CN110148295B - 一种估计路段自由流速度及交叉口上游到达流率的方法 - Google Patents

一种估计路段自由流速度及交叉口上游到达流率的方法 Download PDF

Info

Publication number
CN110148295B
CN110148295B CN201910267003.4A CN201910267003A CN110148295B CN 110148295 B CN110148295 B CN 110148295B CN 201910267003 A CN201910267003 A CN 201910267003A CN 110148295 B CN110148295 B CN 110148295B
Authority
CN
China
Prior art keywords
time
upstream
downstream
lane
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910267003.4A
Other languages
English (en)
Other versions
CN110148295A (zh
Inventor
夏井新
叶含珺
安成川
陆振波
刘佳超
严颖
王寅朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910267003.4A priority Critical patent/CN110148295B/zh
Publication of CN110148295A publication Critical patent/CN110148295A/zh
Application granted granted Critical
Publication of CN110148295B publication Critical patent/CN110148295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了基于贝叶斯后验分布从历史号牌数据中获取单个车道路段自由流速度和上游到达流率的方法,以单个车道及其上下游交叉口为研究对象,建立以车辆自由流速度、红时到达流率、绿时到达流率为参数的后验分布函数,以号牌识别数据作为样本,采用M‑H算法进行参数估计,得出各参数的概率密度分布。本发明中将周期内上游车辆到达根据配时方案划分为车辆在相位红灯期间到达和相位绿灯期间到达两种情况,并分别估计两种情况下的到达流率分布,同时估计得到的分布一定程度上体现了干线车流波动特性,估计结果可为干线协调配时方案评估和微调提供参考。

