或计算机可执行指令的核心计算机可读存储器1122。存储器1122形成计算机的主存储器,并且在示例性实施例中,可存储约4Gb的DDR3存储器。存储器1122可包含用于存储操作系统、计算机可执行指令、程序和图像数据的固态硬盘驱动器(SSD)。示例性SSD可具有约128GB的容量。
计算机母板106还包含用于执行存储在核心计算机可读存储器1122上的计算机可执行指令以执行超声成像处理操作的微处理器1124。示例性操作包含但不限于下转换、扫描转换、多普勒处理、彩色血流处理、能量多普勒处理、频谱多普勒处理和后信号处理。示例性微处理器1124可为现成的商业计算机处理器,例如英特尔酷睿i5处理器。另一示例性微处理器1124可以是基于数字信号处理器(DSP)的处理器,例如德州仪器公司(TexasInstruments)的一或多个DaVinciTM处理器。
计算机母板106包含输入/输出(I/O)和图形芯片组1704,其包含经配置以控制I/O和图形外围设备(例如,USB端口、视频显示器端口等等)的协处理器。计算机母板106包含经配置以提供无线网络连接的无线网络适配器1702。示例性适配器1702支持802.11g和802.11n标准。计算机母板106包含经配置以将计算机母板106介接到显示器104的显示控制器1126。计算机母板106包含经配置以提供计算机母板106和超声引擎108之间的快速数据通信的通信芯片组1120(例如,火线芯片组或接口)。示例性通信芯片组1120可为IEEE1394b 800兆比特/秒接口。可替代地提供其它串行或并行接口1706,例如USB3、Thunder-Bolt、PCIe等等。提供电源模块1708以向计算机母板106供电,管理电池充电环境和执行电力管理操作。
示例性计算机母板106可以容纳在约12cm x约10cm的示例性平面尺寸内。示例性计算机母板106可以容纳在约120cm2的示例性区域内。
图18是根据示例性实施例提供的示例性便携式超声系统100的透视图。系统100包含呈如图18中所示的平板计算机外观尺寸的壳体102,但是它可呈任何其它合适的外观尺寸。示例性壳体102的厚度可低于2cm,且优选的是在0.5和1.5cm之间。壳体102的前面板包含多点触摸式LCD触摸屏显示器104,所述显示器经配置以辨识和区分触摸屏显示器104的表面上的一或多个多点触摸和/或同时触摸。显示器104的表面可以使用用户的手指、用户的手部或任选的触笔1802中的一或多个来触摸。壳体102包含一或多个I/O端口连接器116,其可包含但不限于一或多个USB连接器、一或多个SD卡、一或多个网络微显示器端口和DC电力输入。图18中的壳体102的实施例还可配置在具有150mm x 100mm x 15mm(体积为225000mm3)或更小的手掌持有式外观尺寸内。壳体102可具有小于200g的重量。任选地,换能器阵列和显示器壳体之间的电缆线可包含接口电路系统1020,如本文中所描述。接口电路系统1020可包含(例如)悬挂在平板计算机处的舱中的波束成形电路系统和/或A/D电路系统。可使用单独的连接器1025、1027来连接悬挂舱和换能器探头电缆。连接器1027可包含探头识别电路系统,如本文中所描述。单元102可包含相机、麦克风和扬声器以及用于语音和数据通信的无线电话电路系统,以及可用于控制本文中所描述的超声成像操作的语音启动软件。
壳体102包含或耦合到探头连接器114以便连接至少一个超声探头/换能器150。超声探头150包含换能器壳体,所述换能器壳体包含一或多个换能器阵列152。超声探头150可使用沿着柔性电缆1806设置的壳体连接器1804而耦合到探头连接器114。所属领域的普通技术人员将认识到,超声探头150可以使用任何其它合适的机构耦合到壳体102,例如,包含用于执行超声特定操作(如波束成形)的电路系统的接口壳体。超声系统的其它示例性实施例进一步详细地描述于2003年3月11日提交的标题为“具有集成电子器件的超声探头(Ultrasound Probe with Integrated Electronics)”的WO 03/079038 A2,其全部内容明确地以引用的方式并入本文中。优选实施例可在手持式换能器探头150和显示器壳体之间采用无线连接。波束成形器电子器件可并入到探头壳体150中,以提供1D或2D换能器阵列中的子阵列的波束成形,如本文中所描述。显示器壳体的大小可设定成放在用户的手掌中,并且可包含到例如互联网的公共接入网络的无线网络连接。
图19示出在图18的便携式超声系统100的触摸屏显示器104上呈现的主要图形用户界面(GUI)1900的示例性视图。主要GUI 1900可以在超声系统100起始时显示。为了帮助用户导航主要GUI 1900,GUI可被视为包含四个示例性工作区域:菜单栏1902、图像显示窗口1904、图像控件栏1906和工具栏1908。可以在主要GUI 1900上提供额外的GUI组件,以(例如)使得用户能够对GUI和/或GUI中的窗口进行关闭、调整大小和退出。
菜单栏1902使用户能够选择超声数据、图像和/或视频以在图像显示窗口1904中显示。菜单栏1902可包含例如用于在患者文件夹目录和图像文件夹目录中选择一或多个文件的GUI组件。图像显示窗口1904显示超声数据、图像和/或视频,并且可任选地提供患者信息。工具栏1908提供与图像或视频显示器相关联的功能性,包含但不限于用于将当前图像和/或视频保存到文件的保存按钮、将最大所允许数目的先前帧保存为电影回放(Cineloop)的保存回放按钮、用于打印当前图像的打印按钮、用于冻结图像的冻结图像按钮、用于控制电影回放的重放的各方面的回放工具栏等等。可在主要GUI 1900中提供的示例性GUI功能性进一步详细地描述于2003年3月11日提交的标题为“具有集成电子器件的超声探头(Ultrasound Probe with Integrated Electronics)”的WO 03/079038 A2,其全部内容明确地以引用的方式并入本文中。
图像控件栏1906包含可通过由用户直接应用到显示器104的表面的触摸和触摸手势来操作的触摸控件。示例性触摸控件可包含但不限于2D触摸控件408、增益触摸控件410、颜色触摸控件412、存储触摸控件414、分割触摸控件416、PW成像触摸控件418、波束转向触摸控件20、标注触摸控件422、动态范围操作触摸控件424、TeravisionTM触摸控件426、图谱操作触摸控件428和针引导件触摸控件428。这些示例性触摸控件结合图4a-4c进一步详细地描述。
图20A描绘根据本发明的实施为平板计算机的外观尺寸的示例性医疗超声成像设备2000的说明性实施例。工作台可具有12.5”x1.25”x8.75”或31.7cm x 3.175cm x22.22cm的尺寸,但是它还可以是具有小于2500cm3的体积和小于8lbs的重量的任何其它合适的外观尺寸。如图20中所示,医疗超声成像设备2000包含壳体2030、其中可以显示超声图像2010和超声数据2040的触摸屏显示器2010,以及配置成受触摸屏显示器2010控制的超声控件2020。壳体2030可具有前面板2060和后面板2070。触摸屏显示器2010形成前面板2060,且包含多点触摸式LCD触摸屏,所述触摸屏可辨识和区分用户在触摸屏显示器2010上的一或多个多点触摸和或同时。触摸屏显示器2010可具有电容多点触摸式和AVAH LCD屏幕。例如,电容多点触摸式和AVAH LCD屏幕可使得用户能够从多个角度查看图像,但不会损失分辨率。在另一实施例中,用户可以利用触笔在触摸屏上进行数据输入。平板计算机可包含集成的可折叠支架,其准许用户从符合平板计算机外观尺寸的存储位置转动所述支架,使得所述装置可平放在后面板上,或者用户可以转动所述支架,使得平板计算机能够在直立位置处以相对于支撑表面形成的多个倾斜角度中的一个倾斜角度竖立。
电容式触摸屏模块包括用透明导体(例如,氧化铟锡)涂布的绝缘体,例如玻璃。制造过程可包含玻璃、x-传感器膜、y-传感器膜和液晶材料之间的接合过程。平板计算机经配置以允许用户在戴着干燥或湿润的手套时执行多点触摸式手势,例如夹捏和伸展。屏幕的表面记录与屏幕接触的电导体。所述接触使屏幕静电场变形,从而产生可测量的电容改变。接着,处理器解译静电场的改变。通过减少层并通过用“内嵌(in-cell)”技术产生触摸屏来使得响应级增加。“内嵌”技术通过将电容器放置在显示器内部去除了层。应用“内嵌”技术减小了用户手指和触摸屏目标之间的可见距离,从而与显示的内容形成更多方向性接触,并使得点击和手势能够具有增强的响应性。
图20A示出具有端口2080以接收卡2082的平板计算机系统2000,所述卡2082上安装有SIM电路2084。
图21示出根据本发明的模块化超声成像系统的优选手推车系统。手推车系统2100使用包含接收平板计算机的对接架的基底组合件2122。手推车配置2100经配置以将包含触摸屏显示器2102的平板计算机2104对接到手推车2108,手推车2108可包含完整的操作者控制台2124。在平板计算机2104对接到手推车支架2108之后,所述系统围绕系统形成全特征件(full feature roll)。围绕系统的全特征件可包含可调高度装置2106、凝胶保持器2110,和存放仓2114、多个车轮2116、热探头保持器2120,及操作者控制台2124。控制装置可包含在操作者控制台2124上的键盘2112,操作者控制台2124还可添加有其它外围设备,例如打印机或视频接口或其它控制装置。
图22示出用于根据本发明的模块化超声成像系统的实施例的优选手推车系统。手推车系统2200可配置有耦合到水平支撑部件2028的垂直支撑部件2212。具有用于辅助装置附接2014的位置的辅助装置连接器2018可经配置以连接到垂直支撑部件2212。A3端口探头复用连接装置2016还可经配置以连接到平板计算机。存放仓2224可经配置以通过存放仓附接机构2222附接到垂直支撑部件2212。手推车系统还可包含经配置以附接到垂直支撑部件的绳管理系统2226。手推车组合件2200包含安装在基底2228上的支撑杆2212,所述基底2228具有车轮2232和为平板计算机的延伸操作提供电力的电池2230。所述组合件还可包含安装有高度调整装置2226的附加保持器2224。保持器2210、2218可以安装在杆2212上或在控制台面板2214上。多端口探头复用装置2216连接到平板计算机,以提供用户可以用显示的虚拟开关依序选择的若干个换能器探头的同时连接。移动触摸手势(例如,所显示图像上的三指滑动或对显示的虚拟按钮或图标的触摸)可以在连接的探头之间切换。
图23A示出根据本发明的模块化超声成像系统的优选手推车安装架系统。布置2300描绘耦合到对接台2304的平板计算机2302。对接台2304附连到附接机构2306。附接机构2306可包含铰合部件2308,从而允许用户显示器倾斜到用户所要的位置。附接机构2306附接到竖直部件2312上。如本文中所描述的平板计算机2302可以安装在基底对接单元2304上,所述单元2304安装到杆2212顶部上的安装架组合件2306。基底单元2304包含底座2310、电连接器2305和端口2307,用于将系统2302连接到电池2230和多路复用器装置2216。
图23B示出其中SIM卡2084插入到单元2304中的已安装卡的系统。
图24示出根据本发明的模块化超声成像系统的优选手推车系统2400,其中平板计算机2402在安装组合件2406上与连接器2404连接。布置2400描绘通过附接机构2404而无需对接元件2304耦合到垂直支撑部件2408的平板计算机2402。附接机构2404可包含用于显示器调整的铰合部件2406。
图25A和25B示出多功能对接台。图25A示出对接台2502和平板计算机2504,所述平板计算机2504具有与对接台2502配合的基底组合件2506。平板计算机2504和对接台2502可以电连接。平板计算机2504可通过接合释放机构2508而从对接台2502释放。对接台2502可含有用于连接换能器探头2510的换能器端口2512。对接台2502可含有3个USB 3.0端口、LAN端口、耳机插孔和用于充电的电源连接器。图25B示出根据本发明的优选实施例的平板计算机2504和具有支架的对接台2502的侧视图。对接台可包含可调整支架/柄部2526。可调整支架/柄部2526可针对多个查看角度而倾斜。可调整支架/柄部2526可出于运送目的而向上翻转。侧视图还示出换能器端口2512和换能器探头连接器2510。
图26示出根据本发明的模块化超声成像系统的2D成像操作模式。工作台2504的触摸屏可显示通过2维换能器探头使用256个数字波束成形器通道获得的图像。2维图像窗口2602描绘2维图像扫描2604。2维图像可以使用灵活频率扫描2606获得,其中控制参数在平板计算机上展现。
图27示出根据本发明的模块化超声成像系统的运动操作模式。平板计算机2700的触摸屏显示器可显示通过运动操作模式获得的图像。平板计算机2700的触摸屏显示器可同时显示2维2706和运动模式成像2708。平板计算机2700的触摸屏显示器可显示具有2维图像2706的2维图像窗口2704。利用图形用户界面显示的灵活频率控件2702可用于在2MHz到12MHz范围内调整频率。
图28示出根据本发明的模块化超声成像系统的彩色多普勒操作模式。平板计算机2800的触摸屏显示器显示通过彩色多普勒操作模式获得的图像。2维图像窗口2806用作基底显示。经颜色译码的信息2808覆叠在2维图像2810上。从接收到的传输信号的回波导出红细胞的基于超声的成像。回波信号的初级特性是频率和振幅。振幅取决于超声波束所采样的体积内的移动血液量。可利用显示器调整高帧速率或高分辨率以控制扫描质量。较高频率可由快速血流生成,并且可以用较浅的颜色显示,而较低频率用较深的颜色显示。灵活频率控件2804和彩色多普勒扫描信息2802可以在平板显示器2800上显示。
图29示出根据本发明的模块化超声成像系统的脉冲波多普勒操作模式。平板计算机2900的触摸屏显示器可显示通过脉冲波多普勒操作模式获得的图像。脉冲波多普勒扫描产生用于分析沿着所需超声光标的较小区域中的血流运动的一系列脉冲,它们被称作样品体积或样品门2012。平板显示器2900可描绘2维图像2902,其中样品体积/样品门2012覆叠。平板显示器2900可使用混合操作模式2906描绘2维图像2902和时间/多普勒频移2910。如果已知波束和血流之间的适当角度,那么时间/多普勒频移2910可以转换成速度和流量。时间/多普勒频移2910中的灰色阴影2908可表示信号强度。频谱信号的厚度可以指示层状或湍流血流。平板显示器2900可描绘可调整频率控件2904。
图30示出根据本发明的模块化超声成像系统的三工扫描操作模式。平板显示器3000可包含2维窗口3002,其能够单独或与彩色多普勒或方向多普勒特征组合显示2维图像。平板计算机3000的触摸屏显示器可显示通过彩色多普勒操作模式获得的图像。2维图像窗口3002用作基底显示。经颜色译码的信息3004覆叠3006在2维图像3016上。脉冲波多普勒特征可单独或与2维成像或彩色多普勒成像组合使用。平板显示器3000可包含脉冲波多普勒扫描,所述脉冲波多普勒扫描单独或组合地由样品体积/样品门3008表示、覆叠在2维图像3016上方或被颜色代码覆叠3006。平板显示器3000可描绘表示时间/多普勒频移3012的分屏。如果已知孤立波束和血流之间的适当角度,那么时间/多普勒频移3012可以转换成速度和流量。时间/多普勒频移3012中的灰色阴影3014可表示信号强度。频谱信号的厚度可以指示层状或湍流血流。平板显示器3000还可描绘灵活频率控件3010。
图31示出根据本发明的模块化超声成像系统的用户操作模式的GUI主屏幕接口3100。用户操作模式3100的屏幕界面可以在超声系统起始时显示。为了帮助用户导航GUI主屏幕3100,主屏幕可被视为包含三个示例性工作区域:菜单栏3104、图像显示窗口3102和图像控件栏3106。可以在主要GUI主屏幕3100上提供额外的GUI组件,以使得用户能够对GUI主屏幕和/或GUI主屏幕中的窗口进行关闭、调整大小和退出。
菜单栏3104使得用户能够选择超声数据、图像和/或视频以在图像显示窗口3102中显示。菜单栏可包含用于直接在患者文件夹和图像文件夹目录中选择一或多个文件的组件。
图像控件栏3106包含可通过由用户直接应用到显示器的表面的触摸和触摸手势来操作的触摸控件。示例性触摸控件可包含但不限于深度控制触摸控件3108、2维增益触摸控件3110、全屏触摸控件3112、文本触摸控件3114、分屏触摸控件3116、ENV触摸控件3118、CD触摸控件3120、PWD触摸控件3122、冻结触摸控件3124、存储触摸控件3126和优化触摸控件3128。
图32示出根据本发明的模块化超声成像系统的用户操作模式的GUI菜单屏幕界面3200。用户操作模式3200的屏幕界面可以在从菜单栏3204触发菜单选择模式时显示,从而发起超声系统的操作。为了帮助用户导航GUI主屏幕3100,主屏幕可被视为包含三个示例性工作区域:菜单栏3204、图像显示窗口3202和图像控件栏3220。可以在主要GUI菜单屏幕3200上提供额外的GUI组件,以使得用户能够对GUI菜单屏幕和/或GUI菜单屏幕中的窗口进行关闭、调整大小和退出。
菜单栏3204使得用户能够选择超声数据、图像和/或视频以在图像显示窗口3202中显示。菜单栏3204可包含用于在患者文件夹目录和图像文件夹目录中选择一或多个文件的触摸控制组件。以经扩展格式描绘,菜单栏可包含示例性触摸控件,例如患者触摸控件3208、预设触摸控件3210、检视触摸控件3212、报告触摸控件3214和设置触摸控件3216。
图像控件栏3220包含可通过由用户直接应用到显示器的表面的触摸和触摸手势来操作的触摸控件。示例性触摸控件可包含但不限于深度控制触摸控件3222、2维增益触摸控件3224、全屏触摸控件3226、文本触摸控件3228、分屏触摸控件3230、针显像ENV触摸控件3232、CD触摸控件3234、PWD触摸控件3236、冻结触摸控件3238、存储触摸控件3240和优化触摸控件3242。
图33示出根据本发明的模块化超声成像系统的用户操作模式的GUI患者数据屏幕界面3300。用户操作模式3300的屏幕界面可以在超声系统时从菜单栏3302触发患者选择模式的时候显示。为了帮助用户导航GUI患者数据屏幕3300,患者数据屏幕可被视为包含五个示例性工作区域:新患者触摸屏控件3304、新研究触摸屏控件3306、研究列表触摸屏控件3308、工作列表触摸屏控件3310和编辑触摸屏控件3312。在每个触摸屏控件内,可以获得其它信息条目区域3314、3316。例如,患者信息区段3314和研究信息区段3316可用于记录数据。
在患者数据屏幕3300内,图像控件栏3318包含可通过由用户直接应用到显示器的表面的触摸和触摸手势来操作的触摸控件。示例性触摸控件可包含但不限于接受研究触摸控件3320、关闭研究触摸控件3322、打印触摸控件3324、打印预览触摸控件3326、取消触摸控件3328、2维触摸控件3330、冻结触摸控件3332和存储触摸控件3334。
图34示出根据本发明的模块化超声成像系统的用户操作模式的GUI患者数据屏幕界面3400。用户操作模式3400的屏幕界面可以在超声系统起始时从菜单栏3402触发预设选择模式3404的时候显示。
