CN110152687A - 一种利用天然黄铁矿制备复合光催化剂的方法 - Google Patents

一种利用天然黄铁矿制备复合光催化剂的方法 Download PDF

Info

Publication number
CN110152687A
CN110152687A CN201910322461.3A CN201910322461A CN110152687A CN 110152687 A CN110152687 A CN 110152687A CN 201910322461 A CN201910322461 A CN 201910322461A CN 110152687 A CN110152687 A CN 110152687A
Authority
CN
China
Prior art keywords
catalyst
composite photo
carbamazepine
natural pyrite
photocatalytic degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910322461.3A
Other languages
English (en)
Inventor
高晓亚
郭倩
罗永明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201910322461.3A priority Critical patent/CN110152687A/zh
Publication of CN110152687A publication Critical patent/CN110152687A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种利用天然黄铁矿制备复合光催化剂的方法,属于光催化剂技术领域。本发明将天然黄铁矿进行球磨研磨20~30 min得到天然黄铁矿粉;将得到的天然黄铁矿粉过筛,然后匀速升温至温度为200~600℃并恒温煅烧2~2.5 h,随炉冷却即得复合光催化剂。本发明复合光催化剂可应用于光催化降解卡马西平和/或双氯芬酸钠。本发明的复合光催化剂活性高,用于光催化降解卡马西平和/或双氯芬酸钠废水,在室温模拟太阳光条件下具有优于纯Fe2S催化剂的光催化活性,降解率可提高35~36%。