Description

一种估计路段自由流速度及交叉口上游到达流率的方法
技术领域
本发明涉及交通管理控制领域,特别涉及一种估计路段自由流速度及交叉口上游到达流率的方法。
背景技术
目前的交通管理与控制领域中,对车流进行信号控制是提高路网运行效率的重要手段之一。根据交通控制范围的不同,可以将信号控制划分为单点控制、干线协调控制以及区域协调控制。由于城市道路网系统比较复杂,相邻交叉口之间相互关联,相互影响,对于主干道系统来说,单点控制无法解决其交通问题,使得主干道上车流安全高效运行,所以目前城市中多采用干线协调控制以提高干线的交通服务水平。
干线协调控制是在单点控制的基础上,通过为连续交叉口特定方向设置合理的绿灯起亮时间,以使流量较大,行驶比较均匀的车流能够连续顺畅的通过一系列的交叉口。目前比较常用的方法是续进式协调,即根据道路设计车速以及交叉口间距,设置相位差协调连续交叉口绿灯起亮时刻,使上游交叉口绿灯起亮之后驶离的车辆以道路设计速度行驶到达下游交叉口时,下游交叉口绿灯刚好起亮。对于离线协调控制而言,由于无法实时检测车辆到达-驶离情况,所以一般采用某时段历史平均交通量作为参数进行单点配时,采用道路设计速度作为车辆运行速度计算相邻交叉口相位差,这种参数确定方法具有以下弊端:1)实际车辆运行速度受到路段物理条件影响,与道路设计速度有一定差别;2)随着交通量的增大,车辆个体间的差异愈发明显,从总体上来看,则体现在车辆运行速度波动性增强;3)当短时交通量变化较大时,以时段平均交通量作为配时依据无法考虑到车辆到达的不确定性。车辆运行速度和到达交通量是干线协调控制的数据基础,其合理性对于干线协调控制效果至关重要,所以如何确定合理的运行速度和到达流量是干线协调控制中首先需要解决的关键问题。
国外对估计相邻交叉口上游到达流量已有一些研究成果。Zheng等以GPS数据为基础,假设上游车辆到达服从基于时间的泊松过程,将到达流量估计问题归纳成一个最大似然问题,采用期望最大化算法求解问题得到估计的流量值,但是该研究只能得到确定时间间隔内的到达流量,无法分别估计相位红灯期间和绿灯期间交叉口上游的到达情况,所以不能作为评价干线协调控制方案效果的依据。此外,国内外目前没有比较好的估计路段自由流速度的方法,一般采用经验速度或是道路设计速度作为路段自由流速度,其合理性有待商榷,并且取值方法没有考虑到车辆行驶的随机性。
发明内容
本发明的目的是为了克服上述问题,提供一种估计路段自由流速度及交叉口上游到达流率的方法。
为达到上述目的,本发明采用的方法是:一种基于贝叶斯后验分布的自由流速度及上游到达流率估计方法,包括以下步骤:
S1、确定研究对象和时间段,提取本交叉口选定车道及上游三个来向检测器的号牌数据,提取选定车道信号配时方案;
S2、数据预处理,包括号牌检测器时间戳校正,车辆上下游时间戳匹配;
S3、从预处理之后的数据提取样本,形成样本对用于采样,过程如下:
S31、确定研究时段内下游车道配时方案的关键时间点,包括每一周期的红灯起亮时间、红灯结束时间等,根据上下游时间戳与上下游关键时间点的关系分别将车辆匹配到相应周期中;
S32、取下游在同一周期的车辆的首车和尾车,提取其检测器编号、车道编号、上游时间戳和
S4、建立后验分布函数,根据贝叶斯后验估计理论,后验分布函数与先验分布函数和似然函数的乘积成正比例,似然函数建立过程如下:
S41:路段长度除以自由流速度得到车辆在相邻交叉口之间的行程时间;
S42:下游交叉口相关相位研究时间段内的红灯起亮时间和绿灯起亮时间分别减去步骤 S41中计算出来的行程时间,得到交叉口上游处于相同信号状态的时间节点;
S43:将上游时间戳样本与步骤二中得的的时间节点进行比较,确定车辆从上游以自由流速度行驶到达下游交叉口时下游相关相位的信号状态;
S44:提取下游一周期的样本数据,计算两类时间差,第一类是预计在下游红灯相位到达的车辆跨越的红灯时长,第二类是预计在下游绿灯相位到达的车辆跨越的绿灯时长;
S45:根据步骤四得到的时间差,计算得到一条此样本的概率,过程如下:假设上游交叉口车辆到达服从泊松过程,且当n辆车从上游到达下游车道时,有n1(n1∈D,D={0,1,2,......n})辆车会遇到红灯,有n2(n2∈D,D={0,1,2,......n})辆车会遇到绿灯,且n1+n2=n,那么相应时段内到达n辆车的概率为:
Figure GDA0002117145980000021
式中,λr和λg分别是红灯和绿灯相位期间上游车辆的到达流率;tr和tg分别是每周期处于红灯相位和绿灯相位的车辆到达持续的时间;e是自然对数的底,其取值为2.71828;
S46:将所有单条样本的概率相乘,得到似然函数;
S5、用M-H算法进行采样,首先用蒙特卡洛模拟算法生成一组参数值,然后将参数值代入对数似然函数求得似然值,再与对数先验函数值相加,最终得到对数后验函数值,完成一次迭代,之后根据转移率确定蒙特卡洛算法迭代方向,生成一组新的模拟值,经多次迭代后得到参数分布。
作为本发明的一种改进,所述步骤S1的过程包括:
S11、获取号牌检测器数据:选取需要进行研究的一条下游进口道,确定其对应号牌检测器编号,从GIS底图中找到其上游三个来向的号牌检测器编号,获取上述号牌检测器信息,包括检测器编号,时间戳,车道,交叉口编号等;
S12、获取车道对应信号控制方案,通过交叉口编号找到下游交叉口信号控制机,进而对应到下游交叉口信号配时方案,然后通过车道与相位对应表找到研究车道对应的相位,再通过相位编号找到车道配时方案,并形成包括交叉口编号、控制机编号、车道编号、信号配时方案编号、信号阶段编号及名称、阶段开始时间及长度和阶段中所包含的相位编号等信息的信号配时方案表。