在预设屏幕3400内,图像控件栏3408包含可通过由用户直接应用到显示器的表面的触摸和触摸手势来操作的触摸控件。示例性触摸控件可包含但不限于保存设置触摸控件3410、删除触摸控件3412、CD触摸控件3414、PWD触摸控件3416、冻结触摸控件3418、存储触摸控件3420和优化触摸控件3422。
图35示出根据本发明的模块化超声成像系统的用户操作模式的GUI检视屏幕界面3500。用户操作模式3500的屏幕界面可以在超声系统起始时从菜单栏3502触发预设经扩展检视3504的选择模式3404的时候显示。
在检视屏幕3500内,图像控件栏3516包含可以通过由用户直接应用到显示器的表面的触摸和触摸手势来操作的触摸控件。示例性触摸控件可包含但不限于缩略图设置触摸控件3518、同步触摸控件3520、选择触摸控件3522、前一图像触摸控件3524、下一图像触摸控件3526、2维图像触摸控件3528、暂停图像触摸控件3530和存储图像触摸控件3532。
图像显示窗口3506可允许用户以多个格式检视图像。图像显示窗口3506可允许用户以组合或子集形式查看图像3508、3510、3512、3514,或允许任何图像3508、3510、3512、3514被分别查看。图像显示窗口3506可经配置以显示高达四个图像3508、3510、3512、3514供同时查看。
图36示出根据本发明的模块化超声成像系统的用户操作模式的GUI报告屏幕界面。用户操作模式3600的屏幕界面可以在超声系统起始时从菜单栏3602触发报告经扩展检视3604的时候显示。显示屏幕3606含有超声报告信息3626。用户可使用超声报告3626内的工作表区段输入意见、患者信息和研究信息。
在报告屏幕3600内,图像控件栏3608包含可以通过由用户直接应用到显示器的表面的触摸和触摸手势来操作的触摸控件。示例性触摸控件可包含但不限于保存触摸控件3610、另存触摸控件3612、打印触摸控件3614、打印预览触摸控件3616、关闭研究触摸控件3618、2维图像触摸控件3620、冻结图像触摸控件3622和存储图像触摸控件3624。
图37示出根据本发明的模块化超声成像系统的用户操作模式的GUI设置屏幕界面。用户操作模式3700的屏幕界面可以在超声系统起始时从菜单栏3702触发报告经扩展检视3704的时候显示。
在设置经扩展屏幕3704内,设置控制栏3744包含可以通过由用户直接应用到显示器的表面的触摸和触摸手势来操作的触摸控件。示例性触摸控件可包含但不限于通用触摸控件3706、显示器触摸控件3708、测量触摸控件3710、标注触摸控件3712、打印触摸控件3714、存储/获取触摸控件3716、DICOM触摸控件3718、导出触摸控件3720和研究信息图像触摸控件3722。触摸控件可含有允许用户输入配置信息的显示屏幕。例如,通用触摸控件3706含有配置屏幕3724,其中用户可以输入配置信息。另外,通用触摸控件3706含有允许用户配置软键对接位置3726的区段。图37B描绘右侧对准的软键控件3752。图37B进一步示出软键控制箭头3750的启动将使键变成对准到相对侧,在此情况下为左侧对准。图37C描绘软键控件3762的左侧对准,用户可通过使用软键控制箭头3760将位置变成右侧对准来启动定向改变。
在检视屏幕3700内,图像控件栏3728包含可以通过由用户直接应用到显示器的表面的触摸和触摸手势来操作的触摸控件。示例性触摸控件可包含但不限于缩略图设置触摸控件3730、同步触摸控件3732、选择触摸控件3734、前一图像触摸控件3736、下一图像触摸控件3738、2维图像触摸控件3740和暂停图像触摸控件3742。
图38示出根据本发明的模块化超声成像系统的用户操作模式的GUI设置屏幕界面。用户操作模式3800的屏幕界面可以在超声系统起始时从菜单栏3802触发报告经扩展检视3804的时候显示。
在设置经扩展屏幕3804内,设置控制栏3844包含可以通过由用户直接应用到显示器的表面的触摸和触摸手势来操作的触摸控件。示例性触摸控件可包含但不限于多个图标,例如通用触摸控件3806、显示器触摸控件3808、测量触摸控件3810、标注触摸控件3812、打印触摸控件3814、存储/获取触摸控件3816、DICOM触摸控件3818、导出触摸控件3820和研究信息图像触摸控件3822。触摸控件可含有允许用户输入存储/获取信息的显示屏幕。例如,存储/获取触摸控件3816含有配置屏幕3802,其中用户可输入配置信息。用户可致动虚拟键盘,以允许用户输入不同的触摸启动字段中的字母数字字符。另外,存储/获取触摸控件3802含有允许用户启用回顾性获取3804的区段。当用户启用存储功能时,系统默认存储预期电影回放。如果用户启用回顾性捕获,那么存储功能可回顾性地收集电影回放。
在设置屏幕3800内,图像控件栏3828包含可以通过由用户直接应用到显示器的表面的触摸和触摸手势来操作的触摸控件。示例性触摸控件可包含但不限于缩略图设置触摸控件3830、同步触摸控件3832、选择触摸控件3834、前一图像触摸控件3836、下一图像触摸控件3838、2维图像触摸控件3840和暂停图像触摸控件3842。
图39A和39B示出由两个一维多元件阵列组成的XY双平面探头。所述阵列可构造成其中一个阵列在另一阵列的顶部上,其中每个阵列的偏振轴在相同方向上对准。这两个阵列的仰角轴可彼此成直角或正交。示例性实施例可采用换能器组合件,例如在第7,066,887号美国专利中描述的那些,所述专利的全部内容以引用的方式并入本文中,或由(例如)法国Tours Cedex的Vernon出售的换能器。如图39A示出,阵列定向由布置3900表示。两个阵列的偏振轴3908均指向z轴3906。底部阵列的仰角轴指向y方向3902,且顶部阵列的仰角轴处于x方向3904。
如图39B进一步示出,一维多元件阵列形成如布置3912所描绘的图像。具有在y方向3914上的仰角轴3910的一维阵列在x轴3904和z轴3906的平面上形成超声图像3914。具有在x方向3904上的仰角轴3910的一维阵列在y轴3902和z轴3906上形成超声图像3914。具有沿着y轴3902的仰角轴3910及沿着z轴3906的偏振轴3908的一维换能器阵列将产生沿着x3904和z 3906的平面形成的超声图像3914。图39C示出的替代实施例描绘具有在x轴904方向上的仰角轴3920和在z轴3906方向上的偏振轴3922的一维换能器阵列。超声图像3924在y3902和z 3906的平面上形成。
图40示出形成xy探头的双平面图像的操作,其中阵列4012具有应用于形成图像的高电压。高电压驱动脉冲4006、4008、4010可利用y轴仰角应用到底部阵列4004。本申请可使得传输脉冲生成以在XZ平面上形成接收到的图像,同时使顶部阵列4002的元件保持在接地电平。此类探头使用比完整2D换能器阵列更简单的电子器件来启用3D成像模式。如本文中所描述的触摸屏启动用户界面可采用屏幕图标和手势来致动3D成像操作。此类成像操作可通过在平板计算机数据处理器上运行的软件强化,所述平板计算机数据处理器将图像数据处理成3D超声图像。此图像处理软件可采用本领域中已知的滤波平滑和/或内插操作。还可使用波束转向来启用3D成像操作。优选实施例使用经布置以用于双平面成像的多个1D子阵列换能器。
图41示出形成xy探头的双平面图像的操作。图41示出阵列4110,其具有应用到它以形成图像的高电压。高电压脉冲4102、4104、4106可利用x轴中的仰角应用到顶部阵列4112,从而生成传输脉冲以在yz平面上形成接收到的图像,同时使底部阵列4014的元件保持接地4108。此实施例还可利用使用如本文中所描述的子阵列波束成形操作的正交1D换能器阵列。
图42示出形成xy探头的双平面图像的电路要求。描绘双平面探头的接收波束成形要求。进行连接以接收电子器件4202。接着,选择底部阵列4204和选择顶部阵列4208中的元件连接以共享到接收电子器件4202的通道的一个连接。二合一多路复用器电路可集成在高电压驱动器4206、4210上。二合一多路复用器电路可集成到高电压驱动器4206、4212中。针对每个传输波束形成一个接收波束。双平面系统需要总共256个传输波束,其中128个传输波束用于形成XZ平面图像,且其它128个传输波束用于形成YZ平面图像。多个接收波束成形技术可用于提高帧速率。针对每个传输波束具有双接收波束能力的超声系统提供一种系统,其中可形成两个接收波束。双平面探头仅需要总共128个传输波束用于形成两个正交平面图像,其中64个传输波束用于形成XZ平面图像,其它64个传输波束用于形成YZ平面图像。类似地,对于具有四或4接收束能力的超声系统,探头需要64个传输波束来形成两个正交平面图像。
图43A-43B示出用于同时双平面评估的应用。利用超声心动图测量LV机械不同步的能力可帮助识别更可能得益于心脏再同步疗法的患者。需要量化的LV参数是Ts-(侧壁-中隔壁)、Ts-SD、Ts-peak等。Ts-(侧壁-中隔壁)可在2D心尖4腔图回波图像上测量,而Ts-SD、Ts-peak(中部)、Ts-onset(中部)、Ts-peak(基底部)、Ts-onset(基底部)可在两个分离的胸骨旁短轴图上获得,从而提供总共12个区段,所述图在二尖瓣水平处和在乳头肌水平处分别具有6个区段。图43A-43B描绘提供心尖四腔4304和心尖两腔4302的图像以供同时查看的xy探头。
图44A-44B示出射血分数探头测量技术。双平面探头提供EF测量,因为两个正交平面确保获得轴上视图。自动边界检测算法提供定量回波结果以选择植入响应器并引导AV延迟参数设置。如图44A中所描绘,XY探头从两个正交平面获取实时同时图像,并且在分屏上显示图像4402、4404。手动轮廓跟踪或自动边界跟踪技术可用于跟踪心脏收缩末期和心脏舒张末期的心内膜边界,根据其计算出EF。心尖2腔图4402和4腔图4404中的LV区域分别为A1和A2,它们在心脏舒张末期和心脏收缩末期测量。左心室舒张末期容积LVEDV和左心室收缩末期容积LVESV使用以下公式计算:
且射血分数计算为
在医疗超声行业中,几乎每个超声系统都可执行谐波成像,但是这全都是通过使用2次谐波或fo完成的,其中fo是基波频率。本发明的优选实施例使用高阶谐波,即3fo、4fo、5fo等来进行超声成像。比2阶高的谐波提供显著改进的图像质量和空间分辨率。高阶谐波的优点包含提高空间分辨率、最小化混杂和提供在不同组织结构之间具有清晰对比度和更清晰的边缘限定的图像质量。此技术是基于在超声波传播穿过组织时生成谐波频率。谐波频率的生成涉及由组织中的非线性声音传播所致的波衰减,其导致在传输波中不存在的谐波频率出现。用于实现此超谐波成像的要求是:1)低噪声宽带宽度线性放大器;2)高电压线性传输器;3)宽带宽换能器;以及4)高级信号处理。
由于声波传播穿过组织具有非线性;波形逐渐衰减,并导致在原始传输波中不存在的谐波波形出现。超声波在组织类介质中的非线性传播理论上可以使用Khokhlov-Zabolotskaya-Kuznetsov(KZK)方程计算。参见例如B.Ward、A.C.Baker和V.F.Humphrey,“诊断医疗超声中用于分辨率提高的非线性传播(Nonlinear propagation applied tothe improvement of resolution in Diagnostic medical ultrasound)”,美国声学学会杂志,第101卷,第143-163页,1997年,其全部内容以引用的方式并入本文中。计算是基于有限差近似,并且在时域和频域中执行。由于介质和波变形的衰减,KZK方程并有波束绕射、能量消散的组合效果。如A.Bouakaz、C.T.Lancee和N.de Jong的“医疗相控阵列的谐波超声场:模拟和测量(Harmonic Ultrasonic Field of Medical Phased Arrays:Simulationsand Measurements)”(超声、铁电和频率控制的IEEE学报(IEEE Transactions onUltrasonics,Ferroelectrics and Frequency Control),第50卷,第730-735页,2003年)(其全部内容以引用的方式并入本文中)中所示,绕射和非线性项均在时域中求解,但在频域中考虑到了衰减。在图45中示出在基波频率下计算出的声压级2、组织中在焦距处随侧向距离(以mm为单位)变化的2次谐波频率和3次谐波频率。
所述计算是基于3循环高斯脉冲,其中传输波形的基波频率为1.7Mhz。使用带通滤波器提取在分别为2.75Mhz和4.02MHz的低和高截止频率之间具有平坦响应的2次谐波分量。带通滤波器用于提取在4.35Mhz和9.35Mhz之间具有平坦频率响应的超谐波分量。特征曲线已经缩放成具有0dB的轴上振幅。如从图45可见,超谐波分量的生成大体上被限制于基波波束的最强部分,比2次谐波特征曲线多得多。这具有以下有利影响:超谐波波束宽度比2次谐波波束宽度窄得多。发现超谐波频率下的波束宽度是传输基波波束宽度的一半,而2次谐波波束宽度仅比传输基波波束宽度窄30%。如图45所示,对于(围绕焦点)5.3mm和2次谐波下的3.5mm的基波波束宽度,超谐波分量具有小于2.6mm的波束宽度。图46描绘在基波、2次和3次谐波频率下的经归一化轴向声学波束特征曲线。重要的是注意,3次谐波的生成与基波和2次谐波分量的幅度的乘积成正比。因此,它的生成主要在聚焦区域中进行,其中基波和2次谐波频率达到它们的最高级。此具有以下有利影响:超谐波波束宽度比2次谐波波束宽度窄得多。此外,因为超谐波能量大体上集中在波束的中心部分中,所以它显示出旁瓣能量的不相称减小。这一特性使得超谐波技术具有以下优点:大大去除了来自定位在波束边缘处的散射的离轴回波。明显的是,这一特性对诊断有相当大的益处,因为大部分成像伪影和像差可能使由超声波束和波束特征曲线边缘处的旁瓣的交互所产生。
由于不同组织结构生成不同超谐波响应且超谐波波束提供最小旁瓣笔形波束特征曲线的特性,所以超谐波图像具有以下优点:在不同组织类型之间提供明显更清晰且更强烈对比度的图像,并且具有好的多的边缘检测。超谐波能够更好地抑制回响和伪影,特别是出现在波束边缘处的那些。利用超谐波,提高了侧向和轴向分辨率。
高分辨率幻影GAMMEX 404GS可用于评估我们的系统的空间分辨率。嵌入在404GS幻影中的反射器的大小(直径)是100μm。首先,使用15MHz传输波形生成404GS15Mhz基波幻影图像。基波图像的A模式曲线在图47中示出,图47还包含15MHz传输波形和15Mhz接收A模式波形。
15Mhz图像的全宽半幅曲线用于指示100μm销幻影图像的空间分辨率。图48示出15MHz接收基波图像和15MHz传输波形的幻影A模式图像的全宽半幅(FWHM)曲线。
在下表中列出基波、2次谐波和超谐波图像的GAMMAX 404GS幻影的半高宽(FWHM)测量结果的空间分辨率比较:
众所周知,由于人体中的组织具有不均匀性质,所以从组织中的声波的反射接收的回波信号是高度非线性的。人体组织的非线性响应导致传输-接收主波束的宽度和旁瓣电平的增加,继而大大减小组织超声成像的侧向和对比度分辨率。在本文中被称作组织高频成像(THI)或组织混合成像(TMI)或超谐波成像的另一方法使用组织中的传播波的非线性响应,使得有可能最小化这些散焦效果。在医疗超声成像中,需要谐波成像,其中传输波形具有一个基波频率F0,所关注接收信号是高谐波,通常为2次谐波(2F0)或三次谐波(3F0)。超谐波图像模式组合所有高阶谐波(>=3f0)。所关注谐波信号由人体中的图像目标生成,且传输波形中的谐波不受关注。因此,抑制来自传输波形的谐波很重要。
考虑具有常规的3周期方波的超声脉冲发生器。此类波形的频谱在基波频率以下约-4dB处具有三次谐波分量,这在规则方波中为高三次谐波分量,因此常规方波并不适合用作用于高阶谐波成像的传输波形。
图51A和51B示出方波和方波形的频谱,其在基波频率以下约-4dB处具有三次谐波分量,即高三次谐波分量;因此方波并不适合用作用于高阶谐波成像的传输波形。
本发明的优选实施例使用通过将脉冲高时间和脉冲低时间减小到三分之二的规则方波来修改的方波。此经修改波形具有比规则方波低得多的三次谐波分量,且接近纯正弦波。参见例如图52,图52示出三分之二波形。图53是三次方波形和正弦波的频谱。此经修改波形具有比规则方波低得多的三次谐波分量,且接近纯正弦波。所述方法利用两个相连传输波形;使交替地传输到组织中的第一和第二超声脉冲成像。这两个超声脉冲是三分之二方波形,其中第一超声脉冲因为传输波形反相而不同于第二超声脉冲。由这些脉冲生成的接收超谐波回波信号进行测量,并通过添加由超声传输脉冲中的每一个生成的回波信号进行组合。
超声成像系统包含宽带放大器,所述宽带放大器具有底噪带宽>22Mhz、在4.5Mhz传输波形处的三分之二高电压、脉冲相消和包含3次谐波、4次谐波和5次谐波频率的接收波形。
基波图像和超谐波成像比较在图54A和54B中示出。由于不同组织结构(例如脂肪、肌肉、癌细胞)以不同方式使声波传播变形的特性,即,不同组织结构以不同方式衰减声波;所以相比于基波图像,谐波图像可以更好地区分不同组织结构。如图54A和54B中可见,其中超谐波图像提供以下特性:所成像的不同结构之间具有明显更清晰和更强烈的对比度。超谐波图像通过使用4.5Mhz传输三分之二经修改波形(利用脉冲相消技术)生成,且由3阶、4阶和5阶高次谐波组成。
重要的是注意,乳房超声成像非常依赖于操作者。此处提议带软件监测的简单工具,以引导超声医师徒手进行乳房扫描,使得扫描彻底覆盖整个乳房区域而不会遗漏任何区域,且扫描是可再现的。乳房超声换能器可为约50mm宽。在扫描期间,操作者在线性方向上徒手移动换能器覆盖约50mm x 200mm乳房区域,然后将探头移动到起点,在中部侧向位置中使探头偏移约50mm,再次重复线性扫描。成像程序一直重复到覆盖整个乳房区域为止。声学透明水凝胶衬垫可用于确保整个乳房区域被覆盖,且所述程序可重复。如图55中可见,水凝胶衬垫标记有带换能器位置和扫描方向指令的四个重叠矩形。每个矩形是50mm宽和200mm长,中心点用于对准乳头。扫描是从头到脚,其中徒手平行扫描覆盖整个乳房。在此实例中,四个平行重叠扫描可覆盖整个乳房区域。
图55示出标记有扫描方向和探头位置的水凝胶衬垫。换能器放置在第1矩形的顶部处,并徒手移动到底部。接着,探头移动到第2矩形的起点,并手动或通过自动化控制器重复进行。重要的是在扫描期间徒手移动足够慢,使得可以捕获超声帧作为图像流,每个图像间隔开约1亚毫米。系统将从每个扫描行的起点开始跟踪定时,如果移动过快,那么它将提供“警告哔哔声”。
其中1D图像阵列嵌入在沿垂直于中心成像阵列的方向安装的两个运动引导阵列之间的换能器设计。图56示出嵌入在用于运动引导的两个竖直阵列之间的线性成像阵列。线性阵列可嵌入定位成垂直于中心阵列的两个较小换能器阵列之间。中心成像阵列的元件的数目可以是128、192或256。每一个侧阵列可具有在16个、24个到32个等范围内的元件。侧阵列可用于监测徒手移动速度,以确保操作者正在使用恒定速度,且所述速度慢到足以生成可被捕获作为图像流的超声帧,每个图像间隔开约1mm或更小。所述阵列还可用于确保扫描处于直线向前移动。当移动过快,或速度不断变化,或探头以圆形运动移动时,软件向操作者发送警告信号以调整移动。