Description

一种利用天然黄铁矿制备复合光催化剂的方法
技术领域
本发明涉及一种利用天然黄铁矿制备复合光催化剂的方法,属于光催化剂技术领域。
背景技术
药品和个人护理用品(PPCPs)是指包括人和动物使用的各种药品和日常护理品在内的多种化学物质的总称,常见的有消炎药、抗生素、镇静剂、抗癫痫药、降压药等。该类污染物是继除草剂、杀虫剂之后发现的在水体中普遍存在的痕量有机污染物,其与人类的生产活动紧密相关。虽然它们在环境中的浓度较低,但由于其极性较强以及具有较强的生物活性,并且当这类污染物长期存在于环境中时很难被降解,从而表现出一定的毒性效应和干扰效应等,不仅会对环境造成污染,也会对人类身体健康带来影响。其中卡马西平(CBZ)和双氯芬酸钠(DCF)是这类污染物的典型代表,卡马西平是一种典型的抗癫痫药物,而双氯芬酸钠是一种起效较快的抗炎药。这些污染物能够长期作用于水环境,对水生态系统产生潜在威胁,同时造成水体污染,进而直接或间接对饮用水质量造成影响,危害人体健康。因此,开发针对这类污染物的去除技术,对预防大量药品和个人护理用品污染物进入环境具有重要意义。
光催化技术因其成本低、操作简单、降解效率高等特点,在污染物的降解方面显示出了巨大的优势,它主要是利用半导体催化材料吸收光产生的电子-空穴对诱发氧化与还原反应,从而降解污染物。黄铁矿是自然界分布最广泛的铁硫化物半导体,其价带上的电子易受外部能量的激发而跳跃到导电带,从而表现出良好的半导体性能和光学性。但目前国内外研究者对黄铁矿的研究主要集中于黄铁矿的吸附、交换以及矿物学属性的研究,对其光催化性能关注和研究较少。
发明内容
本发明针对现有技术存在的问题,提供一种利用天然黄铁矿制备复合光催化剂的方法,本发明通过热处理过程,使得天然黄铁矿的结构转变并且形成的不同物相结构组分之间有紧密接触的界面,有利于电荷传输;利用热处理促使天然黄铁矿结构转变制备得到的光催化剂具有较好的光催化性能,在室温模拟太阳光条件下对卡马西平和双氯芬酸钠废水的光催化降解率得到了明显的改善,具有良好的应用前景。
一种利用天然黄铁矿制备复合光催化剂的方法,具体步骤如下:
(1)将天然黄铁矿进行球磨研磨20~25 min得到天然黄铁矿粉;
(2)将步骤(1)的天然黄铁矿粉过筛,然后匀速升温至温度为200~800 ℃并恒温煅烧2~2.5 h,随炉冷却即得复合光催化剂。
所述匀速升温速率为5~ 6 ℃/min。
所述复合光催化剂在光催化降解卡马西平和/或双氯芬酸钠中的应用。
所述复合光催化剂在光催化降解卡马西平和/或双氯芬酸钠中的应用方法,具体步骤为:
(1)将复合光催化剂加入到含有卡马西平和/或双氯芬酸钠的溶液中混合均匀并吸附至平衡状态得到体系A;
(2)在室温、光照条件下,体系A中卡马西平和/或双氯芬酸钠进行光催化降解反应,利用紫外-可见分光光度法测量卡马西平和/或双氯芬酸钠溶液的吸光度并计算其转化率。
所述含有卡马西平和/或双氯芬酸钠的溶液中卡马西平的浓度为2.5~ 12.5 mg/L,双氯芬酸钠的浓度为10~20 mg/L;
所述体系A中复合光催化剂的浓度为0.8~ 1.6 g/L。
本发明的有益效果是:
(1)本发明的复合光催化剂活性高,用于光催化降解卡马西平和/或双氯芬酸钠废水,在室温模拟太阳光条件下具有优于纯Fe2S催化剂的光催化活性,降解率可提高35~36%;
(2)本发明复合光催化剂实现了资源利用化,不仅实现了黄铁矿的资源化利用,同时可解决PPCPs污染问题;
(3)本发明方法的工艺简单,并且涉及的原料价廉易得,无危险和昂贵的化学药品,制备过程安全性能高且成本低。
附图说明
图1为实施例1复合光催化剂的XRD图;
图2为实施例1复合光催化剂对卡马西平的活性图;
图3为实施例1复合光催化剂对双氯芬酸钠的活性图。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:一种利用天然黄铁矿制备复合光催化剂的方法,具体步骤如下:
(1)将天然黄铁矿进行球磨研磨20min得到天然黄铁矿粉;
(2)将步骤(1)的天然黄铁矿粉过筛,然后匀速升温至温度为400℃并恒温煅烧2h,随炉冷却即得复合光催化剂;其中匀速升温速率为5℃/min;
本实施例复合光催化剂的XRD图见图1,从图1可知,黄铁矿经过热处理后其晶体结构发生了明显变化,成功制得了复合光催化剂;
所述复合光催化剂在光催化降解卡马西平中的应用方法,具体步骤为:
(1)将复合光催化剂加入到含有卡马西平的溶液中混合均匀并吸附至平衡状态得到体系A;其中含有卡马西平的溶液中卡马西平的浓度为2.5 mg/L;体系A中复合光催化剂的浓度为0.8g/L;
(2)在室温、模拟太阳光氙灯的照射条件下,体系A中卡马西平进行光催化降解反应30min,每间隔5min取样,利用紫外-可见分光光度法测量卡马西平溶液的吸光度并计算其转化率;
本实施例复合光催化剂对卡马西平的活性图见图2,从图2可知,所制得的复合光催化剂可成功诱导卡马西平光催化降解;
纯Fe2S催化剂在30min内无法对卡马西平实现光催化降解,而本实施例复合光催化剂在30min对卡马西平的光催化降解率为36%;
所述复合光催化剂在光催化降解双氯芬酸钠中的应用方法,具体步骤为:
(1)将复合光催化剂加入到含有双氯芬酸钠的溶液中混合均匀并吸附至平衡状态得到体系A;其中含有双氯芬酸钠的溶液中双氯芬酸钠的浓度为10 mg/L;体系A中复合光催化剂的浓度为0.8g/L;
(2)在室温、模拟太阳光氙灯的照射条件下,体系A中双氯芬酸钠进行光催化降解反应30min,每间隔5min取样,利用紫外-可见分光光度法测量双氯芬酸钠溶液的吸光度并计算其转化率;
本实施例复合光催化剂对双氯芬酸钠的活性图见图3,从图3可知,所制得的复合光催化剂可成功诱导双芬酸钠光催化降解;
纯Fe2S催化剂在30min无法对双氯芬酸钠实现光催化降解,本实施例复合光催化剂在30min对双氯芬酸钠的催化降解率为35%。
实施例2:一种利用天然黄铁矿制备复合光催化剂的方法,具体步骤如下:
(1)将天然黄铁矿进行球磨研磨25 min得到天然黄铁矿粉;
(2)将步骤(1)的天然黄铁矿粉过筛,然后匀速升温至温度为200℃并恒温煅烧2.5 h,随炉冷却即得复合光催化剂;其中匀速升温速率为5℃/min;
所述复合光催化剂在光催化降解卡马西平中的应用方法,具体步骤为:
(1)将复合光催化剂加入到含有卡马西平的溶液中混合均匀并吸附至平衡状态得到体系A;其中含有卡马西平的溶液中卡马西平的浓度为2.5 mg/L;体系A中复合光催化剂的浓度为 1.6 g/L;
(2)在室温、模拟太阳光氙灯的照射条件下,体系A中卡马西平进行光催化降解反应30min,每间隔5min取样,利用紫外-可见分光光度法测量卡马西平溶液的吸光度并计算其转化率;
纯Fe2S催化剂在30min内无法对卡马西平实现光催化降解,而本实施例复合光催化剂在30min对卡马西平的光催化降解率为28%;
所述复合光催化剂在光催化降解双氯芬酸钠中的应用方法,具体步骤为:
(1)将复合光催化剂加入到含有双氯芬酸钠的溶液中混合均匀并吸附至平衡状态得到体系A;其中含有双氯芬酸钠的溶液中双氯芬酸钠的浓度为10 mg/L;体系A中复合光催化剂的浓度为 1.6 g/L;
(2)在室温、模拟太阳光氙灯的照射条件下,体系A中双氯芬酸钠进行光催化降解反应30min,每间隔5min取样,利用紫外-可见分光光度法测量双氯芬酸钠溶液的吸光度并计算其转化率;
纯Fe2S催化剂在30min无法对双氯芬酸钠实现光催化降解,本实施例复合光催化剂在30min对双氯芬酸钠的催化降解率为26%。
实施例3:一种利用天然黄铁矿制备复合光催化剂的方法,具体步骤如下:
(1)将天然黄铁矿进行球磨研磨20 min得到天然黄铁矿粉;
(2)将步骤(1)的天然黄铁矿粉过筛,然后匀速升温至温度为600℃并恒温煅烧2 h,随炉冷却即得复合光催化剂;其中匀速升温速率为6℃/min;
所述复合光催化剂在光催化降解卡马西平中的应用方法,具体步骤为:
(1)将复合光催化剂加入到含有卡马西平的溶液中混合均匀并吸附至平衡状态得到体系A;其中含有卡马西平的溶液中卡马西平的浓度为2.5 mg/L;体系A中复合光催化剂的浓度为 0.8 g/L;
(2)在室温、模拟太阳光氙灯的照射条件下,体系A中卡马西平进行光催化降解反应30min,每间隔5min取样,利用紫外-可见分光光度法测量卡马西平溶液的吸光度并计算其转化率;
纯Fe2S催化剂在30min内无法对卡马西平实现光催化降解,而本实施例复合光催化剂在30min对卡马西平的光催化降解率为25%;
所述复合光催化剂在光催化降解双氯芬酸钠中的应用方法,具体步骤为:
(1)将复合光催化剂加入到含有双氯芬酸钠的溶液中混合均匀并吸附至平衡状态得到体系A;其中含有双氯芬酸钠的溶液中双氯芬酸钠的浓度为10 mg/L;体系A中复合光催化剂的浓度为 0.8 g/L;
(2)在室温、模拟太阳光氙灯的照射条件下,体系A中双氯芬酸钠进行光催化降解反应30min,每间隔5min取样,利用紫外-可见分光光度法测量双氯芬酸钠溶液的吸光度并计算其转化率;
纯Fe2S催化剂在30min无法对双氯芬酸钠实现光催化降解,本实施例复合光催化剂在30min对双氯芬酸钠的催化降解率为24%。
实施例4:一种利用天然黄铁矿制备复合光催化剂的方法,具体步骤如下:
(1)将天然黄铁矿进行球磨研磨20 min得到天然黄铁矿粉;
(2)将步骤(1)的天然黄铁矿粉过筛,然后匀速升温至温度为800℃并恒温煅烧2 h,随炉冷却即得复合光催化剂;其中匀速升温速率为5℃/min;
所述复合光催化剂在光催化降解卡马西平中的应用方法,具体步骤为:
(1)将复合光催化剂加入到含有卡马西平的溶液中混合均匀并吸附至平衡状态得到体系A;其中含有卡马西平的溶液中卡马西平的浓度为2.5 mg/L;体系A中复合光催化剂的浓度为 0.8 g/L;
(2)在室温、模拟太阳光氙灯的照射条件下,体系A中卡马西平进行光催化降解反应30min,每间隔5min取样,利用紫外-可见分光光度法测量卡马西平溶液的吸光度并计算其转化率;
纯Fe2S催化剂在30min内无法对卡马西平实现光催化降解,而本实施例复合光催化剂在30min对卡马西平的光催化降解率为28%;
所述复合光催化剂在光催化降解双氯芬酸钠中的应用方法,具体步骤为:
(1)将复合光催化剂加入到含有双氯芬酸钠的溶液中混合均匀并吸附至平衡状态得到体系A;其中含有双氯芬酸钠的溶液中双氯芬酸钠的浓度为10 mg/L;体系A中复合光催化剂的浓度为 0.8 g/L;
(2)在室温、模拟太阳光氙灯的照射条件下,体系A中双氯芬酸钠进行光催化降解反应30min,每间隔5min取样,利用紫外-可见分光光度法测量双氯芬酸钠溶液的吸光度并计算其转化率;
纯Fe2S催化剂在30min无法对双氯芬酸钠实现光催化降解,本实施例复合光催化剂在30min对双氯芬酸钠的催化降解率为25%。

Claims (3)

1.一种利用天然黄铁矿制备复合光催化剂的方法,其特征在于,具体步骤如下:
(1)将天然黄铁矿进行球磨研磨20~25 min得到天然黄铁矿粉;
(2)将步骤(1)的天然黄铁矿粉过筛,然后匀速升温至温度为200~800 ℃并恒温煅烧2~2.5 h,随炉冷却即得复合光催化剂。
2.根据权利要求1所述利用天然黄铁矿制备复合光催化剂的方法,其特征在于:匀速升温速率为5~6 ℃/min。
3.权利要求1所述利用天然黄铁矿制备复合光催化剂的方法所制备的复合光催化剂在光催化降解卡马西平和/或双氯芬酸钠中的应用。
CN201910322461.3A 2019-04-22 2019-04-22 一种利用天然黄铁矿制备复合光催化剂的方法 Pending CN110152687A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910322461.3A CN110152687A (zh) 2019-04-22 2019-04-22 一种利用天然黄铁矿制备复合光催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910322461.3A CN110152687A (zh) 2019-04-22 2019-04-22 一种利用天然黄铁矿制备复合光催化剂的方法

Publications (1)

Publication Number Publication Date
CN110152687A true CN110152687A (zh) 2019-08-23

Family

ID=67639727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910322461.3A Pending CN110152687A (zh) 2019-04-22 2019-04-22 一种利用天然黄铁矿制备复合光催化剂的方法

Country Status (1)

Country Link
CN (1) CN110152687A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110918102A (zh) * 2019-12-10 2020-03-27 桂林理工大学 一种利用氧化石墨烯改性金属硫化物复合光催化剂的制备方法
CN112206790A (zh) * 2020-11-12 2021-01-12 厦门理工学院 具有光催化性能的改性硫铁矿的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014164418A1 (en) * 2013-03-11 2014-10-09 North Carolina State University Functionalized environmentally benign nanoparticles
CN105174413A (zh) * 2015-09-28 2015-12-23 河海大学 一种铁废弃物回用于芬顿技术的方法及其水处理装置
CN108499582A (zh) * 2018-04-04 2018-09-07 昆明理工大学 一种复合光催化剂的制备方法
CN108906122A (zh) * 2018-07-12 2018-11-30 华东理工大学 一种应用于废水深度处理的环糊精材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014164418A1 (en) * 2013-03-11 2014-10-09 North Carolina State University Functionalized environmentally benign nanoparticles
CN105174413A (zh) * 2015-09-28 2015-12-23 河海大学 一种铁废弃物回用于芬顿技术的方法及其水处理装置
CN108499582A (zh) * 2018-04-04 2018-09-07 昆明理工大学 一种复合光催化剂的制备方法
CN108906122A (zh) * 2018-07-12 2018-11-30 华东理工大学 一种应用于废水深度处理的环糊精材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KHABBAZ M ET AL: ""Degradation of diclofenac by sonosynthesis of pyrite nanoparticles"", 《JOURNAL OF ENVIRONMENTAL MANAGEMENT》 *
QIAN GUO等: ""In situ construction of Z-scheme FeS2/Fe2O3 photocatalyst via structural transformation of pyrite for photocatalytic degradation of carbamazepine and the synergistic reduction of Cr(VI)"", 《JOURNAL OF ENVIRONMENTAL SCIENCES》 *
XIA DEHUA ET AL: ""Visible-light-driven inactivation of Escherichia coil K-12 over thermal treated natural pyrrhotite"", 《APPLIED CATALYSIS B-ENVIROMENTAL》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110918102A (zh) * 2019-12-10 2020-03-27 桂林理工大学 一种利用氧化石墨烯改性金属硫化物复合光催化剂的制备方法
CN112206790A (zh) * 2020-11-12 2021-01-12 厦门理工学院 具有光催化性能的改性硫铁矿的制备方法及其应用
CN112206790B (zh) * 2020-11-12 2022-04-22 厦门理工学院 具有光催化性能的改性硫铁矿的制备方法及其应用
WO2022100226A1 (zh) * 2020-11-12 2022-05-19 厦门理工学院 具有光催化性能的改性硫铁矿的制备方法及其应用

Similar Documents

Publication Publication Date Title
Bansal et al. In-situ dual effect studies using novel Fe-TiO2 composite for the pilot-plant degradation of pentoxifylline
Kabra et al. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review
Doudrick et al. Nitrate reduction in water using commercial titanium dioxide photocatalysts (P25, P90, and Hombikat UV100)
Herrmann et al. Photocatalytic degradation of aqueous hydroxy-butandioic acid (malic acid) in contact with powdered and supported titania in water
Borges et al. Solar degradation of contaminants in water: TiO2 solar photocatalysis assisted by up-conversion luminescent materials
CN105170170B (zh) 一种g‑C3N4‑ZnO/HNTs复合光催化剂及其制备方法与用途
Barzegar et al. S-scheme heterojunction g-C3N4/TiO2 with enhanced photocatalytic activity for degradation of a binary mixture of cationic dyes using solar parabolic trough reactor
Chaibakhsh et al. Optimization of photocatalytic degradation of neutral red dye using TiO2 nanocatalyst via Box-Behnken design
CN101773841A (zh) 一种用于水处理的光催化剂
Mohammadi et al. Type-1 α-Fe2O3/TiO2 photocatalytic degradation of tetracycline from wastewater using CCD-based RSM optimization
Mohsenzadeh et al. Degradation of 1, 2-dichloroethane by photocatalysis using immobilized PAni-TiO2 nano-photocatalyst
CN108264127A (zh) 一种纳米级氧化镓真空紫外光催化降解全氟辛酸的方法
CN107442153A (zh) 一种基于废纸生物质碳修饰的g‑C3N4复合光催化剂的制备方法及用途
Leeladevi et al. Fabrication of 3D pebble-like CeVO4/g-C3N4 nanocomposite: a visible light-driven photocatalyst for mitigation of organic pollutants
CN107744816A (zh) 一种碳点修饰型复合材料光催化剂及制备方法和应用
Mohammadi et al. Preparation and characterization of TiO2/ZnO/CuO nanocomposite and application for phenol removal from wastewaters
Zheng et al. Efficient solar-light photocatalytic activity of FeS/S-doped MgO composites for tetracycline removal
CN110152687A (zh) 一种利用天然黄铁矿制备复合光催化剂的方法
Abd Rahman et al. Recent advances in the TiO2 based photoreactors for removing contaminants of emerging concern in water
Zhang et al. Preparation and characterization of WO3/ZnO composite photocatalyst and its application for degradation of oxytetracycline in aqueous solution
Hussein Comparison between solar and artificial photocatalytic decolorization of textile industrial wastewater
Behnajady et al. Influence of operational parameters and kinetics analysis on the photocatalytic reduction of Cr (VI) by immobilized ZnO
CN104841463A (zh) 一种BiOCl/P25复合光催化剂及其制备方法和应用
Rattan Paul et al. Li doped graphitic carbon nitride based solar light responding photocatalyst for organic water pollutants degradation
CN105080585B (zh) 一种Ag/TiO2-N可见光催化剂及其超临界醇热制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190823