作为本发明的一种改进,所述步骤S2中数据预处理,包括以下步骤:
S21、以1s为步长将检测器时间戳往前后各偏移60s,每次偏移之后记录偏移量和偏移之后车辆驶离时间为绿灯期间的数据项条数,将对应数据项条数最大的偏移量作为最终校正值;
S22、根据S21中得到的校正值校正号牌时间戳,并将车辆驶离时间不在绿灯期间的车辆信息删除;
S23、匹配车辆运行轨迹,确定经过下游研究车道的车辆从上游交叉口驶离的时间。
作为本发明的一种改进,所述步骤S5中包括以下步骤:
S51、蒙特卡洛模拟生成一组参数值;
S52、将参数值代入似然函数,计算似然值;
S53、计算转移概率矩阵,根据转移率确定下一次模拟值改进方向,进入下一次采样。
有益效果:
本发明从车道的角度考虑自由流速度和上游到达流率的同时估计,相较于已有的研究能够得到更加精细的参数表征,并且由于此发明关注的是历史到达模式,所以对数据精度及完备性的要求较现有方法更低。此外,本发明中将周期内上游车辆到达根据配时方案划分为车辆在相位红灯期间到达和相位绿灯期间到达两种情况,并分别估计两种情况下的到达流率分布,同时估计得到的分布一定程度上体现了干线车流波动特性,估计结果可为干线协调配时方案评估和微调提供参考。
附图说明
图1为渠化方案及号牌检测器配置图;
图2为研究对象配时方案信息图;
图3为研究对象及其上游来向号牌检测器信息图;
图4为样本信息图。
图5为采样结构图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,本实施例在以本发明技术方案为前提下进行实施,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围。
如图1所示的将江苏省昆山市中华园路-枫景路交叉口西进口车道1作为研究对象,该车道为直行车道,对应号牌检测器编号为713,信号控制机编号为234,相位编号为5,上游交叉口为中华园路-人民路交叉口,该交叉口三个来向进口道对应的检测器编号分别为 710、711和712,控制机编号为236,渠化方案及检测器配置见图1。
选取9:00~16:00为研究时段,相关号牌检测器信息和配时方案信息如图2和图3所示。其中INTERSECTION_ID表示控制机编号,PROGRAM_ID表示配时方案编号,STAGE_ID 表示当前信号阶段编号,LAST_STAGE_ID表示上一信号阶段编号,LAST_STAGE_LEN 表示上一信号阶段编号的时长,TIME表示当前信号阶段的起始时间;FACILITY_ID表示号牌检测器编号,DATE_KEY表示日期,TIME表示检测到的过车时间,PLATE表示检测到的过车牌照,LANE表示当前记录对应的车道编号。
对以上两张信息表做简单的预处理。一方面,将配时方案表中的时间点转化成以秒为单位的时间,这个时间就是每一阶段绿灯开始的时间,加上当前阶段的时长即可得到绿灯结束的时间,另外在表中添加一列数据表示下游绿灯起始时刻对应的研究时段内的下游周期编号,预处理之后的数据表见图4;另一方面,将号牌检测信息表中的时间点转化成以秒为单位的时间,删除重复数据,删除规则为:若连续两条记录的牌照号相同且时间差小于 2s,则删除后一条记录。
根据配时方案表中的时刻点,可以将研究时段的配时方案表示成由红灯格和绿灯格相间组成的一系列时段,将号牌信息表中的时间戳匹配到这些时段中,进行号牌时间校正,校正值为-56秒,校正之后最多有2687条记录是在绿灯期间检测到的,保留这些记录并将剩余记录删除,然后在原始号牌时间戳上统一减去56秒,为号牌检测器信息表增加一列数据计算累积车辆数。
还原车辆轨迹,匹配车辆经过上下游交叉口的时间。研究车道长度为211.87米,将对象车道的配时方案的时间节点向上游推得到上游信号时段,同时将上游时间戳匹配到时段中,得到车辆按自由流速度行驶到下游交叉口可能遇到的配时周期和信号状态,形成完整的采样信息,数据表见图4。表中数据项含义为:对于驶离研究车道的每一辆车,其携带以下信息:车辆牌照PLATE,经过下游交叉口的时间time_down,经过下游时配时方案所处周期编号down_cir,对应信号时段的起止时间down_start和down_end,经过上游交叉口的时间time_up,预计到达下游交叉口时下游配时方案所处周期编号up_cir,预计到达下游交叉口时下游相应相位的信号状态up_state,对应信号时段的起止时间up_start和up_end,车辆累积编号cum_num(说明当前车辆是该检测器当日检测到的第几辆车)。
采样初始值取为(10,0.3,0.3),即初次计算似然值时假设自由流速度为10m/s,红灯相位到达流率为0.3veh/s,绿灯相位到达流率为0.3veh/s。取样间隔为30,迭代次数为2000,scale 取0.009。取上述参数时,得到的采样接受率为0.33255,处于可接受范围之内,所以采样结果可靠,采样结果为一系列数据点,可视化后如图5所示。图5中,左边一列是参数的采样轨迹,右边一列是各参数的概率密度分布;从上至下图形表征的参数依次为自由流速度,红灯相位上游到达流率和绿灯相位上游到达流率。
本发明方案所公开的技术手段不仅限于上述技术手段所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (4)

1.一种基于贝叶斯后验分布的自由流速度及上游到达流率估计方法,包括以下步骤:
S1、确定研究对象和时间段,提取本交叉口选定车道及上游三个来向检测器的号牌数据,提取选定车道信号配时方案;
S2、数据预处理,包括号牌检测器时间戳校正,车辆上下游时间戳匹配;
S3、从预处理之后的数据提取样本,形成样本对用于采样,过程如下:
S31、确定研究时段内下游车道配时方案的关键时间点,包括每一周期的红灯起亮时间、红灯结束时间,根据上下游时间戳与上下游关键时间点的关系分别将车辆匹配到相应周期中;
S32、取下游在同一周期的车辆的首车和尾车,提取其检测器编号、车道编号、上游时间戳和下游时间戳信息,形成一条样本;
S4、建立后验分布函数,根据贝叶斯后验估计理论,后验分布函数与先验分布函数和似然函数的乘积成正比例,似然函数建立过程如下:
S41:路段长度除以自由流速度得到车辆在相邻交叉口之间的行程时间;
S42:下游交叉口相关相位研究时间段内的红灯起亮时间和绿灯起亮时间分别减去步骤S41中计算出来的行程时间,得到交叉口上游处于相同信号状态的时间节点;
S43:将上游时间戳样本与步骤S42中得的时间节点进行比较,确定车辆从上游以自由流速度行驶到达下游交叉口时下游相关相位的信号状态;
S44:提取下游一周期的样本数据,计算两类时间差,第一类是预计在下游红灯相位到达的车辆跨越的红灯时长,第二类是预计在下游绿灯相位到达的车辆跨越的绿灯时长;
S45:根据步骤S44得到的时间差,计算得到一条此样本的概率,过程如下:假设上游交叉口车辆到达服从泊松过程,且当n辆车从上游到达下游车道时,有n1,n1∈D,D={0,1,2,......n}辆车会遇到红灯,有n2,n2∈D,D={0,1,2,......n}辆车会遇到绿灯,且n1+n2=n,那么相应时段内到达n辆车的概率为:
Figure FDA0002566906220000011
式中,λr和λg分别是红灯和绿灯相位期间上游车辆的到达流率;tr和tg分别是每周期处于红灯相位和绿灯相位的车辆到达持续的时间;e是自然对数的底,其取值为2.71828;
S46:将所有单条样本的概率相乘,得到似然函数值;
S5、用M-H算法进行采样,首先用蒙特卡洛模拟算法生成一组参数值,然后将参数值代入对数似然函数求得似然值,再与对数先验函数值相加,最终得到对数后验函数值,完成一次迭代,之后根据转移率确定蒙特卡洛算法迭代方向,生成一组新的模拟值,经多次迭代后得到参数分布。
2.如权利要求1所述的一种基于贝叶斯后验分布的自由流速度及上游到达流率估计方法,其特征在于:所述步骤S1的过程包括:
S11、获取号牌检测器数据:选取需要进行研究的一条下游进口道,确定其对应号牌检测器编号,从GIS底图中找到其上游三个来向的号牌检测器编号,获取上述号牌检测器信息,包括检测器编号,时间戳,车道,交叉口编号;
S12、获取车道对应信号控制方案,通过交叉口编号找到下游交叉口信号控制机,进而对应到下游交叉口信号配时方案,然后通过车道与相位对应表找到研究车道对应的相位,再通过相位编号找到车道配时方案,并形成包括交叉口编号、控制机编号、车道编号、信号配时方案编号、信号阶段编号及名称、阶段开始时间及长度和阶段中所包含的相位编号信息的信号配时方案表。
3.如权利要求1所述的一种基于贝叶斯后验分布的自由流速度及上游到达流率估计方法,其特征在于:所述步骤S2中数据预处理,包括以下步骤:
S21、以1s为步长将检测器时间戳往前后各偏移60s,每次偏移之后记录偏移量和偏移之后车辆驶离时间为绿灯期间的数据项条数,将对应数据项条数最大的偏移量作为最终校正值;
S22、根据S21中得到的校正值校正号牌时间戳,并将车辆驶离时间不在绿灯期间的车辆信息删除;
S23、匹配车辆运行轨迹,确定经过下游研究车道的车辆从上游交叉口驶离的时间。
4.如权利要求1所述的一种基于贝叶斯后验分布的自由流速度及上游到达流率估计方法,其特征在于:所述步骤S5中包括以下步骤:
S51、蒙特卡洛模拟生成一组参数值;
S52、将参数值代入似然函数,计算似然值;
S53、计算转移概率矩阵,根据转移率确定下一次模拟值改进方向,进入下一次采样。
CN201910267003.4A 2019-04-03 2019-04-03 一种估计路段自由流速度及交叉口上游到达流率的方法 Active CN110148295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910267003.4A CN110148295B (zh) 2019-04-03 2019-04-03 一种估计路段自由流速度及交叉口上游到达流率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910267003.4A CN110148295B (zh) 2019-04-03 2019-04-03 一种估计路段自由流速度及交叉口上游到达流率的方法

Publications (2)

Publication Number Publication Date
CN110148295A CN110148295A (zh) 2019-08-20
CN110148295B true CN110148295B (zh) 2020-09-01

Family

ID=67589378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910267003.4A Active CN110148295B (zh) 2019-04-03 2019-04-03 一种估计路段自由流速度及交叉口上游到达流率的方法

Country Status (1)

Country Link
CN (1) CN110148295B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111292533B (zh) * 2020-02-11 2021-07-30 北京交通大学 基于多源数据的高速公路任意时段任意断面流量估计方法
CN113947899B (zh) * 2021-09-30 2023-11-10 南京云析科技有限公司 一种低渗透率轨迹数据下排队服务时间动态估计方法
CN116665439B (zh) * 2023-04-28 2024-05-07 东南大学 基于车牌识别数据的城市路网车流od不确定性估计方法
CN116721551B (zh) * 2023-05-04 2024-05-14 东南大学 基于号牌识别数据的车道级到达曲线历史和实时重构方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927890A (zh) * 2014-04-29 2014-07-16 北京建筑大学 一种基于动态o-d矩阵估计的干线协调信号控制方法
CN104575021A (zh) * 2014-12-17 2015-04-29 浙江工业大学 基于邻域优化城市路网系统的分布式模型预测控制方法
JP2015161993A (ja) * 2014-02-26 2015-09-07 株式会社京三製作所 交通信号制御システム及び交通信号制御方法
CN106710255A (zh) * 2017-02-16 2017-05-24 清华大学 道路信号控制方法、装置及道路信号系统
CN108039049A (zh) * 2017-12-12 2018-05-15 哈尔滨工业大学 一种考虑上游交叉口交通信号控制方案并结合车速诱导的交叉口交通信号控制方法
CN109191872A (zh) * 2018-10-09 2019-01-11 东南大学 一种基于号牌数据的路口交通流特征参数提取方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9911327B2 (en) * 2015-06-30 2018-03-06 Here Global B.V. Method and apparatus for identifying a split lane traffic location

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161993A (ja) * 2014-02-26 2015-09-07 株式会社京三製作所 交通信号制御システム及び交通信号制御方法
CN103927890A (zh) * 2014-04-29 2014-07-16 北京建筑大学 一种基于动态o-d矩阵估计的干线协调信号控制方法
CN104575021A (zh) * 2014-12-17 2015-04-29 浙江工业大学 基于邻域优化城市路网系统的分布式模型预测控制方法
CN106710255A (zh) * 2017-02-16 2017-05-24 清华大学 道路信号控制方法、装置及道路信号系统
CN108039049A (zh) * 2017-12-12 2018-05-15 哈尔滨工业大学 一种考虑上游交叉口交通信号控制方案并结合车速诱导的交叉口交通信号控制方法
CN109191872A (zh) * 2018-10-09 2019-01-11 东南大学 一种基于号牌数据的路口交通流特征参数提取方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Predicting traffic flow using Bayesian networks;EnriqueCastillo Et al.;《Transportation Research Part B: Methodological》;20080630;第42卷(第5期);第482-509页 *
基于信息融合的交通流检测方法的研究;徐微;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》;20080915(第9期);C034-287 *
行程时间服从混合高斯分布的车队离散模型;姚志洪等;《交通运输系统工程与信息》;20170430;第17卷(第2期);第97-125页 *

Also Published As

Publication number Publication date
CN110148295A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
CN110148295B (zh) 一种估计路段自由流速度及交叉口上游到达流率的方法
CN110648527B (zh) 一种基于深度学习模型的交通速度预测方法
CN102708698B (zh) 基于车联网的车辆最优路径导航方法
CN109035761B (zh) 基于辅助监督学习的行程时间估计方法
CN104215249B (zh) 一种行车轨迹的平滑方法
CN104050817B (zh) 限速信息库生成、限速信息检测的方法和系统
CN102855760B (zh) 基于浮动车数据的在线排队长度检测方法
CN103310651B (zh) 一种基于实时路况信息的公交到站预测方法
CN103794053B (zh) 一种城市短途物流单目标配送时间模糊预测方法
CN102436603B (zh) 基于概率树d预测的轨道交通全路网客流预测方法
CN110222873A (zh) 一种基于大数据的地铁站客流量预测方法
CN102521989B (zh) 一种动态数据驱动的高速公路出口流量预测方法
CN103413443A (zh) 基于隐马尔科夫模型的短时交通流状态预测方法
CN109686091B (zh) 一种基于多源数据融合的交通流量填补算法
CN110274609B (zh) 一种基于行程时间预测的实时路径规划方法
CN107018493A (zh) 一种基于连续时序马尔科夫模型的地理位置预测方法
CN105551239B (zh) 旅行时间预测方法及装置
CN104464310A (zh) 城市区域多交叉口信号协同优化控制方法及系统
CN110335459A (zh) 低渗透率车辆轨迹数据的交叉口排队长度估计方法及装置
CN109410577A (zh) 基于空间数据挖掘的自适应交通控制子区划分方法
CN104064023A (zh) 一种基于时空关联的动态交通流预测方法
CN104750830B (zh) 时间序列数据的周期挖掘方法
CN101727746A (zh) 信号灯控制的城市道路机动车动态行程时间估计方法
Coffey et al. Time of arrival predictability horizons for public bus routes
Yao et al. An optimization model for arterial coordination control based on sampled vehicle trajectories: The STREAM model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant