CN110164989A - N型AlxGa1-xAs材料体系半导体表面欧姆接触电极及其制作方法 - Google Patents

N型AlxGa1-xAs材料体系半导体表面欧姆接触电极及其制作方法 Download PDF

Info

Publication number
CN110164989A
CN110164989A CN201910475213.2A CN201910475213A CN110164989A CN 110164989 A CN110164989 A CN 110164989A CN 201910475213 A CN201910475213 A CN 201910475213A CN 110164989 A CN110164989 A CN 110164989A
Authority
CN
China
Prior art keywords
layers
component
alloy
electrode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910475213.2A
Other languages
English (en)
Inventor
王海珠
何志芳
范杰
邹永刚
马晓辉
李辉
徐莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN201910475213.2A priority Critical patent/CN110164989A/zh
Publication of CN110164989A publication Critical patent/CN110164989A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种不同Al组分的N型AlxGa1‑xAs材料体系半导体表面欧姆接触电极及其制作方法,当Al组分大于等于0小于等于0.1时,可以采取金属In作为电极材料,通过快速热退火,将其粘合在AlGaAs表面,从而实现AlGaAs材料与金属电极间的欧姆接触,当Al组分大于等于0小于等于1时,均可采用磁控溅射Ni/AuGe/Ni/Au后进行合金的办法,从而实现AlGaAs与电极的欧姆接触。本发明对于N型AlxGa1‑xAs材料,根据不同的Al组分选取不同镀电极办法实现欧姆接触,降低工艺难度,减少制作成本,欧姆接触的实现,使金属与半导体的接触不影响器件的电流‑电压特性,增强器件的稳定性。

Description

N型AlxGa1-xAs材料体系半导体表面欧姆接触电极及其制作 方法
技术领域
本发明属于半导体材料领域,尤其涉及一种N型AlxGa1-xAs材料体系半导体表面欧姆接触电极及其制作方法。
背景技术
AlxGa1-xAs作为一种Ⅲ-Ⅴ族半导体,因其优异的光学与电学性能,被当今世界认为是重要的光电子和电子的基础材料之一。以其为基础材料制备的光电器件、微波器件、太阳能电池等被广泛应用于军事、信息技术等领域。在AlxGa1-xAs材料的应用与器件制作过程中,都需要利用与金属接触实现互联,从而实现输入或输出电流的目的。根据半导体物理理论,金属与半导体形成接触(金半接触)后,由于功函数的差异,载流子会出现运动,最后形成势垒而达到平衡状态。金半接触通常分为肖特基和欧姆两种接触类型。肖特基接触与pn结的I-V特性类似(如图1(a)),表现为整流特性。欧姆接触则与固定电阻的电学特性一致,I-V特性为一条过原点的直线(如图1(b)),因不产生明显的附加阻抗,且不会使半导体内部的平衡载流子浓度发生显著的变化,即电流-电压特性是由样品的电阻决定的。在理想的条件下,欧姆接触所形成的电阻值很小,特别是与器件的体电阻相比,几乎可以忽略。因此,如何实现AlGaAs材料体系的金属和半导体的欧姆接触就成为有待解决的重要问题。目前AlGaAs半导体表面欧姆接触电极,通常采用在AlGaAs表面外延几十纳米的高掺杂GaAs层作为接触层,这种办法使外延过程复杂。此外,在制作AlGaAs表面欧姆接触时,未对不同Al组分选取不同办法,使制作电极成本增加。
金半接触的电阻与两者的接触势垒、接触金属性质及半导体接触层的掺杂有关,需要选用合适的金属以及严格控制工艺参数来保障欧姆接触的实现。本申请研究发现,实验中在Al的组分大于等于0小于等于0.1时,可以采用In作为电极,通过热退火的办法,对其进行合金,从而实现AlGaAs材料与In之间的欧姆接触。但随着Al组分的增大,AlGaAs材料禁带宽度变宽,难以实现欧姆接触,此时就需要采用NiAuGe电极。
发明内容
为了解决AlGaAs材料体系半导体表面欧姆接触电极制备过程复杂以及制作电极成本高的问题,本发明提供了一种新的N型AlxGa1-xAs材料体系半导体表面欧姆接触电极及其制作方法,以简单低成本实现半导体N型AlxGa1-xAs材料体系良好的电学接触。
为了实现上述目标,本发明采用如下技术方案:
一种N型AlxGa1-xAs材料体系半导体表面欧姆接触电极,当Al的组分0≤x≤0.1时,AlxGa1-xAs上为In层;
当Al的组分0≤x≤1时,AlxGa1-xAs上依次为第一Ni层、AuGe层、第二Ni层和Au层。
进一步地,当Al的组分0≤x≤0.1时,In层的厚度为0.8~1.2mm;
当Al的组分0≤x≤1时,第一Ni层的厚度为4~6nm、AuGe层的厚度为95~105nm、第二Ni层的厚度为43~47nm、Au层的厚度为285~315nm。
进一步地,当Al的组分0≤x≤0.1时,In层的厚度为1mm;
当Al的组分0≤x≤1时,第一Ni层的厚度为5nm、AuGe层的厚度为100nm、第二Ni层的厚度为45nm、Au层的厚度为300nm。
一种N型AlxGa1-xAs材料体系半导体表面欧姆接触电极的制作方法,方法包括以下步骤:
当Al的组分0≤x≤0.1时,采用将In粒粘在AlxGa1-xAs样品表面后合金形成欧姆接触电极(In本身质地较软,可塑性较强,可以压成片,将In粒放在AlGaAs表面,轻压即可实现粘覆,通过合金,使In融化后又凝固,实现更稳固的粘覆);
当Al的组分0≤x≤1时,均可采用磁控溅射法在AlxGa1-xAs样品表面依次制备第一Ni层、AuGe层、第二Ni层和Au层后进行合金形成欧姆接触电极。
进一步地,当Al的组分0≤x≤0.1时,合金的温度为240~260℃,合金的时间为360s~420s;
当Al的组分0≤x≤1时,合金的温度为410~430℃,合金的时间为290~310s。
进一步地,当Al的组分0≤x≤0.1时,合金的温度为250℃,合金的时间为420s;
当Al的组分0≤x≤1时,合金的温度为420℃,合金的时间为300s。
进一步地,当Al的组分0≤x≤0.1时,合金在氮气气氛中进行,氮气流量为3SLPM;
当Al的组分0≤x≤1时,磁控溅射在氮气氛围下进行,溅射时的工作气压为5E-4Pa,溅射第一Ni层和第二Ni层的功率为160W~170W,溅射AuGe层的功率为65W~70W,溅射Au层的功率为90W~95W;合金在氮气气氛中进行,氮气流量为3SLPM。
本发明的有益效果是:对于不同组分的N型AlxGa1-xAs材料,根据不同的Al组分选取不同镀电极办法实现欧姆接触,降低工艺难度,减少制作成本,欧姆接触的实现,使金属与半导体的接触不影响器件的电流-电压特性,增强器件的稳定性。
附图说明
图1为金半接触的两种I-V特性曲线,其中(a)为肖特基接触,(b)为欧姆接触;
图2为磁控溅射电极时对N型AlxGa1-xAs处理的示意图;
图3为实施例一中对N型Al0.1Ga0.9As采用退火In电极和溅射NiAuGe电极两种方法镀电极后的I-V测试图,其中(a)(b)为采用退火In电极方法镀电极的I-V测试图,(c)(d)为采用溅射NiAuGe电极方法镀电极的I-V测试图;
图4为实施例二中对N型Al0.45Ga0.55As采用退火In电极和溅射NiAuGe电极两种方法镀电极后的I-V测试图,其中(a)(b)为采用退火In电极方法镀电极的I-V测试图,(c)(d)为采用溅射NiAuGe电极方法镀电极的I-V测试图;
图5为实施例三中对N型Al0.9Ga0.1As采用退火In电极和溅射NiAuGe电极两种方法镀电极后的I-V测试图,其中(a)(b)为采用溅射NiAuGe电极方法镀电极的I-V测试图。
具体实施方式
为了更好的理解本发明的内容,下面结合附图对本发明的具体实施案例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
实施例一
本实施例中,N型Al0.1Ga0.9As为采用MOVPE技术外延得到,对N型Al0.1Ga0.9As分别采用In电极和NiAuGe电极两种办法进行镀电极,I-V测试如图3所示。采用In电极时,将四个体积大约为1mm3的In粒粘在Al0.1Ga0.9As的四角,然后在氮气的气氛下进行合金,氮气流量为3SLPM,合金时间为250℃,合金温度为420s。采用NiAuGe电极时,将Al0.1Ga0.9As置于磁控溅射托盘,使用铝箔纸十字交叉覆盖于Al0.1Ga0.9As之上,并使用高温胶带对铝箔纸进行固定,留出四角溅射电极,如图2所示,磁控溅射在氮气气氛中依次制备第一Ni层、AuGe层、第二Ni层和Au层,氮气气压为5E-4Pa,第一Ni层的厚度为5nm、AuGe层的厚度为100nm、第二Ni层的厚度为45nm、Au层的厚度为300nm;然后在氮气的气氛下进行合金,氮气流量为3SLPM,合金时间为420℃,合金温度为300s。
两种电极I-V测试如图3所示,根据图3(a)(b)可得,采用In电极,I-V测试表现为过原点的直线,说明电极与样品形成欧姆接触;根据图3(c)(d)可得,采用NiAuGe电极,I-V测试表现为过原点的直线,说明电极与样品形成欧姆接触。
实施例二
本实施例中,N型Al0.45Ga0.55As为采用MOVPE技术外延得到,对其分别采用In电极和NiAuGe电极两种办法,对N型Al0.45Ga0.55As进行镀电极。采用In电极时,将四个体积大约为1mm3的In粒粘在Al0.45Ga0.55As的四角,然后在氮气的气氛下进行合金,氮气流量为3SLPM,合金时间为250℃,合金温度为420s。采用NiAuGe电极时,将Al0.45Ga0.55As置于磁控溅射托盘,使用铝箔纸十字交叉覆盖于Al0.45Ga0.55As之上,并使用高温胶带对铝箔纸进行固定,留出四角溅射电极,如图2所示,磁控溅射在氮气气氛中依次制备第一Ni层、AuGe层、第二Ni层和Au层,氮气流量为3SLPM,第一Ni层的厚度为5nm、AuGe层的厚度为100nm、第二Ni层的厚度为45nm、Au层的厚度为300nm;然后在氮气的气氛下进行合金,氮气流量为3SLPM,合金时间为420℃,合金温度为300s。
两种电极I-V测试如图4所示,根据图4(a)(b)可得,采用In电极,I-V测试表现为与pn结I-V测试类似的曲线,说明电极与样品形成肖特基接触;根据图4(c)(d)可得,采用NiAuGe电极,I-V测试表现为过原点的直线,说明电极与样品形成欧姆接触。
实施例三
本实施例中,N型Al0.9Ga0.1As为采用MOVPE技术外延得到,对其分别采用In电极和NiAuGe电极的两种办法,对N型Al0.9Ga0.1As进行镀电极。采用In电极时,将四个体积大约为1mm3的In粒粘在Al0.9Ga0.1As的四角,然后在氮气的气氛下进行合金,氮气流量为3SLPM,合金时间为250℃,合金温度为420s。采用NiAuGe电极时,将Al0.9Ga0.1As置于磁控溅射托盘,使用铝箔纸十字交叉覆盖于Al0.9Ga0.1As之上,并使用高温胶带对铝箔纸进行固定,留出四角溅射电极,如图2所示,磁控溅射在氮气气氛中依次制备第一Ni层、AuGe层、第二Ni层和Au层,氮气流量为3SLPM,第一Ni层的厚度为5nm、AuGe层的厚度为100nm、第二Ni层的厚度为45nm、Au层的厚度为300nm;然后在氮气的气氛下进行合金,氮气流量为3SLPM,合金时间为420℃,合金温度为300s。
因Al0.9Ga0.1As电阻较大,采用In电极时,I-V测试失败。图5(a)(b)为采用NiAuGe电极进行的I-V测试,其I-V测试表现为过原点的直线,说明电极与样品形成欧姆接触。
此以上所述仅为本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明的前提下,还可以做出若干改进和润饰,这些改进和润饰也应该作为本发明的保护部分。

Claims (7)

1.一种N型AlxGa1-xAs材料体系半导体表面欧姆接触电极,其特征在于,当Al的组分0≤x≤0.1时,AlxGa1-xAs上为In层;
当Al的组分0≤x≤1时,AlxGa1-xAs上依次为第一Ni层、AuGe层、第二Ni层和Au层。
2.根据权利要求1所述的N型AlxGa1-xAs材料体系半导体表面欧姆接触电极,其特征在于,当Al的组分0≤x≤0.1时,所述In层的厚度为0.8~1.2mm;
当Al的组分0≤x≤1时,所述第一Ni层的厚度为4~6nm、所述AuGe层的厚度为95~105nm、所述第二Ni层的厚度为43~47nm、所述Au层的厚度为285~315nm。
3.根据权利要求2所述的N型AlxGa1-xAs材料体系半导体表面欧姆接触电极,其特征在于,当Al的组分0≤x≤0.1时,所述In层的厚度为1mm;
当Al的组分0≤x≤1时,所述第一Ni层的厚度为5nm、所述AuGe层的厚度为100nm、所述第二Ni层的厚度为45nm、所述Au层的厚度为300nm。
4.一种N型AlxGa1-xAs材料体系半导体表面欧姆接触电极的制作方法,其特征在于,方法包括以下步骤:
当Al的组分0≤x≤0.1时,采用将In粒粘在AlxGa1-xAs样品表面后合金形成欧姆接触电极;
当Al的组分0≤x≤1时,采用磁控溅射法在AlxGa1-xAs样品表面依次制备第一Ni层、AuGe层、第二Ni层和Au层后进行合金形成欧姆接触电极。
5.根据权利要求4所述的N型AlxGa1-xAs材料体系半导体表面欧姆接触电极的制作方法,其特征在于,当Al的组分0≤x≤0.1时,所述合金的温度为240~260℃,所述合金的时间为360~420s;
当Al的组分0≤x≤1时,所述合金的温度为410~430℃,所述合金的时间为290~310s。
6.根据权利要求5所述的N型AlxGa1-xAs材料体系半导体表面欧姆接触电极的制作方法,其特征在于,当Al的组分0≤x≤0.1时,所述合金的温度为250℃,所述合金的时间为420s;
当Al的组分0≤x≤1时,所述合金的温度为420℃,所述合金的时间为300s。
7.根据权利要求4所述的N型AlxGa1-xAs材料体系半导体表面欧姆接触电极的制作方法,其特征在于,当Al的组分0≤x≤0.1时,所述合金在氮气气氛中进行,所述氮气流量为3SLPM;
当Al的组分0≤x≤1时,所述磁控溅射在氮气氛围下进行,溅射时的工作气压为5E-4Pa,溅射所述第一Ni层和第二Ni层的功率为160W~170W,溅射所述AuGe层的功率为65W~70W,溅射所述Au层的功率为90W~95W;所述合金在氮气气氛中进行,所述氮气流量为3SLPM。
CN201910475213.2A 2019-06-03 2019-06-03 N型AlxGa1-xAs材料体系半导体表面欧姆接触电极及其制作方法 Pending CN110164989A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910475213.2A CN110164989A (zh) 2019-06-03 2019-06-03 N型AlxGa1-xAs材料体系半导体表面欧姆接触电极及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910475213.2A CN110164989A (zh) 2019-06-03 2019-06-03 N型AlxGa1-xAs材料体系半导体表面欧姆接触电极及其制作方法

Publications (1)

Publication Number Publication Date
CN110164989A true CN110164989A (zh) 2019-08-23

Family

ID=67627150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910475213.2A Pending CN110164989A (zh) 2019-06-03 2019-06-03 N型AlxGa1-xAs材料体系半导体表面欧姆接触电极及其制作方法

Country Status (1)

Country Link
CN (1) CN110164989A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490456A (zh) * 2020-04-01 2020-08-04 长春理工大学 InGaAs/AlGaAs单量子阱及多量子阱半导体激光器有源区外延结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350990A (en) * 1979-02-28 1982-09-21 General Motors Corporation Electrode for lead-salt diodes
CN2571034Y (zh) * 2001-08-09 2003-09-03 杨英杰 半导体雷射元件结构
CN101114682A (zh) * 2006-07-27 2008-01-30 中国科学院半导体研究所 AlGaInP基发光二极管
CN102136492A (zh) * 2010-10-20 2011-07-27 中国科学院半导体研究所 一种基于自组织量子点的存储器及其制备方法
CN103367625A (zh) * 2013-07-15 2013-10-23 河北大学 一种斜切砷化镓单晶光、热探测器
CN104718632A (zh) * 2012-10-16 2015-06-17 昭和电工株式会社 发光二极管、发光二极管灯和照明装置
KR20180116923A (ko) * 2017-04-18 2018-10-26 한국표준과학연구원 적외선 발광 다이오드 및 적외선 가스 센서

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350990A (en) * 1979-02-28 1982-09-21 General Motors Corporation Electrode for lead-salt diodes
CN2571034Y (zh) * 2001-08-09 2003-09-03 杨英杰 半导体雷射元件结构
CN101114682A (zh) * 2006-07-27 2008-01-30 中国科学院半导体研究所 AlGaInP基发光二极管
CN102136492A (zh) * 2010-10-20 2011-07-27 中国科学院半导体研究所 一种基于自组织量子点的存储器及其制备方法
CN104718632A (zh) * 2012-10-16 2015-06-17 昭和电工株式会社 发光二极管、发光二极管灯和照明装置
CN103367625A (zh) * 2013-07-15 2013-10-23 河北大学 一种斜切砷化镓单晶光、热探测器
KR20180116923A (ko) * 2017-04-18 2018-10-26 한국표준과학연구원 적외선 발광 다이오드 및 적외선 가스 센서

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王英鸿: "n-GaAs基欧姆接触快速退火的研究", 《科技风》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490456A (zh) * 2020-04-01 2020-08-04 长春理工大学 InGaAs/AlGaAs单量子阱及多量子阱半导体激光器有源区外延结构

Similar Documents

Publication Publication Date Title
Schein et al. Highly rectifying p-ZnCo2O4/n-ZnO heterojunction diodes
CN103500701B (zh) 一种制备纳米器件的方法
TW201214673A (en) Resistive switching memories and the manufacturing method thereof
Okada et al. Electrical characteristics and reliability of Pt/Ti/Pt/Au ohmic contacts to p-type GaAs
CN110085681A (zh) 一种氧化镓基异质pn结二极管及其制备方法
CN110164989A (zh) N型AlxGa1-xAs材料体系半导体表面欧姆接触电极及其制作方法
CN108028285A (zh) 隧道势垒肖特基
Hwang et al. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering
CN106784125A (zh) Ga2O3/SiC异质结光电PNP晶体管及其制备方法
Neugebohrn et al. Analysis of the back contact properties of Cu (In, Ga) Se2 solar cells employing the thermionic emission model
CN103325942B (zh) 铁电隧道结器件
Ahmad et al. Effect of different metallic contacts on the device performance of a pn heterostructure of a topological insulator and silicon (p-Bi 2 Te 3/n-Si)
CN104409344A (zh) 降低Ni/Au与p-GaN欧姆接触的比接触电阻率的方法
CN111326651A (zh) 一种ots材料、选通器单元及其制备方法
CN104051961A (zh) 一种PNiN结构晶闸管激光器
Sun et al. Spin injection into heavily-doped n-GaN via Schottky barrier
CN106645323B (zh) 基于氧化物异质结的极性溶剂化学传感器及制备方法
Mukherjee et al. On band-to-band tunneling and field management in NiOx/β-Ga2O3 PN junction and PiN diodes
CN107946457B (zh) 一种电致电阻转变功能器件的处理方法及一种超大磁电阻器件
Oh et al. Formation of Low Resistance Nonalloyed Ti∕ Au Ohmic Contacts to n-Type ZnO by KrF Excimer Laser Irradiation
Chattopadhyay et al. Enhanced temperature dependent junction magnetoresistance in La0. 7Sr0. 3MnO3/Zn (Fe, Al) O carrier induced dilute magnetic semiconductor junctions
CN105223238A (zh) 一种基于Pd/SnO2/Si异质结的电阻式湿度传感器及其制备方法
CN109273357B (zh) 改善低掺杂浓度材料表面欧姆接触的方法及材料
Kye et al. Josephson effect in MgB/sub 2//Ag/MgB/sub 2/step-edge junctions
Donchev Thin-film diode structures for advanced energy applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190823