人工智能(AI)和扩增现实(AR)正在使医疗超声转变。使用AI和AR的医疗超声应用可解决在许多诊断和治疗性应用中影响患者结果的关键问题。超声成像具有利用深度学习解决的问题,因为它训练数年来学习如何读出超声图像。已经报道了用于自动检测肿瘤区域和用于检测心脏病以便进行高敏感度和特定性的医疗诊断的基于深度学习AI算法的临床研究。扩增现实(AR)融合了光学视觉视频与超声图像,从而向外科医生提供实时图像引导,以便在外科手术期间改进身体结构的识别并增强显像。用于图像获取的超声系统可采用具有大于1000GFLOPs(千兆浮点运算/秒)的处理能力的计算机系统来实行由深度学习算法施加的数学计算,或在用户的身体结构特征的光学视图上融合/叠加超声图像所需的计算。AI和/或AR可大幅度增强或扩展超声成像应用。可获取实时超声图像以及可实行那些算法指定的大量计算的计算增强超声系统可推进癌症治疗和癌症和心脏病诊断中的临床护理提供。在本发明的优选实施例中提供超声系统的便携性、可靠性、快速性、易用性和可承受性的总体提高以及用于高级成像的计算容量。
超声(US)图像已经广泛用于癌症和心脏病等的诊断和检测。将这些诊断技术应用于癌症检测的缺点是经过训练的放射科医师手动诊断每个图像型式会耗费大量时间。尽管经验丰富的医生可以在US图像中手动定位肿瘤区域,但是极其需要采用自动检测肿瘤区域的算法以便帮助医疗诊断。自动化分类器通过自动区分良性和恶性型式而在精确度和时间要求方面大大改善了诊断过程。就此而言,神经网络(NN)发挥了重要作用,特别是在(例如)乳房和前列腺癌检测的应用中。
脉冲耦合神经网络(PCNN)是一种生物启发类型的神经网络。它是猫的局部连接到其它神经元的视觉皮层的简化模型。PCNN能够从图像提取边缘、区段和纹理信息。为了不同类型的数据的有效操作,只要对PCNN参数做出很少改变。这相比于上述图像处理算法是一种优势,上述图像处理算法在它们有效之前通常需要关于目标的信息。可获得超声图像中的前列腺的精确边界检测算法,以帮助放射学家做出诊断。为了增加超声前列腺图像的对比度,首先使用具有中值滤波器的PCNN调整原始图像的亮度值。随后可以是PCNN分割算法以检测图像的边界。组合亮度调整和分割使得PCNN对各个PCNN参数的设置的敏感性降低,各个PCNN参数的最佳选择可能较为困难,甚至可能因为相同问题而出现变化。结果示出由所用PCNN方法提供的总边界检测重叠精确度比包含模糊C均值和模糊类型II的其它机器学习技术高。
具体地说,超声(US)图像已经广泛用于乳癌的诊断。尽管经验丰富的医生可以手动地在US图像中定位肿瘤区域,但是还是极其需要建立自动检测肿瘤区域以便帮助医疗诊断的算法。用于在US图像中自动检测乳房肿瘤的算法已由Peng Jiang、Jingliang Peng、Guoquan Zhang、Erkang Cheng、Vasileios Megalooikonomou、Haibin Ling的“超声图像中基于学习的自动乳房肿瘤检测和分割(Learning-based Automatic Breast Tumordetection and Segmentation in Ultrasound Images)”建立,其全部内容以引用的方式并入本文中。肿瘤检测过程制定为两步骤学习问题:通过限界框的肿瘤定位及精确的边界定界。确切地说,示例性方法在Harr式特征上使用AdaBoost分类器以初步检测一组肿瘤区域。初步检测到的肿瘤区域利用支持向量机(SVM)使用量化亮度特征进行进一步筛查。最后,对US图像执行随机漫步分割算法以获取每个检测到的肿瘤区域的边界。已经在含有112个乳房US图像的数据集上评估优选方法,包含组织学上确认的80位患病患者和32位正常患者。所述数据集含有来自每个患者的一个图像,且患者在31岁到75岁之间。这些测量结果展示了所提议算法可以自动检测乳房肿瘤以及它们的位置和边界。
风湿性心脏病(RHD)是25岁以下的年轻人最易患的心脏病。它通常始于儿童时期的链球菌性喉炎,并且可以发展成致使青少年和年青人死亡或衰弱的严重心脏损害,并使得怀孕有危险。
尽管欧洲和北美洲几乎已经消除,但是这个病在非洲、中东、中亚和南亚、南太平洋及发达国家的贫困地区还是很常见。全世界有3300万人被RHD感染。尽管RHD可以通过超声图像诊断,但是此类超声图像非常依赖于用户。通常,它需要经验极其丰富的超声医师获取诊断质量超声图像。有益的是,通过训练具有GPU加速深度学习软件的系统以提供诊断超声图像,患者采用基于AI的深度学习算法将超声系统放在全科医生的手中以诊断RHD。
在图56中示出具有完全连接的人造神经节点的计算神经网络模型。所述模型包括每个隐蔽层内具有K个节点的L个层。下部层中的每个节点的输出以可训练连接权重完全连接到上部层中的对应节点。
如图56中可见,每个节点是二维图像,其中(i,j)表示像素元件位置;Nl,k(i,j)表示l层的第k位置中的(i,j)像素值;Wl,k k'(i,j)表示l层中的第k位置的第(i,j)元件与l+1上部层的第k'位置中的(i,j)元件之间的连接权重。上部层的第k'位置处的像素值Nl+1,k’(i,j)可通过对到下部层处的每个对应节点的连接权重Wl,k和来自下部l层中的每一个节点的输出值Nl,k(I,j)的乘积求和来计算,其中i=1、2……I;j=1、2……J,即,
在此实例中,假设在隐蔽层中的每一个神经节点中的图像大小为(1000,1000),即,i=1000,j=1000,且在每个隐蔽层内存在500个节点,k=500。可以直接计算需要实行的数学运算,以根据来自下部层的输入计算上部层上的节点的值,即,1x109个浮点运算。对于具有1000个层的神经网络,即,l=1000,所需的计算总数是1x1012个浮点运算,即,在发展中国家实行RHD临床评估时,需要1000GFLOPs的处理器来使用此深度学习人工神经网络计算所需数据。除了超声系统之外,临床医生可携带76个高端linux笔记本电脑,其具有大于1000GFLOPs的处理能力的Nvidia GPU。本申请的优选实施例包含如本文中所描述的平板计算机超声系统,其中图形处理单元集成到平板计算机或便携式系统壳体中,且通过总线或其它高速/数据速率连接连接到超声系统的中央处理器。
常规腹腔镜提供三维(3D)手术区的平坦表示,并且无法使定位在可见器官表面下方的内部结构可视化。计算机断层扫描(CT)和磁共振(MR)图像难以与腹腔镜视图实时融合,因为软组织器官具有可变形性质。利用新兴的相机技术,已经通过合并实时腹腔镜超声(LUS)与立体视频研发出了用于腹腔镜手术的实时立体扩增现实(AR)系统。所述系统形成两个重要的视觉提示:(1)真实深度的感知,其对身体结构之间的3D空间关系具有改进的理解,和(2)关键内部结构的显像连同手术区的更全面显像。使用腹腔镜超声检查(LUS)对于新手和经验丰富的超声检查医师来说都具有挑战性。腹腔镜相机近年来在图像质量方面已经取得了巨大进步,因为高清(HD)相机现在集成到腹腔镜系统中。然而,常规腹腔镜是单筒的,并且只能提供单相机视图。因此,所得显示器是三维(3D)手术区的平坦表示,并且不能使外科医生很好地理解身体结构之间的3D空间关系。此外,尽管表面纹理丰富,但是腹腔镜视频无法提供关于定位在可见器官表面下方的内部结构的信息。对于腹腔镜手术的安全性和有效性及改进的外科结果来说,良好的深度感知和对内部结构的了解都是至关重要的。
腹腔镜扩增现实(AR),即将腹腔镜超声视频覆叠到光学视频上的方法提供了增强的手术中显像,如Xin Kang、Mahdi Azizian、Emmanuel Wilson、Kyle Wu、Aaron D.Martin、Timothy D.Kane、Craig A.Peters、Kevin Cleary、Raj Shekhar的“用于腹腔镜手术的立体扩增现实(Stereoscopic augmented reality for laparoscopic surgery)”(外科内镜(Surg Endosc)(2014)28:2227-2235)和Xinyang Liu、Sukryool Kang、William Plishker、George Zaki、Timothy D.Kane、Raj Shekhar的“腹腔镜立体扩增现实:临床可行的电磁跟踪解决方案展望(Laparoscopic stereoscopic augmented reality:toward aclinically viable,electromagnetic tracking solution)”(医学影像学杂志(J.Med.Imag),3(4),045001(2016),doi:10.1117/1.JMI.3.4.045001)中较详细描述,这些出版物的全部内容均以全文引用的方式并入本文中。
手术中成像的优点在于提供外科现场的实时更新,并实现定位于腹部、胸腔和骨盆中的移动和可变形器官的AR描绘。可使用基于EM跟踪的临床上可行的腹腔镜AR系统。EM-AR系统的性能已被严格验证,具有临床上可接受的对齐精确度和显像时延。
图58中所示的本系统可执行图57中所示的程序,其中具有EM传感器4952的腹腔镜换能器探头4950可使用如本文中所描述的触摸屏操作来致动4902。所述装置可任选地针对特定成像应用校准4904,并且可以同时或依序捕获4906光学和超声图像。所述图像可以以分屏格式呈现或合并(覆叠)成视频格式4908。数据可使用神经网络处理4910以生成诊断数据。所述系统包含核心处理器和存储器4954,其可包括如本文中先前所描述的Nvidia图形处理单元,所述Nvidia图形处理单元可经编程或经配置以用作神经网络。神经网络可配置成用于与针对不同身体结构的成像协议(例如,使用超声腹腔镜探头的心脏、肺、肾、肠胃成像)相关联的离散学习算法。探头4950可包含成像相机,例如CMOS或CCD成像装置。可替换地,成像导管或探头可用于生成直接连接到便携式超声系统的图像数据。
需要大量数学计算来将腹腔镜超声视频覆叠或映射在光学视频上。假设pus=[x y0 1]表示LUS中的点,即腹腔镜超声图像坐标,其中z坐标是0。假设pLap u表示未变形腹腔镜光学视频图像中对应pus的点。将TA B表示从坐标系A到坐标系B的4x4变换矩阵。pus和pLap u之间的关系可以表示为下列方程。
其中US是指腹腔镜超声图像;EMSus是指附接到腹腔镜超声探头上的传感器;EMT是指EM跟踪系统;EMSLap是指附接到3D光学视镜上的传感器;lens是指3D镜的相机镜头;I3是大小为3的单位矩阵;以及K是相机矩阵。Tus EMSus可通过超声校准获得;TEMSus EMT和TEMT EMSLap可通过跟踪数据获得;TEMSLap lens可通过手-眼睛校准获得;以及K可通过相机校准获得。plap us可使用同样根据相机校准获得的镜头失真系数变形进行变形。
可以直接计算计算要求,以便通过基于上述方程将来自腹腔镜超声图像的一个点映射到腹腔镜光学视频图像中的对应点,使用复合超声和光学视频图像进行扩增现实成像。假设相机矩阵大小为(500,500)像素,超声图像大小为(500,500)像素。根据上述方程,所需计算总数为约1x1012个浮点运算,即,1000GFLOPs,其中图形处理用于实时提供解决方案。
除了用于获取腹腔镜超声图像的超声系统之外,光学和超声图像融合工作由膝上型计算机(Precision M4800,戴尔;4核2.9GHz英特尔CPU)实行,所述计算机具有NVidiaGPU Quadro K2100M、576个核心,且具有972.8处理能力。然而,如本文中所描述的优选设计使用计算增强超声系统。除了英特尔处理器CPU之外,系统可并有能够提供大于1000GFLOPs的处理能力的多核GPU,以适应通过上文所列的AI、AR应用施加的计算要求。
图59示出用于提供与外部应用的通信的共享存储器的使用。图60描绘集成到平板计算机或膝上型计算机超声系统中的分布式处理器系统或GPU 4954。
除上述内容以外,现在进一步描述适用于本发明的实施例且在图1B中示出的示例性便携式超声系统。应了解,下面阐述的示例性系统的描述意图用于说明和解释系统特征,且不是在限制性意义上使用。应进一步了解,下文描述的与本文中所含的描述内容一致的对示例性系统的修改也被视为在本发明的范围内。
示例性便携式超声系统产生意在供通过超声成像或人体的流体流动执行分析的合格医生使用的高分辨率图像。特定临床应用和检查类型包含但不限于:胎儿、腹部、手术期间(腹部、器官和血管)、小儿、小器官(甲状腺、乳房、睪丸);新生儿和成年人头部;经直肠的、经阴道的、肌肉骨胳(常规和表层);心肌(成年人和小儿);周围血管。
通常,超声主要一直是操作者相关的成像技术。图像质量和基于扫描进行正确诊断的能力取决于在检查期间应用的精确图像调整和恰当的控件设置。示例性便携式超声系统提供用于在针对所有图像模式的患者扫描期间改进或优化图像质量的工具。此系统并有如本文中先前所描述(例如,在图9A-9F和46-60中描述)的图形处理单元,但不限于此。
便携式超声系统可包含具有不同特征级的版本。下表列出了每个版本所具有的扫描模式。
便携式超声系统可使用256个数字波束成形通道递送2维数字成像。此成像模式在2MHz到12MHz的频率中递送极佳的图像均匀性、组织对比度分辨率和转向灵活性。高通道计数支持实际相控阵列和高元件计数成像探头。2D扫描数据在2D成像窗口中显示。
便携式超声系统可提供同时2维(2D模式)和M模式成像。此组合对于移动结构的高效评估很有用。M模式可用于确定超声波束内的对象的运动型式。此模式可用于查看心脏的运动型式。M模式在2D成像窗口中显示身体结构的扫描数据,并且在时间序列窗口中显示运动扫描。
彩色多普勒模式用于通过向血流的存在、方向和相对速度分配经颜色译码的信息来检测这些参数。在覆叠在2D图像上的关注区域(ROI)中描绘了颜色。朝向探头的非反向血流被分配红色阴影,远离探头显示器的血流处于蓝色阴影。接着,针对结构的灰度扫描显示平均多普勒频移。红细胞的所有形式的基于超声的成像是从接收到的传输信号的回波导出的。此回波信号的主要特性它的频率和它的振幅(或功率)。通过红细胞相对于探头的移动确定频移——朝向探头的血流产生比远离探头的血流高的频率信号。振幅取决于超声波束所采样的体积内的移动血液量。可以应用高帧速率或高分辨率以控制扫描的质量。由快速血流生成的较高频率用较浅的颜色显示,较低频率用较深的颜色显示。例如,近侧颈动脉通常显示为亮红色和橙色,因为血流朝向探头,且此动脉中的血流频率(速度)相对较高。相比而言,颈静脉中的血流显示为蓝色,因为它远离探头流动。彩色多普勒扫描数据在2D成像窗口中显示。
脉冲波多普勒(PWD)扫描产生用于研究沿着所需扫描向量的较小区域中的血流运动的一系列脉冲,它们被称作样品体积或样品门。
图形的X轴表示时间,Y轴表示多普勒频移。如果已知孤立波束和血流之间的适当角度,那么主要通过移动的红细胞产生的连续超声脉冲之间的频移可以转换成速度和流量。频谱显示器中的灰色阴影表示信号强度。频谱信号的厚度指示层状或湍流血流(层流通常示出血流信息的窄带)。在便携式超声系统中,脉冲波多普勒和2D一起展示在混合模式显示器中。此组合使系统的用户能够在2D成像窗口中监测2D图像上的样品体积的位置,同时在时间序列窗口中获取脉冲波多普勒数据。
在2D扫描中,长线允许用户调整超声光标位置,两个平行线(看起来是=)允许用户调整样品体积(SV)大小和深度,与它们交叉的线允许用户调整校正角度。
连续波多普勒扫描显示在超声光标的整个长度上存在的所有速度。此模式可用于成像极高速度,例如由泄漏的心脏瓣膜产生的那些。如同脉冲波多普勒扫描,图形的X轴表示时间,且Y轴表示多普勒频移。
三工扫描模式组合同时或非同时多普勒成像(彩色多普勒)与脉冲波多普勒成像,以查看动脉或静脉速度和流量数据。三工允许用户执行血流的距离门控评估。三工应用包含血管研究、静脉、围产期和放射成像。图61中的以下三工图像示出大隐静脉。
示例性便携式超声系统还可包含使图像锐化的任选的图像优化封装。便携式超声系统可配置有用于组织活检、流体吸入、羊膜穿刺和导管放置的针引导件位置系统还可并入到来自其它供应商的冷冻消融(或目标消融)和近接疗法产品中。便携式超声系统针对大小、位置和通畅性扫描身体结构或血管,并提供之间将出现针的引导线路。针对活检和血管穿刺应用,针引导件套件将针引导到适当位置以用于经皮血管穿刺和神经阻滞。针引导件允许用户将针引导到血管或组织块的中心中,从而帮助避开邻近的活体组织。用户可以在程序之前、期间和之后实时地看到身体结构,并且可以保存图像和电影回放以供未来参考。
针对冷冻消融或近接疗法应用,所述系统可包含插入模板和步进器或稳定器。这些应用的程序由提供那些系统的公司限定。系统软件在扫描上显示插入网格和针以显示程序进度。
用户可以在以下模式中使用针引导件:2D模式;彩色多普勒;M模式(运动模式)。便携式超声系统由探头、电子器件包壳和系统软件组成。在示例性便携式超声系统中,所有探头都可用于所有扫描模式。
当用户起始系统软件时,成像窗口显示。成像窗口可包含在时间序列窗口上方的2D窗口(如果所选扫描模式生成时间序列窗口的话)。2D窗口在所有扫描模式中显示;时间序列窗口仅在以M模式、PWD模式、CWD模式或三工模式扫描时显示。如果控件、按钮、键或菜单示出为灰色,那么它可指示所述功能在当前情况不可用。成像屏幕可在下部拐角处包含状态栏。
状态栏可显示指示符,包含:网络连接,其示出计算机是否连接到网络,如果不存在连接,在指示符上显示红色X;及DICOM状态,其示出到DICOM服务器的连接是否在活动中,及任何研究到DICOM服务器的发送是否失败。系统电源示出系统电池的剩余电量,及是否连接AC电源。在图示中,电池充满电,且系统连接到AC电源。当电池放电时,绿色带从右到左消失。当电池几乎完全放电时,在指示符的左端处示出单个红色带。当电池部分放电且连接AC电源时,在电池图标上示出黄色闪电球。当电池充满电且连接AC电源时,在电池图标下面显示电源插头图标。成像窗口包含文本显示器,其示出关于当前扫描的信息。所显示的图像控件设置依据扫描模式和其它因素而变化。
如图62中所描绘,示例性显示器可包含机械索引、热索引、参考栏类型、图像控件设置:图谱/存留性/扫描频率//2D增益/动态范围、深度设置、帧速率、扫描模式、PRF设置、壁滤波器设置、颜色频率和焦点。在示例性便携式超声系统中,2D增益显示器一开始是50。这不是绝对值;实际增益随着不同预设而改变,但在一开始始终显示为50。当用户使用增益旋钮改变增益时,显示值增加或减少。当选择心脏检查类型时,深度尺和焦深指示符在超声光标上,如成像窗口图中所示。
用户可以在检视窗口中查看保存的研究。在检视保存的研究时,用户可以通过与成像窗口上的相同的方式添加标注和测量结果。
示例性便携式超声系统包含图63中所示的控制台,所述控制台容纳配置和操作便携式超声系统的控件。
1:电源按钮 13:彩色模式键
2:基线键 14:2D模式键
3:缩放键 15:CW模式键
4:页面键 16:增益/活动控件
5:未分配 17:清除键
6:转向键 18:计算键
7:分割键 19:卡尺键
8:聚焦键 20:选择键
9:深度键 21:光标键
10:人体标记键 22:M模式键
11:文本键 23:变焦控件
12:PW模式键 24:更新键
控制台包含字母数字键盘、一组系统键、TGC滑条、软键控件和用于超声成像功能的众多控件。示例性控制台中的经编号超声成像控件执行下面所列的功能:
1.电源:启动系统和关闭系统。
2.基线:改变PW、CW和彩色多普勒模式中的多普勒基线。按压键顶部向上移动基线,按压键底部向下移动基线。
3.缩放:改变PW、CW和彩色多普勒模式中的速度比例(通过改变PRF)。按压键顶部增加PRF,按压键底部减小PRF。
4.页面:改变显示的活动中软键组。
5.此键可能未分配。
6.转向:在2D、彩色多普勒或PWD模式中,此键使超声波信号转向。按压键的左端向左转向,按压右端向右转向。
7.分割:按压键的左端开启其中左屏在活动中的分屏,或当分屏已经开启时,使得左屏在活动中。按压键的右端开启其中右屏在活动中的分屏或使得右屏在活动中。按压对应于活动中屏幕的键的端部退出分屏。
8.聚焦:改变信号焦点的深度。按压键的顶部向上移动焦点,按压键的底部向下移动焦点。
9.深度:改变总图像深度。按压键的顶部向上移动图像深度,按压键的底部向下移动图像深度。
10.人体标记:在扫描中插入人体标记。
11.文本:在扫描上启用文本输入和标注。
12.PW:进入和退出脉冲波多普勒模式。
13.彩色:进入和退出彩色多普勒模式。
14. 2D:进入2D模式。
15.CW:进入和退出连续波多普勒模式。
16.增益/活动:转动旋钮改变增益。推动“活动”按钮在活动扫描模式和与那些模式相关联的软键之间切换。
17.清除:擦除当前选定的标注或测量结果。
18.计算:打开计算菜单。
19.卡尺:开始通用测量。反复按压键在可用计算之间循环。
20.选择:选择轨迹球功能。所选功能在软键显示器上方用蓝色突显。
21.光标:选择并显示或取消选择并隐藏超声光标。
22.M模式:进入和退出M模式。
23.变焦:推动以进入ROI框变焦或退出变焦模式。转动以进行快速变焦
24.更新:在PWD和CW模式中打开和关闭2D图像的更新。
25.左输入:选择和取消选择项。当窗口屏幕在活动中时,左输入键的作用类似鼠标上的左按钮。
26.轨迹球:控制光标、ROI和其它特征的移动。
27.右输入:打开上下文菜单。当窗口屏幕在活动中时,右输入键的作用类似鼠标上的右按钮。
28.冻结:冻结和取消冻结扫描。
29.存储:存储单帧图像。
30.记录:存储电影回放。
在控制台的左上方是一组控制什么窗口在活动中的系统键。它们包含:患者-打开患者窗口,预设-打开预设菜单,检视-打开检视窗口,报告-打开报告窗口,结束研究到关闭当前研究,探头-打开成像窗口;设置-打开设置窗口。
正好在键盘下面的键控制在成像窗口的底部上显示的软键的功能。软键功能取决于连接的是哪个探头,选择的哪一扫描模式,集扫描是实时的还是冻结的。下面的说明示出当图像是实时和冻结时的软键的实例。系统显示的软键取决于连接的探头、所选扫描模式和所选检查。用户看到的显示可不同于此处展示的图示。
应了解,在一些实施例中,控制台控制可以通过触摸屏显示器提供,而不是配置在单独的物理壳体中。
系统可包含ECG模块、ECG引线组-10组电极、Footswitch(Kinessis FS20A-USB-UL)、医用级打印机和一或多个换能器探头。示例性便携式超声系统遵守诊断超声设备上的热和机械声学输出索引的实时显示器标准(the Standard for Real-Time Display ofThermal and Mechanical Acoustic Output Indices on Diagnostic UltrasoundEquipment)(UD3-98)。当相关输出索引低于1.0时,不显示索引值。当以停用冻结功能的任一模式操作时,窗口显示与当前在活动中的探头和操作模式相关的声学输出索引。最小化实时显示的索引值允许实践ALARA原理(以可以合理达到的低水平将患者暴露于超声能量)。
在示例性便携式超声系统中,为了选择扫描模式,用户按压控制台上适当的键。
对于2D,按压“2D”键;对于M模式,按压“M模式”键;对于彩色多普勒,按压“彩色”键;对于脉冲波多普勒,按压“PW”键;对于连续波多普勒,按压“CW”键。
在示例性便携式超声系统中,要在2D、彩色多普勒或M模式中进行超声检查,用户完成这些步骤:
1 载入或创建患者信息。
2 针对所需扫描模式按压控制台的键:
3 按压“预设”键,接着从“预设”菜单选择一种预设。
系统软件载入针对所选预设和连接探头优化的预设图像控件设置。用户现在可以使用探头来进行超声检查。参考用户正在进行的检查的适当临床程序。
4 必要时,使用软键来调整图像控件。
5 按压“冻结”键。软键控件变成允许进行打印、测量和其它功能。
要在脉冲波多普勒模式中进行检查,用户可完成这些示例性步骤:
1 在2D模式中进行检查,
2 按压控制台上的“PW”键。
3 将距离门移动到适当位置,接着按压控制台上的“左输入”键。
4 根据需要使用软键来调整任何图像控件设置。
5 按压“冻结”键。软键控件变成允许进行打印、测量和其它功能。
为了在三工模式中进行检查,用户可完成这些示例性步骤:
1 在彩色多普勒模式中进行检查(不冻结扫描)。
2 按压控制台上的“PW”键。软件启动三工模式。
3 将距离门移动到适当位置,接着按压控制台上的“左输入”键。
4 根据需要使用软键来调整任何图像控件设置。
5 按压“冻结”键。软键控件变成允许进行打印、测量和其它功能。
当用户切换到三工模式时,原始2D扫描模式和PWD模式均在活动中。这取决于选项是否被设置成同时模式。
实时图像以帧记录,并临时存储在计算机上。依据用户选择的模式,系统记录特定数目的帧。例如,2D模式允许用户在电影回放中捕获高达10秒。
脉冲波多普勒(包含三工)和M模式扫描仅保存2D图像的单个帧,并且用户无法保存这些扫描模式的回放。
当用户在扫描期间冻结实时图像时,所有移动在成像窗口中都暂停。冻结帧可保存为单个图像文件或图像回放。对于M模式、PWD和三工模式,软件保存时间序列数据和单个2D图像。
用户可在任何时间解冻帧,并返回到实时图像显示。如果用户按压“冻结”键,但没有保存图像或图像回放,那么用户会丢失临时存储的帧。
为了在执行超声扫描时冻结所显示图像,用户按压“冻结”键。当冻结扫描时,冻结图标在成像屏幕上正好在左软键上方出现。接着,用户可以使用“增益”旋钮或键盘箭头键来穿过在扫描期间获取的帧。
为了开始新的扫描,用户再次按压“冻结”键。如果用户不保存冻结图像或回放,那么开始实时扫描会擦除帧数据。用户在用户获取新的扫描数据之前保存或打印任何需要的图像。
检视图像回放可用于在扫描阶段的一短区段期间聚焦在图像上。当用户冻结图像时,用户可使用“增益”旋钮来逐帧检视整个回放以查找特定帧。用户还可在通过在所需帧显示之前一直转动“增益”旋钮并按压“存储”键来查看保存的回放时执行这一操作。
为了保存整个回放,用户无需选择不同帧。当用户按压存储键时,所有获取到的帧都保存在回放中。
为了查看回放,用户冻结图像并按压“播放”软键。“播放”软键标签变成“暂停”。回放不断播放,直到用户按压“冻结”键或“暂停”软键为止。用户可在成像窗口的底部处的进度条中跟踪帧和当前帧的编号。
在2D和彩色模式中,系统可预期性地或回顾性地获取回放。预期性获取根据获取命令捕获实时扫描数据的回放,而回顾性获取保存冻结扫描的回放。
在实时成像期间,按压“存储”键告知系统在键点击之后获取并保存扫描回放。回放在“主屏幕”旁边的“缩略图”窗口中显示。回放的默认长度是3秒,但是这可以在“设置存储/获取“窗口的“获取长度”区段中调整,例如,在1和10秒之间。
当选择设置窗口的“存储/获取”选项卡上的心跳单选按钮且系统检测到ECG信号时,获取的回放是数个心跳。默认可以是2个心跳,但是这也可以在获取长度区段中调整,以便在1和10个心跳之间。如果没有检测到ECG信号,那么获取的回放可以是在时间字段中设置的长度,即使选择了心跳单选按钮也如此。用户可以在获取长度区段中应用R波延迟。用户还可启用在获取完成时响起的哔哔声。以此方式获取的回放的默认格式是.dcm,然而,它们还可保存为其它可用格式中的任一个。用户可利用设置窗口上的导出选项卡来选择不同文件格式。
当用户查看冻结或实时图像时,用户可以使用“变焦”工具放大2D图像的一区域。用户在时间序列窗口中无法使用“变焦”工具。要变焦到图像的中间,用户:
1 按压“增益”旋钮,直到在“增益旋钮”菜单中选定“变焦”为止。
2 转动“增益”旋钮以放大或缩小到用户想要的大小。为了使远离图像中间的区域变焦:
为了使远离图像中间的区域变焦,用户:
1 按“变焦关闭(Zoom Off)”软键。
2 使用轨迹球将变焦框移动到用户想要变大的区域,并按压“左输入”键。
3 使用“增益”旋钮放大或缩小所述区域。
在示例性便携式超声系统中,在M模式和频谱模式中,用户可使得2D显示器相对于时间序列显示器更大,反之亦可。
要调整扫描显示器的大小:
1.按压“设置”键。
2.点击“显示器”选项卡。
为了使时间序列显示器变大并使2D成像显示器变小,在M模式格式或频谱格式区域中点击S/L单选按钮。为了使2D显示器变大并使时间序列成像显示器变小,在M模式格式或频谱格式区域中点击L/S单选按钮。
3.点击“OK”应用所述改变。
注意:每当用户使用在用户进行改变时选择的预设时应用此选择。当用户使用不同预设时,所述选择不应用,除非用户也已经在那个预设中做出改变。
在示例性便携式超声系统中,任选的图像优化封装使便携式超声系统产生的图像锐化。默认配置在便携式超声系统启动时启动所述软件。为了将这变成系统在优化软件关闭的情况下启动,用户可进行其中“TV级”软键控件设置成0的预设。优化软件级数目在0到3的范围内。0设置不应用图像处理。数目越大,应用到图像的处理越多。为了调整优化级,当实时成像时,用户可以按压“TV级”软键,直到所需级被设置为止。
设置窗口上的通用选项卡的视图选项区段允许用户在所扫描的图像上添加或去除若干个引导件。这些引导件提供关于患者、探头和图像控件设置的细节。
系统软件允许用户将成像屏幕分割成两个区段,以查看患者的两个当前扫描。用户可以获取患者的一个扫描,选择分屏,然后获取来自不同角度或位置的另一扫描。分屏模式与2D扫描模式(2D和彩色多普勒)合作。
当用户进入分屏模式时,系统软件将图像控件窗口的当前设置复制到新的屏幕。接着,用户可以独立地向任一屏幕应用任何图像控件设置。用户可使任一屏幕变成实时或冻结(一次仅一个屏幕可以是实时的),并且用户可使用任一屏幕的工具和菜单中的任一个。此外,用户可以在每个屏幕中以不同模式扫描。例如,用户可以获取2D扫描,进入分屏模式,接着在第二屏幕中获取彩色多普勒扫描。以下图示出分屏的实例。
活动中屏幕在顶部和底部处具有蓝绿色条。要启动另一屏幕,用户执行这些动作中的一个:
将箭头光标移动到所需屏幕并按压“左输入”键。
按压“转换屏幕”软键。为了退出分屏模式,使用这些方法中的任一个:
按压2D键。
选择不同检查
选择M模式、PWD或三工扫描模式
按压“分割”软键
当用户通过按压“分割”软键退出分屏模式时,系统软件保持活动中屏幕(在顶部和底部处具有蓝绿色线的屏幕)的所获取数据,并舍弃另一屏幕的所获取数据。
“文本”模式允许用户使用软键向图像添加文本和符号。在“文本”模式中可用的软键控件包含:
“偏侧”将字“左”或“右”放置在图像上。按压“偏侧”软键在“左”、“右”和无文本之间循环。
“位置”打开人体位置的菜单,或增加人体位置的列表。如果菜单打开,那么可以点击适当的项,将它放置在图像上。
“身体结构”打开不同身体结构的名称菜单,或增加身体结构的列表。如果菜单打开,点击适当的项,将它放置在图像上。
“定向”打开患者定向的菜单,或增加患者定向的列表。如果菜单打开,点击适当的项,将它放置在图像上。
“人体标记”打开人体标记菜单。
“新文本”在归属位置处开始新的一行文本。
“文本清除”从图像中删除所有文本(包含手动键入的文本和箭头)
“归属”将文本光标或所选文本移动到文本归属位置。
“箭头”将箭头放置在文本归属位置处,或在图像上存在文本的情况下,将箭头放置在最后一行文本的中间处
“设置归属”设置文本归属位置。将文本光标移动到所需位置,接着按压“设置归属”软键。
为了进入文本模式,按压“文本”键。系统软件将文本光标(I形条)放置在成像屏幕上。轨迹球用于将它移动到用户想要新文本或键入文本或使用“文本模式”软键中的一个的位置。当文本完成时,按压"左输入"键。如果用户使用"设置"窗口的"标注"选项卡添加自定义文本,那么所述文本在它添加到的软键列表中示出。
用户还可使用软键添加预定义文本。这允许用户添加用户通常需要的标签和消息,而不必每次将它们键入。
1.按压控制台上的“文本”键,或按压键盘上的“空格”键。
2.针对预定义文本按压软键中的一个:
“偏侧”将字“左”或“右”放置在图像上。按压“偏侧”软键在“左”、“右”和无文本之间循环。
“位置”打开人体位置的菜单,或增加人体位置的列表。如果菜单打开,点击适当的项,将它放置在图像上。
“身体结构”打开不同身体结构的名称菜单,或增加身体结构的列表。如果菜单打开,点击适当的项,将它放置在图像上。
“定向”打开患者定向的菜单,或增加患者定向的列表。如果菜单打开,点击适当的项,将它放置在图像上。利用软键中的一个选择项并将它放置在图像上。
用户可以在冻结图像上放置两种箭头:标记箭头和文本箭头。默认是标记箭头。用户可以在图像上放置用户想要数目个箭头。标记箭头空心短箭头,指示图像上的点。当用户放置箭头(见程序下面)时,箭头是绿色的。在箭头是绿色时,用户可以使用轨迹球移动箭头。用户可通过点击箭头来选择它。当箭头被选定时,用户可以利用轨迹球移动它,并通过按压“选择”键然后移动轨迹球来旋转它。要将标记箭头放置在图像上,完成这些步骤:
1 按压“箭头”软键。
2 使用轨迹球将箭头移动到用户希望的位置
3 按压“选择”键并移动轨迹球,使箭头旋转。
4 按压“箭头”软键,将另一箭头放置在图像上。
5 按压左输入键来设置箭头并退出文本模式。
文本箭头是用户可以从文本绘制到所扫描的身体结构上的点的短划线箭头。用户还可添加箭头,但不添加文本。为了使用文本箭头,用户必须在”设置/标注“窗口上进行选择。
在将文本放置在图像上之后,用户可以轻易地将它移动到图像显示器内的任何位置。为了移动文本,点击文本,将它移动到新位置,并按压“左输入”键。如果箭头附接到文本上,那么箭头的起点也移动。
用户可以向2D图像添加标识扫描的身体结构的图标。“标注”菜单中的人体标记打开含有基于若干个身体结构视图的当前检查的窗口。要向图像添加人体标记,用户完成这些步骤:
1 按压“文本”键。
2 按压“人体标记”软键。人体标记在图像上显示。
3.如果用户想要的标记没有显示,那么按压“下一标记”或“前一标记”软键。如果另一标记可用,用它代替第一标记。
4.当用户想要的标记显示时,按压“左输入”键。
要改变人体标记,完成这些步骤:
1.点击人体标记。标记变成绿色,软键变成“人体标记”设置。
2.按压“下一标记”或“前一标记”软键。
3.当用户想要的标记显示时,按压“左输入”键。
用户可将人体标记移动到图像上的任何位置。要移动人体标记,完成这些步骤:
1 点击人体标记,选中它。
2 按压“标记位置”软键。
3 使用轨迹球移动人体标记。
4 当标记在用户想要的位置处时,按压“左输入”键两次。
用户可将橙色探头指示符移动到图标上的任何位置,以更精确地指示所扫描的身体结构。
要移动橙色标记,完成这些步骤:
1 点击人体标记。软键上方的文本显示改变,表明选中探头位置(Probe Pos)。
2 使用轨迹球将探头指示符移动到人体标记上的所需位置。
3 当标记在用户想要的位置处时,按压“左输入”键。
要使探头指示符旋转到更多位置,完成这些步骤:
1.移动人体标记上方的窗口指针。所述指针变成指向手部。
2 按压“选择”键,突显软键显示器上方的线中的“探头定向”。
3 使用轨迹球将探头指示符旋转到人体标记上的所需定向。
4 按压“左输入键”,将指示符锁定在适当位置。
成像窗口下面的软键控件集显示当前可用的成像控件。软键由控制台上的键或者使用触摸屏显示器来操作。当用户选择扫描模式时,软件配置所述模式的软键。所显示的控件依据连接的探头及其它选择而变化。按压控制台的左侧处的左右箭头键将显示器变成所选模式中可用的其它控件。
要改变设置,使用控制台上的转换键。每个转换键控制在成像窗口底部的软键中的一个的设置。键组的位置对应于屏幕上按钮的位置——最左侧键控制最左侧软键的设置,以此类推。
图64示出作为可用2D图像控件的实例示出的软键。用户在实时扫描期间可以仅调整这些图像控件。当用户冻结扫描时,系统软件用不同组代替软键,以便对扫描图像进行打印及标注和测量。
软键显示器取决于连接的探头、所选扫描模式和所选检查。用户在实时扫描期间可以调整以下2D图像控件:频率、扫描深度、焦深、增益、时间增益补偿(TGC)、图像格式、全向波束、左/右和上/下倒置、着色、存留性、图像图谱、针引导件、动态范围、软件优化控件。
当用户选择检查时,系统软件为所述检查设置适当的频率。用户可以选择替代频率以更好的适应特定情况。大体来说,更高的传输频率产生更好的2D分辨率,而更低的频率提供最佳穿透。要选择高、中等、或低频率,使用“频率”软键。精确频率依据连接的探头而变化。每个频率具有与它相关联的数个其它参数,这取决于检查类型。所选频率在成像窗口的右侧示出为信息中的字符串中的H、M、或L。在下面的实例中,选择中等频率。
“深度”键调整视场。用户可以增加深度以便看到更大或更深的结构。用户可以减小深度以便放大靠近皮肤线的结构的显示,或在窗口的底部不显示不必要的区域。当用户选择检查类型时,系统软件输入所述特定检查类型和探头的预设深度值。要设置扫描深度,使用“深度”键。在调整深度之后,用户可能想要调整增益、时间增益补偿(TGC)曲线和聚焦控件设置。用户可以通过在设置窗口的“通用”选项卡上选择“深度尺”来查看图像上的深度尺。
“聚集”通过增加特定区域的分辨率来优化图像。图65示出沿着图像的右侧的深度尺。深度尺上的色三角指示焦深。此指示符仅在用户示出深度尺时可见。深度还显示为扫描信息区域中的文本。当用户选择检查类型时,软件将聚焦值更新为特定检查类型、探头和频率的预设值。在2D模式中,用户可使用“聚焦区域”软键设置四个焦深。在所有其它模式中,用户可仅设置一个焦深。当用户使用超过一个焦深时,用户可以选择焦深的分布。
要设置焦深,用户使用“聚焦”键。要在2D中设置多个焦深,用户完成这些步骤:
1.使用“聚焦区域”软键选择所需数目个聚焦区域。
2.使用“聚焦范围”软键选择聚焦区域的分布。
所述分布通过深度尺上的深度指示符的间隔示出。焦深的实际间隔取决于所选的点的数目和深度。增加聚焦区域的数目减小了帧速率。
2D增益允许用户增加或减小返回回波的放大,从而增加或减小在图像中显示的回波信息的量。如果生成足够的回波信息,那么调整增益可使图像变亮或变暗。当用户调整增益时,系统软件增加或减小总增益,同时保持TGC曲线的形状。当用户选择预设时,系统软件将增益设置成特定预设和探头的预设值。要增加或减小增益,用户向右或向左转动“增益”旋钮。
在更大深度处扫描组织使返回信号衰减。TGC滑条调整返回信号的放大以校正衰减。TGC使图像平衡,以均衡从近场到远场的回波亮度。当用户改变深度、载入新的检查类型、选择不同频率或调整增益设置时,系统软件重新缩放TGC设置。
TGC滑动条间隔与深度成正比。图像显示器上的TGC曲线表示TGC设置,并且在用户移动滑条中的一个时呈现。每个滑条控制曲线上的一个点。用户可以根据需要分别调整TGC滑条。用户向左拖动滑条以减小增益,或向右拖动它以增加增益。要显示或隐藏TGC曲线,按压“设置”键,接着点击“通用”选项卡,在TGC框中选择“显示”、“隐藏”或“超时”。选择“显示”,始终显示曲线,或选择“隐藏”,始终隐藏曲线。如果用户选择“超时”(默认设置),那么曲线只在用户开始应用或调整个别TGC滑条时短暂地显示。
当使用线性探头时,“图像格式”软键允许用户选择矩形(Rect)或梯形(Trap)的图像格式。全向准许超声波束电子转向以从若干方向获取ROI的扫描。全向与线性和弯曲线性阵列探头合作。当全向开启时,代码OM在扫描信息显示中示出,且深度尺上的聚焦标记改变。为了使全向波束打开或关闭,按压“全向波束”软键。
存留性是指实时图像或回放的图像帧平均。当存留速率为高时,图像具有更少斑点,且更光滑。然而,如果组织在当时用户冻结图像时移动,那么增加存留速率可能会产生模糊图像。当存留性为低时,情况相反。
要改变帧平均化的量,用户按压“存留”软键以在0到7之间选择值。0设置表示0%存留性,和7表示100%存留性。存留性设置在屏幕上显示为信息文本串中的字符。
“图谱”控件允许用户选择灰度在图像上如何分布。每个图谱强调信号振幅范围的特定区域。此特征可用于关闭查看特定身体结构特征并用于检测细微病变。用户图谱选项的效果由图像上在深度比例左侧的参考栏表示。
“针引导件”软键只有在连接的是支持活检或其它医疗程序的探头时才在活动中。要显示针引导件,使用所述软键打开针引导件并选择正确的针引导件(如果超过一个引导件可用)。依据连接的探头,用户可能只能看见一个针引导件选项。如果所述探头的托架支持超过一个角度或深度,那么显示针对每个支持的角度或深度的选项。要打开或关闭针引导件,按压“针引导件”软键。如果超过一个引导件可用,按压“引导件类型”软键以选择不同引导件。要打开或关闭目标指示符,按压“目标”软键。使用轨迹球设置目标深度。从探头到目标的距离在成像窗口的左上方拐角显示。
“动态范围”软键控制在图像中显示的声级范围,它影响图像的对比度。软键上的数字指示压缩量,从0到100。要调整动态范围,使用“动态范围”软键。0设置提供最大对比度,100提供最小对比度。要启用或停用软件图像增强优化,使用“TV级”软键。使用所述软键,用户可以设置关闭级、1级、2级或3级。
选择组织多普勒成像(TDI)优化用于使组织运动成像的图像控件。控件设置随着所选扫描模式而变化。控件值可独立于非TDI设置而调整和预设。当图像冻结时,停用TDI。TDI仅与4V2A探头合作。要应用组织多普勒成像,在处于2D模式时,按压“TDI”软键。
所传输的超声波信号在组织中生成谐波(在是所传输信号频率的倍数的频率下的信号)。组织谐波成像处理返回谐波信号以增强所显示图像。用于THI的谐波是所传输信号的频率的两倍。THI仅在连接的是4V2A或5C2A换能器时可用。当连接的是不同类型的换能器时,THI按钮不显示。THI在中距深度处最有效。浅层和深度扫描并不会得益于THI。当扫描深度是4cm或更多时,停用THI。要打开或关闭THI,在2D模式中点击THI按钮。
当用户选择M模式时,系统软件应用一组预设图像设置,并改变可用的软键控件。当用户冻结扫描时,系统软件用用于测量M模式图像的特征和用于检查帧和播放回放的控件代替成像软键控件。
当选中M模式时,系统软件自动选择超声光标,并移动轨迹球控制光标位置。按压“左输入”键取消选择所述光标并将它锁定在适当位置。按压“光标”键选择超声光标。
增益旋钮的中心中的活动按钮控制显示的是活动中模式的哪一成像控件集。在M模式中,那些是2D和M模式的控件。当前选择的控件集名称在软键上方显示为蓝色。要选择不同控件集,按压“活动”按钮。在M模式中,可用的“增益旋钮”控件是2D增益控件。
“扫掠速度”软键设置在时间序列窗口中扫描时间表的速度。要设置扫掠速度,用户按压“扫掠速度”软键,选择缓慢、中等或快速。时间序列窗口中的刻度标记依据速度而更接近或相隔更远。每个大刻度标记表示一秒。
要移动超声光标,用户按压“光标”键以选中超声光标,接着使用轨迹球将它移动到新位置。当光标在用户希望的位置处时,按压“左输入”键。当超声光标被选中时,它变成绿色。当锁定在适当位置时,它返回到它的正常颜色。
利用“身体结构”软键启用身体结构M模式允许用户竖直旋转和移动扫描线。当用户选择脉冲波多普勒时,系统软件应用一组预设图像设置并改变可用软键控件。当用户冻结脉冲波扫描时,系统软件用用于测量PWD图像的特征和用于检查帧和播放回放的控件代替成像软键控件。
“增益”旋钮的中心中的“活动”按钮控制显示的是活动中模式的哪一成像控件集。在PWD模式中,那些是2D和频谱模式的控件。当前选择的控件集在软键上方显示为蓝色。要选择不同控件集,按压“活动”按钮。在处于脉冲波多普勒模式时选择针对PWD模式的特殊轨迹球响应,系统软件自动选择超声光标和样品体积门(SVG),且移动轨迹球控制超声光标和SVG位置。按压“左输入”键将超声光标和SVG设置在适当位置。当处于PWD模式时,按压“光标”键选择超声光标和SVG。
系统软件允许用户选择频谱多普勒模式的扫掠速度。慢速随着时间推移示出更多波形,但是细节更少。中速适用于正常使用。快速随着时间推移示出更少波形,但是更加详细。沿着时间序列窗口的顶部的刻度的间隔指示扫掠速度。每个大刻度表示一秒。当图像被冻结时,用户无法改变设置。“扫掠速度”软键设置在时间序列窗口中扫描时间表的速度。要设置扫掠速度,按压“扫掠速度”软键,选择缓慢、中等或快速。
时间序列窗口示出以cm/s或kHz为单位的血流速度。用户可在任何时间改变单位,只要光标角度是70°或更小即可。要改变速度显示单位,按压“输出单位”软键。按压所述软键在cm/s和kHz之间转换。
脉冲重复频率限定显示器的速度范围,表现为比例。PRF的最大值(以Hz为单位)取决于特定探头和样品体积的位置。PRF应该设置成高到足以防止混叠,及低到足以提供对缓慢血流的足够检测。在检查期间可能需要使PRF变化,这取决于血流速度,或在存在病变的情况下。当用户观察到的频率超过采样率的二分之一时出现混叠。如果血液移动得比脉冲重复率快,那么显示器上的波形将与基线混叠或卷绕。用户只能在查看实时图像时而不是在图像冻结时改变此设置。当用户移动关注区域时,系统软件可自动改变PRF值,以确保最大PRF值不超过它的限值。要调整PRF值,使用“缩放”键。在时间序列窗口的左侧的速度(cm/s)比例响应于“缩放”设置而改变,且PRF值在扫描特性显示器中示出。每次点击的增量值取决于当前范围。例如,如果“缩放”设置是4000,那么每次用户按压向上或向下软键,系统软件使所述值增加或减去500Hz,直到所选值落入更低或更高范围为止。增加PRF还增加了热索引(TI)值。PRF值只在三工扫描中与2D模式(彩色多普勒)中的设置相联系。如果用户改变一个模式的PRF值,那么系统软件还改变其它模式的PRF值。这取决于用户是以同时模式还是以非同时模式扫描,这受“更新”键控制。
多普勒系统使用壁滤波器(高通频率滤波器),以从显示器中去除不想要的低频高亮度信号(被称为混杂)。混杂可由组织运动或探头的快速移动所产生。增加壁滤波器设置减少了低速组织运动的显示。减少壁滤波器设置显示更多信息,但是显示了更多的壁组织运动。
使用高到足以去除混杂但低到足以显示靠近基线的信息的壁滤波器设置。要调整壁滤波器值,使用“滤波器”软键。壁滤波器在PRF的1%到25%范围内,因此利用“缩放”键改变PRF还改变了壁滤波器的范围以及“滤波器”软键改变其设置的增量。每次点击的增量值取决于当前范围。例如,如果壁滤波器范围是1000Hz,那么每次用户点击“滤波器”软键,系统软件使滤波器值增加或减去100Hz。
当使用频谱多普勒时,用户应该知道多普勒血流角度(超声波束的轴线和血液流动平面之间的角度)。当超声波束垂直于血流(90°血流角度)时,会显示不存在或令人混淆的彩色图案,即使血流是正常的也如此。需要适当的多普勒血流角度以获得有用的频谱多普勒信息。在大多数情况下,多普勒波束越平行于血流(血流角度越小),接收信号越好。小于60°的角度提供最佳质量频谱多普勒。电子转向在血流与多普勒波束成不佳角度时有用。然而,通常还需要按压在探头的一端或另一端上以改进多普勒血流角度。电子转向可与平坦线性阵列探头(4V2A和15L4)一起使用。弯曲线性探头不能进行电子转向,根据临床情形,弯曲线性探头可能需要用户向下按压探头的一个拐角以获得适当的血流角度。转向角度不会直接影响速度比例的校准。要选择不同转向角度,用户按压“转向”键以获得所需角度。用户可以在查看实时图像时使用此控件。当图像冻结时,用户无法改变设置。
为获得精确的速度,用户必须保持60°或更小的多普勒角度。通常需要按压在探头的一端或另一端上以改进多普勒血流角度。在便携式超声系统中,以厘米/秒为单位的速度显示仅示出在+70°和-70°之间的校正角度范围中。成大于70°的角度,速度计算的误差过大,且独立于校正角度,速度比例转换成频率(以kHz为单位)。出于参考目的,血流方向指示符仍在窗口上示出。要调整校正角度,按压“CA软键”以增加或减小角度。角度设置在成像窗口的图像信息区段中在深度比例的右侧显示。要将校正角度设置成0或60°,按压“CA+/□□60”软键或“转向0”软键。“CA+/□□60”软键在到-60°和+60°之间转换校正角度,且“转向0”软键将角度设置成0°。
用户可倒置脉冲多普勒波形。多普勒比例在频谱显示器的宽度中由零基线间隔开。基线上方的数据分类为前向血流。基线下面的数据分类为逆向血流。当波形倒置时,逆向血流在基线上方显示,且前向血流在基线下面。要倒置波形,用户按压“倒置”软键。用户只能在查看实时图像时使用此控件。当图像冻结时,用户无法改变此设置。
要调整2D图像显示器中的超声光标,按压“光标”键,使用轨迹球移动所述光标,并按压“左输入键”以将光标锁定在适当位置。
样品体积大小控件调整正在检查的多普勒区域的大小。值越小,计算流速所用的样品大小更窄。样品体积沿着超声光标显示为两个平行线。这两个平行线之间的距离是样品体积的大小(以毫米为单位)。要调整样品体积(SV)大小,按压“SV大小”软键。“SV大小”在软键上并且在成像窗口上在深度比例右侧的图像信息区域中显示。用户可以在0.5到20mm范围内设置值(增量为0.5mm)。
要调整样品体积的位置,使用“光标”键选中它,接着使用轨迹球或触摸板将它移动到所需位置。按压“左输入”键固定它。
用户只能在查看实时图像时使用此控件。当图像冻结时,用户无法调整样品体积。修改样品体积的深度位置会影响热索引(TI)值。
样品体积指示符允许用户以2D扫描模式开始扫描,设置样品体积位置,并切换到频谱多普勒模式。样品体积锁定在适当位置。当以CD模式扫描时,此程序切换到三工模式(如果通过用户授权启用的话)。要定位样品体积,在2D窗口中,按压“光标”键,接着使用轨迹球设置门位置。
PW增益设置(不是2D增益设置)增加或减小时间序列显示器的返回信号(实时或重放)的放大。所述增益应该调整成使得频谱波形明亮,但不会高到使得收缩窗口填充在其中或形成其它伪影。要调整PWD增益,使用“增益”旋钮。确保频谱在软键显示器上方示出。用户可以调整实时图像或正在播放的所保存回放的增益。用户无法调整冻结图像或所暂停回放的增益。
“噪声抑制”控制低电平返回信号的抑制。增加抑制使图像背景变暗。软键上的数字指示噪声抑制级。要调整噪声抑制,使用“抑制”软键。软键上的数字指示噪声抑制级。
“更新”键允许用户在获取频谱多普勒扫描数据(在时间序列窗口中显示)选择是否继续扫描身体结构(在2D窗口中显示)。当“更新”被选中时,键点亮为蓝色,且系统软件在获取频谱多普勒数据时持续更新2D扫描。当未选中时,键点亮为白色,且系统软件在获取频谱多普勒数据时冻结2D数据。在大多数检查中此键的默认设置是选中(连续扫描2D和频谱多普勒数据)。当用户取消选择“更新”键(但不冻结扫描)时,用户无法调整2D图像控件中的一些控件。要在实时和冻结之间转换2D窗口,按压“更新”键。
当用户选择彩色模式时,系统软件显示彩色模式的软键和“增益旋钮”菜单。“增益”旋钮的中心中的“活动”按钮控制显示哪一成像控件集。在彩色模式中,那些是2D和彩色模式的控件。当彩色模式被选中时,系统软件自动选择ROI位置(ROI Pos),并且移动轨迹球改变位置。轨迹球上方的“选择”键的点击改变对ROI大小的控制;以及滚动轨迹球收缩或扩增ROI。当ROI处于正确位置且是正确大小时,点击“左输入键”以设置ROI。按压“光标”键选择超声光标,且轨迹球控制光标位置。
扫描区域(也被称作关注区域或ROI)的大小是影响帧速率的主要控件中的一个。扫描区域越小,帧速率越快。扫描区域越大,帧速率越慢。用户可通过按压“选择”键,将ROI移动到新位置并按压“左输入”键固定它来移动扫描区域。按压“选择”键两次选中ROI大小,且允许用户使用轨迹球或通过如图67中所示的触摸致动对它进行大小调整和再成形。当图像冻结时,用户无法移动ROI或调整其大小。要移动关注区域,完成以下步骤:
1 按压“选择”键,选中ROI。光标消失,且ROI Pos在软键上方显示为蓝色。
2 使用轨迹球移动ROI。
3 按压“左输入”键。
要调整关注区域的大小,完成以下步骤:
1.按压“选择”键两次,选中ROI。
光标消失,ROI轮廓变成点虚线,且ROI大小在软键上方显示器为蓝色。
2.使用轨迹球调整ROI大小。
当用户移动关注区域时,系统软件可自动调整PRF值,以确保新深度不超过最大PRF。脉冲重复频率限定显示器的速度范围,表现为比例。PRF的最大值(以kHz为单位)取决于特定探头和关注区域的位置。PRF应该设置成高到足以防止混叠,且低到足以提供对慢血流的足够检测。在检查期间可能需要使PRF变化,这依据血流速度或在存在病变的情况下。当用户观察到的频率超过采样率的二分之一时出现混叠。如果血液移动得比脉冲重复率快,那么多普勒显示器将与基线混叠或环绕。如果PRF设置得过高,那么可能不示出由低速血流所产生的低频移位。当PRF增加时,可在没有混叠的情况下显示的最大多普勒频移也增加。用户只能在查看实时图像时使用此控件。当图像冻结时,用户无法改变PRF。
要调整PRF值,使用“缩放”键。每次点击的增量值取决于当前范围。例如,如果PRF设置是4.0KHz,那么每次用户点击向右或向左箭头,系统软件使所述值增加或减去500Hz,直到所选值落入更低或更高范围为止。增加PRF还增加了热索引(TI)值。
在彩色多普勒中,用户可倒置色标。通常,红色分配给正频移(朝向探头的血流),蓝色分配给负频移(远离探头的血流)。此彩色分配可通过按压“倒置”软键来颠倒。朝向探头的血流始终被分配颜色栏的上半部的颜色,且远离探头的血流被分配颜色栏的下半部的颜色。当用户按压“倒置”软键时,彩色多普勒参考栏和关注区域内的扫描数据的颜色均倒置。
例如,当扫描颈内动脉(ICA)时可使用“倒置”。大体来说,此血管中的血流变成远离探头。如果启用“倒置”,那么ICA血流显示为红色阴影。颜色栏在上半部上显示蓝色阴影,在底部上显示红色阴影。
多普勒系统使用壁滤波器(高通频率滤波器)来从显示器中去除不想要的低频高亮度信号(也被称为混杂)。混杂可由组织运动或探头的快速移动所产生。提升壁滤波器设置减少了低速组织运动的显示。降低壁滤波器设置显示更多信息。但是还显示了更多的壁组织运动。壁滤波器设置应该设置成高到足以确保来自组织或壁运动的彩色多普勒闪存伪影不显示,但低到足以显示缓慢血流。如果壁滤波器设置得过高,那么可能不能看见较慢的血流。针对其中存在大量组织运动的应用,或在其中以彩色多普勒模式扫描时探头快速移动的情况中,将壁滤波器设置设置得较高。针对较小部分或其中血流缓慢但存在较少组织运动的情况,将壁滤波器设置得较低。使用高到足以去除混杂但低到足以显示靠近基线的多普勒信息的壁滤波器设置。要调整壁滤波器值,使用“滤波器”软键。当前值在软键上并在成像窗口的图像信息区域上显示(显示为“WF”之后的数字)。壁滤波器范围是比例值的1%到50%。
可以增加颜色增益来校正血管内的颜色的不足填充,且可以减小以校正血管外部的不可接受的颜色量。用户可以调整颜色增益,以增加或减小正在播放或显示的返回信号的放大。在颜色增益的扫描特性列表中不存在指示符,如在2D增益的扫描特性列表中。要改变颜色增益,向左(减小)或向右(增加)转动“增益”旋钮。
图像的颜色优先级限定了在明亮回波上显示的颜色量,并且有助于限制血管壁内的颜色。颜色优先级影响颜色信息复写2D信息的水平。如果用户必须在具有某一显著2D亮度的区域中看见更多血流,那么增大颜色优先级。要更好的含有血管内的血流显示,减小颜色优先级。如果颜色优先级被设置成零,那么不显示颜色。要改变颜色优先级,使用“优先级”软键。当前颜色优先级设置在软键显示器上示出。
颜色存留性设置确定在帧之间平均化的量。增加存留性使血流显示存留在2D图像上。减小存留性允许更好地检测持续时间短的射流,并且为更好的血流/无血流评估提供基础。调整颜色存留性还产生更好的血管轮廓描绘。要改变颜色存留性,使用“存留”软键。当前颜色存留性设置在软键显示器上示出。
颜色基线调整通常是不必要的。基线是指彩色多普勒图像内的零基线。要调整基线,向下移动基线以显示更多正血流(前向),向上移动基线以显示更多负血流(逆向)。此调整可用于防止任一方向上的混叠。要移动颜色基线,使用“基线”键。基线的当前设置在彩色多普勒参考栏上示出。用户可以看到用户改变对颜色参考栏的影响。如果所述栏不可见,那么选择设置>通用>参考栏,将它添加到图像显示器。
“图谱”软键选择五个颜色图谱中的一个来示出彩色多普勒数据。用户可通过选择检查,接着选择颜色图谱来针对每个检查独立地配置颜色图谱。当用户选择不同检查时,系统软件载入所选检查的颜色图谱。颜色地图表示为A到E。一些图谱使用比其它图谱更多的颜色,且一些显示器呈比其它显示器更光滑的梯度。要选择颜色图谱,使用“图谱”软键。当前图谱字母在软键显示器中示出。
三工扫描模式组合脉冲波多普勒扫描与彩色多普勒扫描。要启动三工扫描,选择彩色多普勒模式,接着按压控制台上的“PW”键。PRF值仅在三工扫描中与2D模式(彩色多普勒)的设置相联系。如果用户改变一个模式的PRF值,那么系统软件也改变其它模式的PRF值。这取决于用户是以同时模式扫描还是以非同时模式扫描,这受“更新”控制台键控制。要调整三工扫描的图像控件,首先调整2D扫描模式的图像控件,接着去往彩色多普勒窗口并按压“光标”键,选中PWD超声光标和样品体积位置。当以三工扫描时,2D图像控件中的一些无法调整,因此用户必须在2D模式中调整图像控件。用户只能在实时扫描期间调整这些图像控件。当用户冻结扫描时,系统软件用不同集代替软键,以便对扫描图像进行打印及标注和测量。所述应用向2D图像添加PWD的时间序列窗口。
当以三工模式扫描时,用户可移动关注区域,调整它的大小,或移动距离门。要移动关注区域,完成以下步骤:
1.按压“选择”键,选中ROI。
2.使用轨迹球移动ROI。
3.按压“左输入”键。
当进行三工扫描时,PW软键可用。图像信息显示器在三工模式中示出两个PRF值。系统软件将颜色PRF设置成PWD PRF的整数分数(1/2、1/3、1/4等)。如果用户改变一个模式的PRF值,那么系统软件同样改变其它PRF设置。用户可独立地设置2D和PWD扫描的壁滤波器。“增益”旋钮的中心中的“活动”按钮控制显示活动中模式的哪一成像控件集。在三工模式中,那些是2D、频谱和彩色模式的控件。当前选择的控件集在软键上方显示为蓝色。要选择不同控件集,按压“活动”按钮。
随附超声图像的测量结果补充主治医生可用的其它临床程序。测量的精确度通过系统软件并通过医疗协议的适当使用来确定。当用户冻结扫描时,系统软件改变可用软键控件集,并启用“卡尺”键。按压“卡尺”键启用测量控件。重复按压“卡尺”键在距离、迹线和椭圆测量选项之间循环。当用户保存图像时,所有测量结果都与图像一起保存。
用户还可在使用分屏模式时对两个屏幕进行测量。要获得完整的一组测量结果,用户必须获取多个扫描。用户可进行研究所需数目次扫描和测量,同时不丢失任何测量结果。测量结果保持在成像窗口上,直到用户选择不同检查,选择不同扫描模式,载入不同患者,按压“删除”软键,按压“清除全部”软键为止。
在示例性便携式超声系统中测量结果的显示的默认位置是图像的左上方。要将结果移动到图像的底部,按压“结果”软键(当测量工具在活动中时启用)。用户还可使用“设置/测量”窗口上的“结果显示位置”单选按钮将默认位置变成图像的底部。
当用户选择检查预设时,系统软件使得一组默认测量可用。默认设置针对不同的受支持探头可不同。用户还可向可用列表添加自定义测量。
所述系统载入针对用户选择的预设调整的一组测量。测量使用“计算”键选中。要选择测量类型,按压“计算”键,并点击所需测量。
当用户冻结2D扫描时,系统软件显示软键和“增益旋钮”菜单,以在2D模式中测量、打印和播放回放。2D窗口中的测量功能允许测量距离;测量椭圆度、周长和面积;跟踪图像上的区域;分屏测量;
大体来说,用户从测量菜单选择他们想要测量的内容。如果用户选择特定测量,例如面积,那么只有用于所述测量的软键可用。
要在2D窗口中测量距离,用户完成以下步骤:
1 如果图像是实时的,按压“冻结”键。图像冻结且软键控件改变。
2 按压“卡尺”键。
3 精确测量详细区域,使用“变焦”功能放大2D扫描的一区域。
4 按压“卡尺”键。
5 点击用户想要开始测量的位置,移动目标光标,并点击用户想要结束测量的位置。
6 系统软件在2D窗口的左上角显示结果。
如果用户看不见测量值,那么用户按压“设置”键,接着选择“通用”>“测量值”。要对图像进行相同类型的超过一个测量,再次按压适当的软键,接着进行额外测量。当使用“卡尺”键进行一连串2D测量时,用户可通过在“设置/测量”窗口检查保持卡尺活动框来使卡尺保持在活动中。当检查所述框时,如果用户设置卡尺测量的终点,那么呈现新的卡尺光标。当用户结束测量时,用户保存图像,接着按压“冻结”键来关闭卡尺测量。
用户可以使用“椭圆”软键或“跟踪”软键来测量图像上的周长,如图68中所示。要测量卵形区域,使用“椭圆”软键。要测量具有不规则形状的区域,使用“跟踪”软键。要测量小区域,在用户测量之前使用“变焦”功能。
要使用椭圆工具测量椭圆形区域,完成以下步骤:
1 如果图像是实时的,按压“冻结”键。图像冻结且软键控件改变。
2 按压“卡尺”键。
3 按压“计算”键。测量菜单打开。
4.通过在测量菜单中点击测量类型来选中它。如果用户从测量菜单中选择“周长”,那么椭圆工具自动启动。
5.将目标光标定位在用户想要测量的区域的一端处并点击。
6.将目标光标移动到所需区域的另一端,并点击。
系统软件显示绿色线,并在图像顶部处示出周长或面积值。
7.要调整椭圆的另一轴线,按压“选择”键,使得“轴线”突显(在软键显示器上方),接着使用轨迹球调整椭圆的宽度。
8.当测量正确时,按压“左输入”键将它锁定。用户在它锁定之后无法改变测量。用户现在可以进行另一测量,而不会删除用户锁定的测量结果。
9.要保存测量结果,按压“存储”键。图像保存有所有测量结果。
系统软件允许用户通过跟踪图像中任何形状的轮廓(如图69中所示的肿瘤)来测量区域。用户还可使用椭圆工具来测量区域。用户可使用跟踪工具,通过草图绘制轮廓跟踪不规则形状,并通过点击形状的拐角绘制多边形。用户还可组合这些方法来跟踪图像上的区域。
要跟踪轮廓:a.用户点击以开始测量,以及b.用户使用轨迹球在用户想要跟踪的对象周围拖动跟踪光标。接着c.当用户跟踪几乎完成时,按压“左输入”键,并且软件通过绘制从当前光标位置到起点的直线来完成回放。
当用户按压“左输入”键时,跟踪变成白色,并且不能再编辑。在用户点击“左输入”键之前,用户可使光标的跟踪逆向以删除迹线的部分。
5.要编辑未完成迹线:
a.按压“选择”键,使得“擦除”在软键显示器上方突显。
b.从最近位置返回朝向开始,使用轨迹球擦除迹线中不想要的部分。
c.当迹线中所有不想要的部分都被擦除时,再次按压“选择”键,使得“绘制”在软键显示器上方突显。
d.使用轨迹球结束迹线。
e.按压“左输入”键完成迹线。
当以分屏模式测量时,所有测量结果在单个列表中显示,即使两个屏幕都含有测量结果也如此。用户可在任一屏幕上或横跨两个屏幕进行测量。要对分屏进行交替测量,用户必须“停用返回”到实时成像:
1 按压“设置”键。
2 点击“显示器”选项卡。
3.点击“返回”到转换活动屏幕上的实时成像,使得框不被检查。
这允许用户对一个屏幕进行测量,切换到另一屏幕,并对另一屏幕进行测量,接着返回到第一屏幕并进行额外测量。如果检查“设置/显示”窗口中的框,那么返回到第一屏幕使得它实时,并擦除了它上面的所有测量结果。要横跨两个屏幕进行测量:
1 停用“返回”到实时成像,如上文所描述。
2 在一个屏幕上冻结扫描。
3 按压“转换屏幕”软键。
4 在另一屏幕上冻结扫描。
5 重复按压“卡尺”键,直到用户需要的工具显示为止。
6 点击测量的起点。
7 点击测量的终点。
8 按压“左输入”键。
当用户冻结M模式扫描时,系统软件显示软键和“增益旋钮”菜单,以在M模式中测量、打印和播放回放。
在M模式扫描的时间序列窗口中,用户可以测量他们的心跳速率(HR)和距离(包含距离时间[TD]和斜率值)。要在M模式时间序列窗口中测量,完成以下步骤:
1 按压“冻结”键。
2 按压“卡尺”键,直到用户需要的测量类型显示为止。
3 在用户想要开始测量的位置处点击目标光标。
4 移动目标光标并在所需结束位置处点击。测量结果显示在时间序列窗口的左上方。
当用户冻结脉冲波多普勒或三工扫描时,系统软件改变软键以允许测量、打印和其它功能。
用户可以使用CA(校正角度)软键和0/+-60软键来调整冻结扫描上的角度。此功能的作用与PWD选项卡上的“校正角度”相同。如果用户已经向频谱测量集添加2D测量,那么用户可在频谱多普勒成像屏幕中执行2D测量。要在频谱多普勒成像屏幕上进行2D测量,按压“计算”键。用户添加到频谱测量集中的任何2D测量在成像屏幕的右上角处的测量菜单中呈现。
用户可进行数个心脏测量中的任一个,然后生成报告。系统软件为2D图像显示窗口、M模式时间序列窗口和PWD/CW时间序列窗口提供心脏测量结果(见图70)。当用户在2D图像显示窗口中进行测量时,测量值在窗口的左上方显示。
通过测量动脉内壁的厚度的内膜中层厚度(IMT)测量可用于诊断动脉粥样硬化。要测量颈动脉内壁:
1.将线性探头连接到系统。
2.在2D模式中,选择“颈动脉”预设。
3.扫描颈动脉。
4.冻结扫描。
5.按压“计算”键。测量菜单出现。
6.从菜单中选择IMT。在图像上显示绿色方形。
7.使用轨迹球移动绿色方形,使得它覆盖动脉壁。
必要时,按压“选择”键,允许使用轨迹球调整框大小。按压“选择”键一次允许水平调整大小;按压两次允许竖直调整大小。框的宽度在成像窗口的左上方显示。如果显示器没有正确跟踪动脉内壁,那么按压“编辑”软键,接着在图像上点击壁的适当位置。
8.按压“壁”软键,选中前壁、后壁或这两者。测量结果在成像窗口的左上方处显示。
系统软件包含当图像冻结时测量菜单中可用的常用测量默认群组。用户可以在群组中添加或去除测量,和创建或删除群组。
以下表格列出了可用于各个扫描模式的测量。
a.此计算可在CW模式中使用。时间序列窗口必须显示包含300cm/s的速度范围。使用“缩放”软键实现这一点。
b.此计算可在CW模式中使用。时间序列窗口必须显示包含200cm/s的速度范围。使用“缩放”软键实现这一点。
基于如图71中所见的将扫描的身体结构,选择检查载入许多图像控件设置的优化预设,包含使用的探头和扫描模式。检查预设还指定适合于所述检查的测量。用户可以原样使用这些优化预设,或者用户可以根据需要针对特定患者和特定检查调整图像控件设置中的任一个。用户可创建额外预设,以存储多组特定检查种类的图像控件设置。自定义预设可最小化用户在每次执行特定超声检查时必须改变的设置的数目。
便携式超声系统为所有受支持的探头提供预定义预设。尽管若干个探头模型可支持相同检查类型,但是预设图像控件设置对于每个探头型号是唯一的。检查包含用于高频、中频和低频的预定义图像控件设置。当用户在控制台上选择频率范围时,系统软件载入针对所述频率优化的其它检查设置。当用户选择不同频率时,用户无需重新载入预设或载入不同预设;系统软件自动更新所选频率的设置。下表列出了可用于每个探头的预设检查。
示例性便携式超声系统提供用于扫描不同身体结构的自定义检查预设。当用户选择预设时,系统软件载入针对所述身体结构、所选扫描模式和连接探头自定义的图像控件设置。要选择预设,用户从“预设”菜单中选择它,通过点击突显所述预设,接着按压“左输入”键。如果用户看不见对应于用户想要执行的研究种类的预设名称,那么用户可以创建自定义预设。
系统软件仅显示受连接的探头支持的那些检查。如果用户创建任何自定义检查,那么它们在“检查”菜单的底部示出。
除了使用所提供的检查预设之外,用户还可以创建自定义预设。自定义预设包含用户自己对预设图像控件设置的特定修改。接着,用户可载入自定义预设并跳过设置图像控件参数。用户可以自定义任何预设,以包含用户特定控件设置。用户无法改变系统预设的默认设置。但是,用户可以编辑系统预设的图像控件设置,接着用不同的名称保存它。要创建预设或修改现有自定义预设,用户完成这些步骤:
1 选择具有接近用户想要创建的设置的设置的系统预设或自定义预设。
2 根据需要修改图像控件设置。按压“预设”键。
4.按压“保存设置”软键。“保存设置”窗口打开。它含有预设列表,其中系统预设在顶部,且自定义预设在底部。
5.在“名称:字段”中键入自定义预设的名称。所述名称可长达16个字符。如果用户修改现有自定义预设,那么确保所述名称在所述字段中。
6.点击“保存”。系统软件保存图像控件设置。
新的预设现在每当当前探头连接到计算机时就可以使用。如果用户连接不同探头,那么这个新的预设不可用。
图像和回放保存到适当的患者文件夹中的“研究”目录。如果没有患者与扫描相关联,那么无法保存任何图像或回放。在同一天保存的给定患者的所有图像和回放保存在同一研究中,除非在保存随后图像之前点击了“患者”窗口中的“新研究”按钮。单个研究无法包含在不同日期保存的图像和回放。对于分屏模式,用户可以保存分屏图像(保存为同时示出两个屏幕的单个帧)。用户可将分屏图像保存为回放文件。当用户这么做时,系统软件将活动屏幕保存为图像回放,将另一屏幕保存为单个帧。
要保存图像或回放,完成这些步骤:
1 若查看实时图像,按压“冻结”键。
2 要保存图像,按压“存储”键。用户还可通过按压计算机键盘上的F8来保存图像。
3 要保存图像回放,在实时成像(不冻结)时按压“存储”键。
4 要将保存的图像或回放添加到当前研究的报告,将光标放置在图像或回放上,按压“右输入”键,并选择“添加至报告”。
5 要删除图像或回放,将光标放置在图像或回放上,按压“右输入”键,并选择“删除”。如果用户不载入患者信息以供检查,那么用户无法保存图像或回放。
当用户保存图像或回放时,它的缩略图在成像窗口右侧的区域中呈现。当研究中包含大于12个图像或回放时,一些图像或回放将隐藏。要查看它们,在缩略图区域的底部点击滚动箭头。要后退滚动,在缩略图区域的顶部处点击滚动箭头。要检视当前研究中保存的图像或回放,双击图像或回放的缩略图。它在成像窗口中显示。
用户可通过使用患者窗口上的“研究列表…”按钮查找保存的患者研究。要在患者窗口中查找先前保存的研究:
1.按压“患者”键。
2.在患者窗口中,点击“研究列表…”按钮。“研究列表”窗口打开,显示所保存研究的列表。
3.默认是示出所有研究。要查找在特定日期或天数内完成的研究,点击“研究日期”菜单,并选择“今天”、“过去7天”、“过去30天”或“日期范围”。
如果用户点击日期范围,那么打开其中用户可选择一系列要显示研究的日期的框。
4.在列表中查找所需研究,并点击它选中。
5.按压“检视”键。所选研究载入在成像窗口中。
用户可导出研究、图像到CD、DVD、DICOM服务器、USB驱动或网络上的另一位置。当导出研究、图像或回放时,系统为每个研究、图像或回放创建唯一命名的子目录。用户可将图像作为JPEG、BMP或AVI格式导出到计算机硬盘驱动器或外部驱动器上。用户还可将呈那些格式中的一个的图像附接到电子邮件消息。系统软件允许用户将呈这些格式中的任一个的图像或回放导出到外部媒体:AVI、位图、DICOM、JPEG。用户可用电子邮件发送图像和回放文件,或将它们作为图形包含在其它应用中。如果用户使用JPEG格式保存图像,那么用户应该知道数据压缩的效果。默认地,系统软件使用有损JPEG压缩算法。在压缩之后,图像数据中的一些丢失。在查看时,压缩图像可示出由JPEG压缩所产生的伪影。当用户在医学观察台上查看图像时,也可能出现伪影,所述医学观察台允许用户对图像进行窗口化和水平化。图像的压缩量无法选择或预测。一个扫描可以10:1的比率压缩,另一扫描可以5:1的比率压缩。无论压缩量如何,压缩都可能导致医学上重要的结构丢失。此外,压缩可能导致图像上出现伪影。
示例性便携式超声系统可帮助执行医疗程序,例如活检。为了执行活检,用户需要探头、针、针引导件套件和托架。活检特征可以与所选探头一起使用。当所有预备步骤都完成并且用户验证过对准时,对患者执行活检。系统软件显示用于活检或其它医疗程序的特定探头、托架和针规的引导线路。
便携式超声系统软件提供两种类型的针引导件,它们用于不同的物理针引导件。针引导件仅在支撑所述引导件的探头连接到超声系统时可用。如果超过一个针引导件可用于连接的探头,那么用户必须验证所选引导件匹配安装在探头上的硬件。平面内引导件用于标准针引导件硬件。这些引导件是在使用适当的硬件时指示针的路径的两个平行线。横向引导件是指示在使用包含用于设置插入角度和深度的夹子的引导件硬件时获得的深度的圆圈。要关闭针引导件,按压下部的“针引导件”软键。如果用户使用横向针引导件,那么用户可能需要按压下部的“针引导件”软键数次。
便携式超声系统提供屏幕上针引导件,通过利用特定探头,还提供增强的针的成像。如果满足所有以下条件,那么在用户系统被授权进行针增强的情况下,系统使针图像变亮,如图72中所见:选择2D模式;探头连接到系统;选择患者档案,且按压控制台上的“N”键。
按压“N”键在扫描窗口上显示蓝色实线和渐粗的蓝色虚线,它们标记针增强的限制。如果针尖超出这些限制,那么针图像中超出限制的部分不调亮。虚线适用于更陡的针插入。标记为“针Lt/Rt”的软键在从左上方倾斜到右下方的线和从右上方倾斜到左下方的线之间转换。当针增强在活动中时,图例ENV(即,增强针显像)在成像窗口右侧处的扫描信息区域中呈现。
要启动针图像增强,按压控制台上的“N”键。
要使用平面内针引导件执行活检,完成这些步骤:
1 开始实时成像。
2 按压“针引导件”软键。针引导线路以及警告消息在成像窗口中示出。
警告关闭,且系统软件显示针引导件和目标指示符。引导线路向用户示出针应该在哪儿插入到患者中。绿色目标指示符可以在引导线路内移动到活检目标的精确位置。接着,“距目标距离:”值示出针要到达所述目标所必须达到的插入深度。
引导线路上的大刻度标记以1cm为间隔,且引导线路之间的距离固定在1cm。
4.如果绿色目标指示符在引导件内未示出,按压“目标”软键。
系统软件在图像的顶部处添加“距目标距离”值。
5.使用轨迹球将目标指示符移动到正确深度。用户无法移动在引导线外部的目标。
6.遵循适当的医疗协议来完成活检。
目标距离以厘米为单位进行测量,并且被计算为从夹子底部到患者皮肤(如由针引导件线路的顶部指示)的距离加上从皮肤线到如由绿色目标指示符的位置指示的目标的距离。当用户插入针时,它应该定位成靠近引导线路的中心。如果针出现在线路的外部,那么验证用户已经选定适当的针引导件。
要使用横向针引导件执行活检,完成这些步骤:
1.开始实时成像。
2.按压“针引导”软键。针引导线路以及警告消息在成像窗口中示出。
3 点击“OK”。
4 按压“引导件类型”软键。
横向针引导件圆圈在成像窗口上代替平面内针引导件,并且“针引导件”软键显示引导件的识别。
5.如果引导件不是用于用户附接到硬件引导件上的夹子的正确引导件,按压“引导件类型”软键,直到正确的引导件显示为止。
6.遵循适当的医疗协议来完成活检。
为了确保探头和活检附接精确对准,且针路径在所述规范内,用户应该定期进行模拟测试。要进行此测试,用户必须具有组装好的活检托架、针引导件和水槽。使用2D验证所述对准,且不使用“变焦”工具。针引导件在变焦显示器中未示出。
要验证探头和活检附接的对准,完成这些步骤:
1 如果针引导件不可见,按压“针引导件”软键。活检引导件在成像窗口中呈现。
2 按压“引导件类型”软键,选择用于测试的针引导件。可能只有一个引导件可用于安装的探头。
3 组装托架、针引导件夹子和针规插销。
4 将针插入到针规插销中。
5 将针放置在水槽中,确保用户不会触碰到水槽的侧面或底部(这可能会使针弯曲并产生不精确的读数)。
6 验证针在两个引导线路之间清晰呈现。
7 从活检托架中移除针,并安全地处理掉针。
8 从探头拆离活检托架。
系统软件允许用户对针引导件(用于活检)和插入网格(用于冷冻消融或近接疗法)的定位进行细微调整。当用户接收针引导件时,它们的角度和深度已经过配置和测试。角度是X轴和Y轴(针轴线)之间的度数。以毫米为单位示出的深度是活检针和引导线路与2D图像的竖直中心线相交的点。
用户可在“针引导件错误校正”对话框上对角度和深度的上限和下限进行边缘改变。用户对这些设置做出的改变在针引导线路中是可见的,并且由系统保存,并用于所有活检,直到用户再次改变它们为止。用户可在这些范围内改变值:角度:-2°到2°,和深度:-1mm到1mm。
要改变除了双平面探头以外的任何探头的针引导件错误校正值,完成这些步骤:
1 按压“设置”键。
2 点击“显示器”选项卡。“设置显示”窗口打开。
3.在“针引导件”区段中,点击“校准”按钮。“针引导件校准”对话框打开。
用户可以在不关闭对话框的情况下点击“应用”按钮,从而看到用户选择的效果。点击“默认”按钮,将值重置为出厂设置值。
1 紧靠着“角度校正”区域,点击左和右箭头以使角度校正一度或两度。
2 紧靠着“深度校正”区域,点击左和右箭头以通过加上或减去一毫米来校正深度。
3 点击“OK”,保存用户条目并关闭对话框。
DICOM(医学数字成像和通信)是一种由NEMA(美国电气制造者协会)创建的格式,以帮助分布和查看例如超声扫描的医疗图像。如果用户在用户便携式超声系统上安装了DICOM选项,那么用户可以:向DICOM服务器发送研究,其中它们可供支持DICOM文件并使用DICOM工作列表在DICOM服务器上搜索患者研究存档的其它应用使用,并将患者信息集复制到便携式超声系统,使得系统上的检查能够标识有正确的患者
当用户向DICOM服务器发送研究时,系统软件在用户计算机上的临时位置保存研究。所述研究接着被发送到服务器。要向DICOM服务器发送研究,完成这些步骤:
1 载入研究(如果它先前已保存)或获得并保存新扫描。
2 按压“导出”软键。“导出选择”窗口打开。
3 在“导出目的地:区段”中,确保DICOM服务器单选按钮被选中。
4 点击用户想要发送的研究名称。
5 点击“导出”。便携式超声系统应用向经配置DICOM服务器发送研究。
当用户将研究导出到CD或DVD时,用户具有在盘上包含DICOM文件的查看器的选项。DICOM工作列表是使用网络服务连接到DICOM服务器的便携式超声系统软件的一个功能,并生成满足选择标准的患者信息集的列表。“工作列表”基于参数集在设置>DICOM>查询窗口中查找患者记录。
为了准备进行超声检查,超声技术人员使用包含患者信息的参数查询“工作列表”。查询重新运行满足标准的所有患者信息集的工作列表。超声技术人员在工作列表上选择患者的记录,并且检查自动附接到患者的信息上(“患者信息”窗口填充有所选患者的信息)。技术人员还可使用“工作列表”从DICOM服务器获得患者信息,并将所述信息应用到当前检查。存在两种可用类型的“工作列表”查询:自动查询和手动查询。
自动查询当超声系统打开时定期运行,并且作为宽泛查询,返回匹配“查询”窗口中的标准集的患者信息集的列表。例如,自动查询可设置成返回安排在当前日期的超声检查的列表。设备安排管理员将患者的超声检查输入到DICOM中,当安排日期到达时,“工作列表”自动查询收集患者信息并将它添加到工作列表。
手动查询可具有两种形式:宽泛查询和基于患者的查询。宽泛查询使用在“选项”窗口中选择的参数搜索DICOM服务器上的所有记录。宽泛查询是预设的参数群组。它们可原样使用,或者利用不同参数修改,或者应用到基于患者的查询。
基于患者的查询使用患者名称、寄存编号或患者ID搜索记录。它们可进一步限制在宽泛查询中的参数。
用户可进行搜索所有患者记录并返回匹配标准的所有患者信息集的宽泛查询,或搜索特定患者的信息集的患者特定查询。患者特定查询可使用与宽泛查询相同的标准,但是仅返回同时匹配宽泛查询中的标准和特定于患者的一些数据的那些信息集。
复选框控制分屏之间的转换是否使活动屏幕为实时的。当没有复选框时,屏幕之间的转换使得它们均冻结。按压“冻结”键使活动窗口实时。转换到另一屏幕并返回再次使两个屏幕冻结。当框被复选时,窗口之间的转换使得活动窗口实时,即使它先前使用“冻结”键冻结也如此。
当它们被选中时,频谱多普勒模式通常打开,从而同时更新时间序列显示器和2D显示器。这是默认的,并且是在“设置显示”窗口上的“同时”选择。选择“不同时”使频谱多普勒模式打开,同时2D显示器冻结。无论选中哪个单选按钮,按压“更新”键在实时和冻结之间转换2D显示器。
此区段包含显示或隐藏目标指示符的复选框和打开“针引导件校准”窗口的按钮。只有在活检/医疗程序选项的情况下才使用针引导件校准。
这些单选按钮设置成像窗口上的2D显示器和时间序列显示器的相对大小。
“S/L”使得2D显示器是时间序列显示器的高度的一半
“相等”使得2D显示器与时间序列显示器的高度相同
“L/S”使得2D显示器的高度是时间序列显示器的两倍
这选择了在扫描窗口上显示的热索引。
“TIS”是软组织索引;以及TIB是骨骼索引;TIC是颅部索引。
当此框被复选时,从一个分屏视图转换到另一分屏视图使得所选视图实时。当所述框没有被复选时,两个视图在从一个转换到另一个时均保持冻结,直到“冻结”键被按压为止。
当用户按压“设置”键,接着点击“测量”选项卡时,“设置”窗口允许用户选择在冻结图像上通过“计算”键进入的菜单上呈现什么测量。“设置测量”窗口还包含用于选择测量光标的大小的控件、用于计算产科测量结果的表格和用于向另一位置发送测量结果的端口。“体积计算系数选择”选择标准PI/6椭圆系数或自定义值。自定义选择默认是另一常用值0.479,但是用户可以输入任何值。
上方装置和方法可以与常规超声系统一起使用。优选实施例用于如本文中所描述的触摸屏致动的平板显示器系统。可以采用触摸致动的图标,使得可以使用手势来控制成像程序。
应注意,本文中所描述的操作仅仅是示例性,且并不暗示特定次序。另外,操作可在适当时以任何顺序使用,和/或可以部分使用。示例性流程图在本文是出于说明性目的而提供的,并且是方法的非限制性实例。所属领域的普通技术人员将认识到,示例性方法可包含比示例性流程图中所示的那些更多或更少的步骤,且示例性流程图中的步骤可以按与所示次序不同的次序执行。
在描述示例性实施例时,出于清晰性目的使用特定术语。出于描述的目的,每个特定术语意图至少包含以类似方式操作以实现类似目的的所有技术和功能等效物。另外,在一些其中特定示例性实施例包含多个系统元件或方法步骤的情况下,那些元件或步骤可以用单个元件或步骤代替。同样地,单个元件或步骤可以用用于相同目的的多个元件或步骤代替。另外,尽管本文中针对示例性实施例指定各个特性的参数,但是除非另外指定,否则那些参数可以向上或向下调整1/20、1/10、1/5、1/3、1/2等,或调整其舍入近似值。
考虑到上述说明性实施例,应理解,此类实施例可采用各种涉及在计算机系统中传送或存储的数据的计算机实施操作。此类操作是需要物理操控物理量的那些操作。通常,此类量采用能够存储、传送、组合、比较和/或以其它方式操控的电气、磁性和/或光信号的形式,但并非必须如此。
另外,形成说明性实施例的部分的本文中所描述的操作中的任一个是有用的机器操作。说明性实施例还与用于执行此类操作的装置或设备有关。设备可以是出于所需目的专门构造的,或可并有由存储在计算机中的计算机程序选择性地启动或配置的通用计算机装置。具体地说,根据本文中所公开的教示内容,采用耦合到一或多个计算机可读媒体的一或多个处理器的各种通用机器可以与写入的计算机程序一起使用,或这它可以使构造用于执行所需操作的更专用设备更加方便。
以上描述是针对本公开的特定说明性实施例。但是很明显,可以对所描述的实施例做出其它变化和修改,同时达到与它们相关联的优点中的一些或全部。此外,本文中所描述的程序、过程和/或模块可实施于硬件、软件中,体现为具有程序指令的计算机可读媒体、固件或其组合。例如,本文中所描述的功能中的一或多个可由执行来自存储器或其它存储装置的程序指令的处理器执行。
所属领域的技术人员应了解,对上述系统和方法进行的修改和变化可以在不脱离本文中所公开的本发明概念的情况下做出。因此,本公开不应被视为受除所附权利要求书的范围和精神以外的内容限制。

Claims (60)

1.一种便携式医疗超声成像装置,包括:
换能器探头,其容纳换能器阵列;以及
便携式壳体,所述壳体具有:在所述壳体中的计算机,所述计算机包含至少一个处理器和至少一个存储器;显示超声图像的显示器,所述显示器定位在所述壳体上;
及在所述壳体中的图形处理器,其连接到所述计算机;以及
超声波束成形器处理电路,其从所述换能器阵列接收图像数据,所述超声波束成形器处理电路以通信方式连接到所述计算机。
2.根据权利要求1所述的装置,其中所述图形处理连接到所述壳体中的核心存储器。
3.根据权利要求1所述的装置,其中所述换能器阵列包括双平面换能器阵列。
4.根据权利要求1所述的装置,其中所述探头进一步包括腹腔镜成像装置。
5.根据权利要求1所述的装置,进一步包括安装有所述探头的相机。
6.根据权利要求1所述的装置,其中所述图形处理经配置以操作神经网络。
7.根据权利要求1所述的装置,其中所述显示器包括触摸屏。
8.根据权利要求7所述的装置,进一步包括响应于来自所述触摸屏显示器的输入。
9.根据权利要求8所述的装置,进一步包括在所述计算机处接收来自所述触摸屏显示器的输入,所述输入在虚拟窗口的区域内部的第一位置处接收。
10.根据权利要求1所述的装置,其中所述输入对应于针对所述触摸屏显示器的按压手势。
11.根据权利要求10所述的装置,进一步包括在所述计算机处接收来自所述触摸屏显示器的第二输入,所述另一第二输入与所述输入大体上同时接收。
12.根据权利要求1所述的装置,其中所述换能器阵列包括多个换能器阵列,每一换能器阵列由探头波束成形器处理电路操作。
13.根据权利要求9所述的装置,进一步包括响应于来自触摸屏显示器的第二输入,将光标固定在所述虚拟窗口的所述区域内部的所述第一位置处。
14.根据权利要求13所述的装置,进一步包括至少部分地基于在所述第一位置处的所述第一光标,通过所述计算机对所述超声图像执行至少一个测量。
15.根据权利要求1所述的装置,进一步包括在所述计算机处接收来自键盘控制面板或虚拟控制面板的输入。
16.根据权利要求1所述的装置,其中所述计算机连接到共享存储器。
17.根据权利要求1所述的装置,进一步包括响应于来自所述触摸屏显示器的第三输入,在所述虚拟窗口的所述区域内部的第二位置处显示第二光标。
18.根据权利要求17所述的装置,其中至少部分地基于所述虚拟窗口的所述区域内部的所述第一和第二光标的相应位置,所述计算机处理所述超声图像的至少一个测量。
19.根据权利要求17所述的装置,其中所述计算机接收来自所述触摸屏显示器的另一第四输入,所述另一第四输入在所述虚拟窗口的所述区域内部接收。
20.根据权利要求19所述的装置,其中所述另一第四输入对应于针对所述触摸屏显示器的按压并拖动手势。
21.根据权利要求1所述的装置,进一步包括响应于来自所述显示器的输入,在所述显示器上连接横跨所述超声图像的至少一部分从所述第一光标延伸到虚拟窗口的区域内部的第二位置的线。
22.根据权利要求19所述的装置,进一步包括将所述图形处理连接到所述超声处理器的总线。
23.根据权利要求22所述的装置,进一步包括处理图像数据的神经网络。
24.根据权利要求21所述的装置,进一步包括响应于来自所述触摸屏显示器的另一输入,在所述虚拟窗口的所述区域内部显示第二光标,并将所述第二光标固定在所述虚拟窗口的所述区域内部的所述第二位置处。
25.根据权利要求1所述的装置,进一步包括至少部分地基于在所述虚拟窗口的所述区域内部的所述第一和第二光标的相应位置之间延伸的连接线,对所述超声图像进行测量。
26.根据权利要求1所述的装置,进一步包括利用换能器连接器连接到所述壳体的换能器阵列。
27.根据权利要求1所述的装置,其中所述壳体具有小于2500立方厘米的体积。
28.根据权利要求1所述的装置,其中所述壳体连接到支架。
29.根据权利要求28所述的装置,其中所述支架相对于所述壳体旋转。
30.根据权利要求1所述的装置,其中所述壳体安装在手推车上。
31.根据权利要求1所述的装置,其中所述手推车上的多路复用器能够电连接到所述壳体,以连接到多个换能器阵列。
32.根据权利要求28所述的装置,其中所述壳体与所述支架对接。
33.根据权利要求32所述的装置,其中所述支架壳体电连接到所述支架,并且其中所述支架具有外部通信部分。
34.根据权利要求31所述的装置,其中所述多路复用器能够使用触摸手势切换。
35.一种操作手持式医疗超声成像装置的方法,所述医疗超声成像装置包括:换能器探头;便携式壳体,所述壳体具有在所述壳体中的计算机,所述计算机包含至少一个处理器和至少一个存储器;用于显示超声图像的显示器;安置在所述壳体中的超声波束成形器处理电路,及以通信方式耦合到所述计算机的图形处理单元,所述方法包括以下步骤:
在所述计算机处接收来自控制面板的输入;以及
响应于所述输入,利用神经网络处理图像数据。
36.根据权利要求35所述的方法,其中所述显示器包括触摸屏显示器。
37.根据权利要求36所述的方法,进一步包括在所述计算机处接收来自所述触摸屏显示器的第二输入。
38.根据权利要求37所述的方法,其中所述第二输入对应于针对所述触摸屏显示器的双击手势。
39.根据权利要求37所述的方法,进一步包括响应于来自所述触摸屏显示器的所述第二输入,在显示放大图像的虚拟窗口的区域内部显示第一光标。
40.根据权利要求39所述的方法,进一步包括在所述计算机处接收来自所述触摸屏显示器的第三输入,所述第三输入在所述虚拟窗口的所述区域内部接收。
41.根据权利要求40所述的方法,其中所述第三输入对应于所述触摸屏显示器上的拖动手势。
42.根据权利要求40所述的方法,进一步包括响应于来自所述触摸屏显示器的所述第三输入,将所述第一光标移动到所述虚拟窗口的所述区域内部的第一位置。
43.根据权利要求42所述的方法,进一步包括在所述计算机处接收来自所述触摸屏显示器的第四输入,所述第四输入在所述虚拟窗口的所述区域内部的所述第一位置处接收。
44.根据权利要求35所述的方法,其中第四输入对应于针对所述触摸屏显示器的按压手势。
45.根据权利要求44所述的方法,进一步包括在所述计算机处接收来自所述触摸屏显示器的另一第二输入,所述另一第二输入与所述另一输入大体上同时接收。
46.根据权利要求44所述的方法,其中所述另一第二输入对应于针对所述触摸屏显示器的点击手势。
47.根据权利要求45所述的方法,进一步包括响应于来自所述触摸屏显示器的所述另一第二输入,将所述第一光标固定在所述虚拟窗口的所述区域内部的所述第一位置处。
48.根据权利要求47所述的方法,进一步包括至少部分地基于在所述第一位置处的所述第一光标,通过所述计算机对所述超声图像执行至少一个测量。
49.根据权利要求47所述的方法,进一步包括在所述计算机处接收来自所述触摸屏显示器的另一第三输入。
50.根据权利要求49所述的方法,其中所述另一第三输入对应于针对所述触摸屏显示器的双击手势。
51.根据权利要求49所述的方法,进一步包括响应于来自所述触摸屏显示器的所述另一第三输入,在所述虚拟窗口的所述区域内部的第二位置处显示第二光标。
52.根据权利要求51所述的方法,进一步包括至少部分地基于所述虚拟窗口的所述区域内部的所述第一和第二光标的相应位置,通过所述计算机对所述超声图像执行至少一个测量。
53.根据权利要求47所述的方法,进一步包括在所述计算机处接收来自所述触摸屏显示器的另一第四输入,所述另一第四输入在所述虚拟窗口的所述区域内部接收。
54.根据权利要求53所述的方法,其中所述另一第四输入对应于针对所述触摸屏显示器的按压并拖动手势。
55.根据权利要求53所述的方法,进一步包括响应于来自所述触摸屏显示器的所述另一第四输入,在触摸屏显示器上提供横跨所述超声图像的至少一部分从所述第一光标延伸到所述虚拟窗口的所述区域内部的第二位置的连接线。
56.根据权利要求53所述的方法,进一步包括在所述计算机处接收来自所述触摸屏显示器的第五输入。
57.根据权利要求56所述的方法,其中所述第五输入对应于针对所述触摸屏显示器的点击手势。
58.根据权利要求56所述的方法,进一步包括响应于来自所述触摸屏显示器的所述第五输入,在所述虚拟窗口的所述区域内部显示第二光标,并将所述第二光标固定在所述虚拟窗口的所述区域内部的所述第二位置处。
59.根据权利要求58所述的方法,进一步包括至少部分地基于在所述虚拟窗口的所述区域内部的所述第一和第二光标的相应位置之间延伸的所述连接线,通过所述计算机对所述超声图像执行至少一个测量。
60.根据权利要求35所述的方法,其中所述便携式医疗超声成像设备包含:换能器探头,其具有电磁EM传感器;呈平板计算机外观尺寸的壳体,所述壳体具有前面板;安置在所述壳体中的计算机,所述计算机包含至少一个处理器和至少一个存储器;用于显示超声图像的触摸屏显示器,所述触摸屏显示器安置在所述前面板上;以及
安置在所述壳体中的超声波束成形器电路,所述触摸屏显示器和所述超声引擎以通信方式耦合到所述计算机,所述方法包括以下步骤:接收关注区域的超声图像数据和相机图像数据。
CN201780080708.4A 2016-11-16 2017-11-16 便携式超声系统 Pending CN110167449A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662422808P 2016-11-16 2016-11-16
US62/422,808 2016-11-16
US201762565846P 2017-09-29 2017-09-29
US62/565,846 2017-09-29
PCT/US2017/062109 WO2018094118A1 (en) 2016-11-16 2017-11-16 Portable ultrasound system

Publications (1)

Publication Number Publication Date
CN110167449A true CN110167449A (zh) 2019-08-23

Family

ID=60788667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780080708.4A Pending CN110167449A (zh) 2016-11-16 2017-11-16 便携式超声系统

Country Status (5)

Country Link
US (1) US20190365350A1 (zh)
EP (1) EP3541293A1 (zh)
JP (1) JP2019534110A (zh)
CN (1) CN110167449A (zh)
WO (1) WO2018094118A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111966264A (zh) * 2020-10-21 2020-11-20 深圳华声医疗技术股份有限公司 医用超声设备及其控制方法、计算机存储介质
CN112617898A (zh) * 2019-09-24 2021-04-09 通用电气精准医疗有限责任公司 用于超声成像中的闪烁抑制的系统和方法
CN113017694A (zh) * 2019-12-24 2021-06-25 柯尼卡美能达株式会社 超声波诊断装置、超声波诊断装置的控制方法及记录介质
CN114432534A (zh) * 2020-10-30 2022-05-06 上海移宇科技股份有限公司 微型贴片式药物输注装置
CN116058871A (zh) * 2023-03-24 2023-05-05 深圳鲲为科技有限公司 超声检查的处理方法及超声检查设备
TWI810498B (zh) * 2019-11-21 2023-08-01 國立臺灣大學醫學院附設醫院 肝腫瘤智慧分析裝置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9877699B2 (en) 2012-03-26 2018-01-30 Teratech Corporation Tablet ultrasound system
JP2018126640A (ja) * 2012-10-15 2018-08-16 キヤノンメディカルシステムズ株式会社 医用画像表示装置
USD834044S1 (en) * 2016-07-27 2018-11-20 Beckman Coulter, Inc. Display screen with graphical user interface for a laboratory instrument
KR101923183B1 (ko) * 2016-12-14 2018-11-28 삼성전자주식회사 의료 영상 표시 방법 및 의료 영상 표시 장치
CN110603599A (zh) * 2017-05-09 2019-12-20 波士顿科学医学有限公司 手术室装置、方法和系统
JP7337806B2 (ja) * 2018-01-03 2023-09-04 コーニンクレッカ フィリップス エヌ ヴェ 診断検査のための組織固有のプリセットを備える超音波撮像システム
US10908270B2 (en) * 2018-01-18 2021-02-02 Fujifilm Sonosite, Inc. Portable ultrasound imaging system with active cooling
USD895640S1 (en) * 2018-04-02 2020-09-08 Illumina, Inc. Display screen or portion thereof with graphical user interface
USD884008S1 (en) * 2018-04-06 2020-05-12 FabSystems, Inc. Display screen or portion thereof with graphical user interface
US20210259660A1 (en) * 2018-06-29 2021-08-26 Koninklijke Philips N.V. Biopsy prediction and guidance with ultrasound imaging and associated devices, systems, and methods
WO2020028746A1 (en) * 2018-08-03 2020-02-06 Butterfly Network, Inc. Methods and apparatuses for guiding collection of ultrasound data using motion and/or orientation data
US20200037998A1 (en) 2018-08-03 2020-02-06 Butterfly Network, Inc. Methods and apparatuses for guiding collection of ultrasound data using motion and/or orientation data
WO2020028740A1 (en) 2018-08-03 2020-02-06 Butterfly Network, Inc. Methods and apparatuses for guiding collection of ultrasound data using motion and/or orientation data
EP3613352A1 (en) * 2018-08-21 2020-02-26 Koninklijke Philips N.V. Systems and methods for performing bi-plane imaging
USD947220S1 (en) * 2018-08-22 2022-03-29 Sonivate Medical, Inc. Display screen with a graphical user interface for an ultrasound system
JP1632951S (zh) * 2018-09-27 2019-06-03
JP1632949S (zh) * 2018-09-27 2019-06-03
WO2020086899A1 (en) * 2018-10-25 2020-04-30 Butterfly Network, Inc. Methods and apparatus for collecting color doppler ultrasound data
JP7172460B2 (ja) * 2018-11-06 2022-11-16 株式会社島津製作所 Pet装置
US10838573B2 (en) * 2018-12-04 2020-11-17 GE Sensing & Inspection Technologies, GmbH Precise value selection within large value ranges
WO2020121014A1 (en) * 2018-12-11 2020-06-18 Eko.Ai Pte. Ltd. Automatic clinical workflow that recognizes and analyzes 2d and doppler modality echocardiogram images for automatic cardiac measurements and the diagnosis, prediction and prognosis of heart disease
US10884124B2 (en) * 2018-12-21 2021-01-05 General Electric Company Method and ultrasound imaging system for adjusting a value of an ultrasound parameter
US10788964B1 (en) * 2019-05-10 2020-09-29 GE Precision Healthcare LLC Method and system for presenting function data associated with a user input device at a main display in response to a presence signal provided via the user input device
JP7379120B2 (ja) * 2019-11-28 2023-11-14 キヤノン株式会社 超音波診断装置、医用画像撮影装置、学習装置、超音波画像表示方法及びプログラム
JP7367537B2 (ja) * 2020-01-23 2023-10-24 コニカミノルタ株式会社 超音波診断装置
WO2021184075A1 (en) * 2020-03-19 2021-09-23 Volsonics Pty Ltd Method and system for automatic 3d-fmbv measurements
USD1025087S1 (en) 2020-05-14 2024-04-30 FabSystems, Inc. Display screen or portion thereof with transitional graphical user interface
JP7078288B1 (ja) 2020-12-02 2022-05-31 株式会社吉田製作所 画像表示装置及び画像表示システム
US11896425B2 (en) 2021-04-23 2024-02-13 Fujifilm Sonosite, Inc. Guiding instrument insertion
US11900593B2 (en) 2021-04-23 2024-02-13 Fujifilm Sonosite, Inc. Identifying blood vessels in ultrasound images
US20220361840A1 (en) * 2021-04-23 2022-11-17 Fujifilm Sonosite, Inc. Displaying blood vessels in ultrasound images
USD1027977S1 (en) * 2021-06-28 2024-05-21 Gestalt Diagnostics, LLC Display screen or portion thereof having a graphical user interface
US11857372B2 (en) 2021-11-12 2024-01-02 Bfly Operations, Inc. System and method for graphical user interface with filter for ultrasound image presets
CN116458925B (zh) * 2023-06-15 2023-09-01 山东百多安医疗器械股份有限公司 一种便携式无盲区多模态超声心电系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160228091A1 (en) * 2012-03-26 2016-08-11 Noah Berger Tablet ultrasound system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1294995A (en) * 1993-11-29 1995-06-19 Perception, Inc. Pc based ultrasound device with virtual control user interface
US6969352B2 (en) 1999-06-22 2005-11-29 Teratech Corporation Ultrasound probe with integrated electronics
US9402601B1 (en) 1999-06-22 2016-08-02 Teratech Corporation Methods for controlling an ultrasound imaging procedure and providing ultrasound images to an external non-ultrasound application via a network
AU2003220001A1 (en) * 2002-03-08 2003-09-22 University Of Virginia Patent Foundation An intuitive ultrasonic imaging system and related method thereof
US7244230B2 (en) * 2002-11-08 2007-07-17 Siemens Medical Solutions Usa, Inc. Computer aided diagnostic assistance for medical imaging
US7066887B2 (en) 2003-10-21 2006-06-27 Vermon Bi-plane ultrasonic probe
WO2006111871A1 (en) * 2005-04-18 2006-10-26 Koninklijke Philips Electronics N.V. Portable ultrasonic diagnostic imaging system with docking station
JP4698355B2 (ja) * 2005-09-20 2011-06-08 アロカ株式会社 超音波診断装置
US20110112399A1 (en) * 2008-08-01 2011-05-12 Esaote Europe B.V. Portable ultrasound system
JP5527841B2 (ja) * 2009-11-17 2014-06-25 国立大学法人 東京大学 医療画像処理システム
US20110218436A1 (en) * 2010-03-06 2011-09-08 Dewey Russell H Mobile ultrasound system with computer-aided detection
CN113974689A (zh) * 2012-03-07 2022-01-28 齐特奥股份有限公司 空间对准设备
US10667790B2 (en) * 2012-03-26 2020-06-02 Teratech Corporation Tablet ultrasound system
WO2015048327A2 (en) * 2013-09-25 2015-04-02 Teratech Corporation Tablet ultrasound system
CA2902550A1 (en) * 2013-02-26 2014-09-04 Butterfly Network, Inc. Transmissive imaging and related apparatus and methods
WO2014134316A1 (en) * 2013-02-28 2014-09-04 General Electric Company Handheld medical imaging apparatus with cursor pointer control
JP2016087020A (ja) * 2014-10-31 2016-05-23 株式会社東芝 超音波診断装置
US10194888B2 (en) * 2015-03-12 2019-02-05 Siemens Medical Solutions Usa, Inc. Continuously oriented enhanced ultrasound imaging of a sub-volume
WO2017222970A1 (en) * 2016-06-20 2017-12-28 Butterfly Network, Inc. Automated image acquisition for assisting a user to operate an ultrasound device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160228091A1 (en) * 2012-03-26 2016-08-11 Noah Berger Tablet ultrasound system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112617898A (zh) * 2019-09-24 2021-04-09 通用电气精准医疗有限责任公司 用于超声成像中的闪烁抑制的系统和方法
TWI810498B (zh) * 2019-11-21 2023-08-01 國立臺灣大學醫學院附設醫院 肝腫瘤智慧分析裝置
CN113017694A (zh) * 2019-12-24 2021-06-25 柯尼卡美能达株式会社 超声波诊断装置、超声波诊断装置的控制方法及记录介质
CN111966264A (zh) * 2020-10-21 2020-11-20 深圳华声医疗技术股份有限公司 医用超声设备及其控制方法、计算机存储介质
CN111966264B (zh) * 2020-10-21 2021-10-19 深圳华声医疗技术股份有限公司 医用超声设备及其控制方法、计算机存储介质
CN114432534A (zh) * 2020-10-30 2022-05-06 上海移宇科技股份有限公司 微型贴片式药物输注装置
CN116058871A (zh) * 2023-03-24 2023-05-05 深圳鲲为科技有限公司 超声检查的处理方法及超声检查设备

Also Published As

Publication number Publication date
WO2018094118A1 (en) 2018-05-24
EP3541293A1 (en) 2019-09-25
JP2019534110A (ja) 2019-11-28
US20190365350A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
CN110167449A (zh) 便携式超声系统
US20210015456A1 (en) Devices and Methods for Ultrasound Monitoring
US20190336101A1 (en) Portable ultrasound system
US11857363B2 (en) Tablet ultrasound system
US20200268351A1 (en) Tablet ultrasound system
TWI834668B (zh) 可移動超音波系統
Prager et al. Three-dimensional ultrasound imaging
Fenster et al. Three-dimensional ultrasound scanning
Yagel et al. 3D and 4D ultrasound in fetal cardiac scanning: a new look at the fetal heart
DeVore et al. Spatio‐temporal image correlation (STIC): new technology for evaluation of the fetal heart
EP1799110B1 (en) Ultrasonic imaging system with body marker annotations
US20230181160A1 (en) Devices and methods for ultrasound monitoring
US11642096B2 (en) Method for postural independent location of targets in diagnostic images acquired by multimodal acquisitions and system for carrying out the method
CN105874507B (zh) 多成像模态导航系统
US20190076125A1 (en) Apparatuses, methods, and systems for annotation of medical images
Bega et al. Application of three‐dimensional ultrasonography in the evaluation of the fetal heart.
EP3272293A1 (en) Ultrasound imaging apparatus and control method for the same
WO2009001257A2 (en) Systems and methods for labeling 3-d volume images on a 2-d display of an ultrasonic imaging system
CN109069110A (zh) 具有简化的3d成像控制的超声成像系统
US20240057971A1 (en) Transcranial ultrasound devices and methods
CN109414254A (zh) 控制设备、控制方法、控制系统及程序
Ma et al. Volumetric B-mode ultrasound and Doppler Imaging: Automatic Tracking With One Single Camera
Dickie et al. A flexible research interface for collecting clinical ultrasound images
Shirali Three dimensional echocardiography in congenital heart defects
Tang et al. A 3D multi-modal intelligent intervention system using electromagnetic navigation for real-time positioning and ultrasound images: a prospective randomized controlled trial

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination