CN110142047A - 一种炭载钯核镍氧化物掺杂氧化钯壳电催化剂的制备方法 - Google Patents

一种炭载钯核镍氧化物掺杂氧化钯壳电催化剂的制备方法 Download PDF

Info

Publication number
CN110142047A
CN110142047A CN201910206990.7A CN201910206990A CN110142047A CN 110142047 A CN110142047 A CN 110142047A CN 201910206990 A CN201910206990 A CN 201910206990A CN 110142047 A CN110142047 A CN 110142047A
Authority
CN
China
Prior art keywords
catalyst
palladium
elctro
carbon
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910206990.7A
Other languages
English (en)
Other versions
CN110142047B (zh
Inventor
闫少辉
于少锋
吴玉程
岳秀萍
马旭莉
高利珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201910206990.7A priority Critical patent/CN110142047B/zh
Publication of CN110142047A publication Critical patent/CN110142047A/zh
Application granted granted Critical
Publication of CN110142047B publication Critical patent/CN110142047B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种炭载钯核镍氧化物掺杂氧化钯壳电催化剂的制备方法。该方法包括了一种多元醇还原法和催化剂的后续热处理,其包括在碱性条件下,用乙二醇做溶剂,并在干燥箱中加热制备炭载纳米钯镍复合材料,以及后续在‑0.07MPa的真空度下对炭载纳米钯镍复合材料的热处理。通过透射电镜、X射线衍射、X射线光电子能谱和电感耦合等离子体发射光谱表征了该催化剂的形貌、结构、化学态和组成。在25℃下,用循环伏安法,在碱性体系中测试了催化剂电氧化甲醇和乙醇的活性。结果显示,在400℃热处理所得的催化剂的活性最高。其催化甲醇和乙醇电化学氧化的峰值电流密度分别达到930.1和2113.6mAmg‑1Pd。

Description

一种炭载钯核镍氧化物掺杂氧化钯壳电催化剂的制备方法
技术领域
本发明涉及一种炭载钯核镍氧化物掺杂氧化钯壳电催化剂的制备方法,属于燃料电池材料科学技术领域和电催化剂技术领域。
背景技术
因电催化剂在许多与能源相关的技术中起着至关重要的作用,而引起了巨大的研究兴趣。虽然已经研究报道了许多电催化活性良好的铂基、钯基纳米催化剂,但是其催化效果仍然不能令人满意。但是,提高阳极电催化剂的催化活性,稳定性和效率仍是电催化剂研究中的重要课题。由于电催化剂的性能强烈地依赖其表面积得大小、活性位点的数量和电导率,因此许多研究非常关心这些特征参数的优化[Energy&Environmental Science,2016,9(5): 1734-1743;Electrochimica Acta,2017,235:720-729]。其中,研究者广泛地研究了贵金属与贱金属进行复合,制备非均相的双金属复合纳米催化剂的方法及相关理论[International Journal of Hydrogen Energy,2014,39(3):1325-35;NatureMaterials,2008,7(4):333-338]。由于两种金属具有协同结构和电子效应,可以增加催化剂的活性表面积,提供更多的活性位点,同时改变金属原子电子结构,从而提升催化剂的活性和耐久性[Nature Materials,2008,7(4):333-338]。其中,Ru[Electrochimica Acta,2017,238:194-201],Cu[International Journal of Hydrogen Energy, 2014,39(27):14669-14679],Co[International Journal of Hydrogen Energy,2014,39(3): 1325-1335],Au[Journal of Power Sources,2009,187(2):298-304]等和钯制成的双金属催化剂已经被广泛地研究,并且展示出了良好的催化行为和抗中毒能力。
后过渡金属氧化物在多相催化的商业应用中发挥核心作用。后期过渡金属,包括Ru,Rh, Ir,Pd和Pt,在许多广泛的应用中用作促进氧化反应的催化剂,包括汽车和发电厂的废气修复、天然气的催化燃烧、燃料电池催化和有机化合物的选择性氧化等[Journal ofPhysical Chemistry C 2011,115(23),11575-11585]。在催化氧化的实际应用中,氧可以与金属催化剂反应以在催化剂表面产生金属氧化物层。与原始金属相比,氧化物层是一种全新的物质。由于氧化物及其母金属通常具有非常不同的化学性质,因此金属表面向金属氧化物的转变可导致催化剂的性能发生显着变化[Chemical Reviews 2013,113(6),4164-4215]。表面科学研究了有关甲醇在清洁和氧气改性的过渡金属表面上化学的详细信息,发现吸附的氧原子显着增强了过渡表面对甲醇的化学反应性,产生了多种氧化化学[Journalof Physical Chemistry C,2010, 114(26):11485-11497;Journal of PhysicalChemistry C,2008,112(112):8324-8331]。吸附的氧原子的关键作用是促进甲醇初始去质子化为更强结合的甲氧基中间体。Madix等认为,吸附的氧原子通过作为布朗斯台德碱来促进甲醇去质子化[Journal of Physical Chemistry B,2005, 109(16):8017-8028]。氧化物和羟基氧化物对氧化还原反应机理的研究发现催化剂表面活性位点附着的反应中间体OH和OOH对反应动力学具有很大的影响,因此为这些中间产物提供结合位点是很重要的[Nano Research,2016,9(3):713-725;Chemical Physics,2005,319(1): 178-184;Journal of Electroanalytical Chemistry,2007,607(1):83-89]。金属氧化物的好氧性使其表面容易生成OHads,促进中间产物的脱附,氢氧化物通过氢溢流效应促进Hads在钯表面的氧化,从而提高催化剂的活性和稳定性[Journal of Power Sources,2009,187(1):80-84]。此外,Yue Feng等人的研究中发现了一种具有大表面积的多孔氧化钯,其可以有效的提高催化剂的活性表面积[J Colloid Interface Sci,2017,493:190-197]。
在电子和协同效应的作用下,Pt-Ni合金是许多能量转换应用的最佳催化剂之一。其可以有效的降低过电位并改善电催化剂还原和析氧反应的缓慢动力学[Small,2015,11(12): 1430-1434;Nat Commun,2017,8:15131]。同样,Pd-Ni催化剂在电子和协同效应的作用下也显示出了良好的活性[Journal of Power Sources,2009,187(1):80-84]。这些研究为提高催化剂的性能提供了新的思路、为制备氧化型催化剂提供了重要的启发。
发明内容
本发明的目的是提供一种炭载钯核镍氧化物掺杂氧化钯壳电催化剂的制备方法,该方法具有制备工艺简单,制备效率高且电催化活性高的特点,对其它贵金属纳米催化剂的合成有一定的借鉴意义。
本发明提供的炭载钯核镍氧化物掺杂氧化钯壳电催化剂的制备方法的具体步骤如下:
(1)通过25分钟的超声搅拌,将48.6mg Vulcan XC-72R活性炭均匀分散在由2ml0.0564 M PdCl2水溶液、0.5ml的0.112M NiCl2水溶液和20ml乙二醇组成的混合溶液中;
(2)向混合溶液中加入6.8ml 1M KOH水溶液,然后超声搅拌5分钟;
(3)将混合溶液移入容量为100ml的不锈钢高压反应釜中,并向反应釜中再加入40ml 乙二醇;
(4)将反应釜放入鼓风干燥箱中加热至190℃,并在该温度下保温反应6小时;
(5)待反应釜自然冷却至室温后,通过过滤收集反应产物,并用去离子水反复洗涤,直到滤液中检测不出Cl-为止;
(6)将滤渣放在真空干燥箱中,并在80℃下干燥6小时;
(7)将干燥后的滤渣研磨后放入管式炉的石英管中,并将石英管内的部分空气抽出,使石英管内的真空度达到-0.07Mpa;
(8)在300-500℃的温度下热处理2小时后,即可得到炭载钯核镍氧化物掺杂氧化钯壳电催化剂。
本发明制备的炭载钯核镍氧化物掺杂氧化钯壳电催化剂的TEM和HRTEM图片分别通过 JEM 1200EX和Tecnai G2 F20透射电镜上进行表征。该催化剂的结构表征在BrukerD8 X射线衍射仪上实现。该催化剂组成元素的化学态通过Thermo Scientific Escalab250Xi X射线光电子能谱(XPS)仪进行分析。该催化剂中各组成的含量通过Agilent 730电感耦合等离子体发射光谱(ICP-OES)仪进行测定。在25℃下,用CHI 760E电化学工作站(上海辰华),采用循环伏安法(CV),分别在高纯氮气饱和的0.1M KOH+1M CH3OH和0.1M KOH+1MCH3CH2OH混合溶液中测试催化剂电化学氧化甲醇和乙醇的活性。
附图说明
图1是实施方案一制备的催化剂的TEM图片及粒径分布图。通过实施方案一制备的催化剂记作:Catalyst 1。图1显示,Catalyst 1催化剂中的纳米粒子均匀分散在炭载体上。通过在 Catalyst 1催化剂的TEM中随机测量200个纳米粒子的粒径,来统计Catalyst 1催化剂中的纳米粒子的粒径分布。相应的分布图如图1中的插图所示。由粒径分布图可以算出,Catalyst 1 催化剂中纳米粒子的平均粒径约为4.38nm。
图2是实施方案二制备的催化剂的TEM图片及粒径分布图。通过实施方案二制备的催化剂记作:Catalyst 2。图2显示,Catalyst 2催化剂中的纳米粒子均匀分散在炭载体上。通过在 Catalyst 2催化剂的TEM中随机测量200个纳米粒子的粒径,来统计Catalyst 2催化剂中的纳米粒子的粒径分布。相应的分布图如图2中的插图所示。由粒径分布图可以算出,Catalyst 2 催化剂中纳米粒子的平均粒径约为4.28nm。
图3是实施方案三制备的催化剂的TEM图片及粒径分布图。通过实施方案三制备的催化剂记作:Catalyst 3。图3显示,Catalyst 3催化剂中的纳米粒子均匀分散在炭载体上。通过在 Catalyst 3催化剂的TEM中随机测量200个纳米粒子的粒径,来统计Catalyst 3催化剂中的纳米粒子的粒径分布。相应的分布图如图3中的插图所示。由粒径分布图可以算出,Catalyst 3 催化剂中纳米粒子的平均粒径约为4.70nm。
图4是实施方案一、二和三制备的催化剂的XRD图谱。为了分析Catalyst 1、Catalyst 2 和Catalyst 3催化剂的晶格结构,将Pd[JCPDS,No.5-0681]和PdO[JCPDS,No.2-1432]的标准 XRD图谱也绘制在图4中。在图4中标明了催化剂和标准图谱的名称。图4中位于25.4°的衍射峰对应于炭载体的C(002)晶面[JCPDS,No.74-2330]。Catalyst 1、Catalyst 2和Catalyst 3 催化剂的XRD图谱中存在多个衍射峰。在33.8、41.9、54.7、60.2和71.4°的衍射峰分别对应于PdO(101)、(110)、(112)、(103)和(211)晶面。此外,在大约40.0°的位置存在一个极其微弱的衍射峰。该衍射峰与Pd(111)晶面的特征衍射峰完全对应。说明经过加热, Catalyst 1、Catalyst 2和Catalyst 3催化剂中的Pd除了大部分以PdO的形式存在,同时还有部分Pd以单金属的形式存在。可以推测,位于纳米粒子外层的Pd被氧化了并以,而位于纳米粒子核心区域的部分Pd未被氧化并以金属态Pd存在,即Catalyst 1、Catalyst 2和Catalyst 3催化剂中纳米粒的核心部分为单金属Pd,而壳层部分为PdO。此外,Catalyst 1、Catalyst 2 和Catalyst 3催化剂中的Pd(111)晶面的衍射峰并未随着热处理温度的升高而移动,说明催化剂的内核中没有金属Ni。否则,随着热处理温度的升高,金属Ni与Pd的合金化程度的提高会使Pd衍射峰的峰位上升。而且,由于Pd的氧化电位高于Ni的氧化电位,因此可以断定 Catalyst 1、Catalyst 2和Catalyst 3催化剂中的Ni是以氧化态的形式存在。奇怪的是,图4中 Catalyst 1、Catalyst 2和Catalyst 3催化剂的XRD图谱中没有出现金属Ni的氧化物的衍射峰。说明在Catalyst 1、Catalyst 2和Catalyst 3催化剂中Ni的氧化物的结晶度太低,或者以无定形形式存在。有趣的是,与PdO的标准图谱相比,可以发现Catalyst 1、Catalyst 2和Catalyst 3 催化剂中PdO的衍射峰略有移向较低的角度偏移。这说明Catalyst 1、Catalyst 2和Catalyst 3 催化剂中的氧化钯并不纯正,即经过热处理后Ni2+在Pd2+中的溶解引起了PdO衍射峰的偏移。这同时也说明,Catalyst 1、Catalyst 2和Catalyst 3催化剂中的纳米粒子的壳层是Ni氧化物掺杂的PdO。此外,Catalyst 1、Catalyst 2和Catalyst 3催化剂的XRD图谱中所有特征衍射峰的峰位都一样。说明这三种催化剂中纳米粒子的结构基本相同。
图5是实施方案一制备的催化剂中的纳米粒子的HRTEM图片。为了进一步确定炭载钯核镍氧化物掺杂氧化钯壳电催化剂中纳米粒子的表面结构,选择对Catalyst 1催化剂进行了 HRTEM测试。如图5显示,Catalyst 1催化剂中纳米粒子表面的晶格间距为0.266nm。该值介于PdO(0.260nm,JCPDS no.2-1432)和Ni2O3(0.280nm,JCPDS no.14-0481)的{002}晶面间距之间。这进一步证明,Catalyst 1中纳米粒子的壳层是Ni氧化物掺杂的PdO。由Catalyst 1、Catalyst 2和Catalyst 3催化剂的XRD图谱的高度相似,可以断定Catalyst 2和Catalyst 3 催化剂中纳米粒子的壳层也是Ni氧化物掺杂的PdO。
图6是实施方案一制备的催化剂的XPS图谱。为了确定炭载钯核镍氧化物掺杂氧化钯壳电催化剂中纳米粒子表面各元素的化学态,判断催化剂中纳米粒子壳层中Ni氧化物的种类,选择对Catalyst 1催化剂进行了XPS分析。图6A是Catalyst 1 XPS总谱图。C1S、O1s、Pd3d 和Ni2p的谱峰分别位于284、531、337和855eV。图6B是C1s谱图。位于284.78eV的谱峰接近纯炭的电子结合能(284.80eV)。而位于285.88和288.81eV的谱峰分别来自炭载体表面的C-O和C=O基团。说明,经过热处理后,活性炭载体表面发生了部分氧化。图6C显示了Ni2p谱图。图6C显示,Ni2p谱图显示了一个复杂的结构。因为多电子激发,Ni2p谱图发生了自旋轨道耦合,并在861.42和880.84eV附近出现指纹峰。在指纹区,Ni2p3/2谱峰分解为位于853.97、854.58eV、855.43和856.69eV处的四个峰。它们分别对应于NiO、Ni(OH)2、 NiOOH和Ni2O3。图6D显示了Pd3d谱图。由于自旋轨道耦合,Pd3d谱图在337.27eV(Pd3d5/2) 和342.57eV(Pd3d3/2)处分裂为两个谱峰。这两个谱峰都与PdO的电子结合能相对应。图6中没有金属Pd和金属Ni的谱峰出现,进一步证明了单金属Pd位于催化剂中纳米粒子的核心区,且Ni被完全氧化。催化剂中的纳米粒子表面的四种Ni氧化物NiO、Ni(OH)2、NiOOH和Ni2O3可以统一表示为NiOxHy。因此,催化剂中的纳米粒子的壳层可以描述为NiOxHy掺杂的PdO,记作:PdO-NiOxHy。所以,炭载钯核镍氧化物掺杂氧化钯壳可以表示为:Pd@PdO-NiOxHy/C。
图7是实施方案一、二和三制备的催化剂在0.1M KOH+1M CH3OH混合溶液中的CV曲线。为了衡量该电催化的活性,在第1步中不添加NiCl2溶液的情况下,通过第1步到第6 步制备了炭载钯(Pd/C)催化剂。而且,在图7中比较了Pd/C、Catalyst 1、Catalyst 2和Catalyst 3催化剂电化学氧化甲醇的活性。在图7中标明了催化剂的名称。CV曲线的电流密度用 ICP-OES测定的催化剂中Pd的实际担载量进行归一化。Pd/C、Catalyst 1、Catalyst 2和Catalyst 3催化剂中Pd的实际担载量分别为27.4、15.9、14.2和53.4wt%。从图7可以看出,Pd/C、 Catalyst 1、Catalyst 2和Catalyst 3催化剂电化学氧化甲醇的峰电流密度分别为:318.9、930.1、 856.2和449.1mA mg-1Pd。可以看出,Catalyst 1催化剂电化学氧化甲醇的电流密度最大,而且是Pd/C催化剂的2.9倍。Catalyst 3催化剂的Pd担载量明显大于Catalyst 1和Catalyst 2催化剂,说明在500℃下热处理时,炭载体因被氧化而大量损失。
图8是实施方案一、二和三制备的催化剂在0.1M KOH+1M CH3CH2OH混合溶液中的CV曲线。为了衡量该电催化的活性,在第1步中不添加NiCl2溶液的情况下,通过第1步到第6步制备了炭载钯(Pd/C)催化剂。而且,在图8中比较了Pd/C、Catalyst 1、Catalyst 2 和Catalyst 3催化剂电化学氧化乙醇的活性。催化剂的名称标明在图8中。CV曲线的电流密度用ICP-OES测定的催化剂中Pd的实际担载量进行归一化。从图8可以看出,Pd/C、Catalyst1、Catalyst 2和Catalyst 3催化剂电化学氧化乙醇的峰电流密度分别为:826.0、2113.6、2029.5 和500.9mA mg-1Pd。可以看出,Catalyst 1催化剂电化学氧化乙醇的电流密度最大,而且是 Pd/C催化剂的2.5倍。
具体实施方式
本发明提供的实施例如下:
实施方案一:制备过程第8步中,热处理温度为400℃;其它制备条件不变。该实施方案制备的催化剂记作:Catalyst 1。
实施方案二:制备过程第8步中,热处理温度为300℃;其它制备条件不变。该实施方案制备的催化剂记作:Catalyst 2。
实施方案三:制备过程第8步中,热处理温度为500℃;其它制备条件不变。该实施方案制备的催化剂记作:Catalyst 3。

Claims (1)

1.一种炭载钯核镍氧化物掺杂氧化钯壳电催化剂的制备方法,其特征在于,由以下各步骤组成:
(1)通过25分钟的超声搅拌,将48.6mg Vulcan XC-72R活性炭均匀分散在由2ml0.0564M PdCl2水溶液、0.5ml的0.112M NiCl2水溶液和20ml乙二醇组成的混合溶液中;
(2)向混合溶液中加入6.8ml 1M KOH水溶液,然后超声搅拌5分钟;
(3)将混合溶液移入容量为100ml的不锈钢高压反应釜中,并向反应釜中再加入40ml乙二醇;
(4)将反应釜放入鼓风干燥箱中加热至190℃,并在该温度下保温反应6小时;
(5)待反应釜自然冷却至室温后,通过过滤收集反应产物,并用去离子水反复洗涤,直到滤液中检测不出Cl-为止;
(6)将滤渣放在真空干燥箱中,并在80℃下干燥6小时;
(7)将干燥后的滤渣研磨后放入管式炉的石英管中,并将石英管内的部分空气抽出,使石英管内的真空度达到-0.07Mpa;
(8)在300-500℃的温度下热处理2小时后,即可得到炭载钯核镍氧化物掺杂氧化钯壳电催化剂。
CN201910206990.7A 2019-03-12 2019-03-12 一种炭载钯核镍氧化物掺杂氧化钯壳电催化剂的制备方法 Active CN110142047B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910206990.7A CN110142047B (zh) 2019-03-12 2019-03-12 一种炭载钯核镍氧化物掺杂氧化钯壳电催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910206990.7A CN110142047B (zh) 2019-03-12 2019-03-12 一种炭载钯核镍氧化物掺杂氧化钯壳电催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110142047A true CN110142047A (zh) 2019-08-20
CN110142047B CN110142047B (zh) 2022-03-29

Family

ID=67588398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910206990.7A Active CN110142047B (zh) 2019-03-12 2019-03-12 一种炭载钯核镍氧化物掺杂氧化钯壳电催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110142047B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430732A (zh) * 2020-01-19 2020-07-17 太原理工大学 一种Pd-PdH0.706@PdO-NiOxHy/C核壳电催化剂的制备方法
CN113042054A (zh) * 2019-12-26 2021-06-29 中国科学院宁波材料技术与工程研究所 一种碳负载镍催化剂的制备方法及用途
CN113328107A (zh) * 2021-05-25 2021-08-31 西安交通大学 一种钯镍碳电催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007964A (zh) * 2013-01-10 2013-04-03 太原理工大学 一种直接甲醇燃料电池用炭载空心纳米金镍合金催化剂的制备方法
CN103157494A (zh) * 2013-04-01 2013-06-19 河北师范大学 一种水热法合成Pt-Ni催化剂材料的方法
CN106423204A (zh) * 2016-09-28 2017-02-22 济南大学 一种石墨烯负载钯镍纳米合金催化还原硝基芳烃的方法
CN106910905A (zh) * 2015-12-23 2017-06-30 太原理工大学 一种炭载纳米钯复合电催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007964A (zh) * 2013-01-10 2013-04-03 太原理工大学 一种直接甲醇燃料电池用炭载空心纳米金镍合金催化剂的制备方法
CN103157494A (zh) * 2013-04-01 2013-06-19 河北师范大学 一种水热法合成Pt-Ni催化剂材料的方法
CN106910905A (zh) * 2015-12-23 2017-06-30 太原理工大学 一种炭载纳米钯复合电催化剂的制备方法
CN106423204A (zh) * 2016-09-28 2017-02-22 济南大学 一种石墨烯负载钯镍纳米合金催化还原硝基芳烃的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHAOHUI YAN ET AL.,: "Investigation of AuNi/C anode catalyst for direct methanol fuel cells", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
YINGJIA YANG ET AL.,: "The Properties of PdRu /C with respect to the Electro-oxidation of Methanol and Ethanol", 《INT. J. ELECTROCHEM. SCI.》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113042054A (zh) * 2019-12-26 2021-06-29 中国科学院宁波材料技术与工程研究所 一种碳负载镍催化剂的制备方法及用途
CN111430732A (zh) * 2020-01-19 2020-07-17 太原理工大学 一种Pd-PdH0.706@PdO-NiOxHy/C核壳电催化剂的制备方法
CN113328107A (zh) * 2021-05-25 2021-08-31 西安交通大学 一种钯镍碳电催化剂及其制备方法

Also Published As

Publication number Publication date
CN110142047B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
Feng et al. Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation
Li et al. Surface and lattice engineered ruthenium superstructures towards high-performance bifunctional hydrogen catalysis
Wu et al. Electrocatalytic activity and stability of Ag-MnOx/C composites toward oxygen reduction reaction in alkaline solution
Hao et al. In-situ probing the rapid reconstruction of FeOOH-decorated NiMoO4 nanowires with boosted oxygen evolution activity
CN114293223B (zh) 一种由簇基框架材料制备超细二氧化铈担载金属单原子催化剂的方法
Gao et al. Monodisperse PdSn/SnO x core/shell nanoparticles with superior electrocatalytic ethanol oxidation performance
Hu et al. In-situ synthesis of palladium-base binary metal oxide nanoparticles with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation
CN106784900B (zh) 铂基纳米颗粒包覆二氧化锡覆盖的碳纳米管及其制备方法
Moura Souza et al. Niobium: a promising Pd co-electrocatalyst for ethanol electrooxidation reactions
Zhang et al. Highly active carbon nanotube-supported Ru@ Pd core-shell nanostructure as an efficient electrocatalyst toward ethanol and formic acid oxidation
CN110142047A (zh) 一种炭载钯核镍氧化物掺杂氧化钯壳电催化剂的制备方法
Chai et al. A facile precipitation procedure for synthesis of binary Sn-Co oxide promoting Pd catalyst towards glucose electrooxidation
Song et al. Insights into the endurance promotion of PtSn/CNT catalysts by thermal annealing for ethanol electro-oxidation
Wang et al. Study of carbon supported CuPd alloy nanoparticles with Pd-rich surface for the electrochemical formate oxidation and CO2 reduction
Taghaddosi et al. Facile synthesis of N-doped hollow carbon nanospheres wrapped with transition metal oxides nanostructures as non-precious catalysts for the electro-oxidation of hydrazine
Sekhar et al. Graphene supported Pd–Cu bimetallic nanoparticles as efficient catalyst for electrooxidation of methanol in alkaline media
Habibi et al. Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Ning et al. Novel H-PdSnNi catalyst with enhanced ethanol electrooxidation performance in alkaline medium
Wang et al. Highly dispersed PtNi nanoparticles modified carbon black as high-performanced electrocatalyst for oxygen reduction in acidic medium
Luong et al. Unraveling the formation of optimum point in NiCo-based electrocatalysts for urea oxidation reaction
Li et al. Developing a high-effective Pt-based phosphating catalyst for direct ethylene glycol fuel cells
Sandoval-González et al. Electrooxidation reactions of methanol and ethanol on Pt–MoO3 for dual fuel cell applications
Yin et al. PdCu nanoparticles modified free-standing reduced graphene oxide framework as a highly efficient catalyst for direct borohydride-hydrogen peroxide fuel cell
He et al. Carbon cloth supporting spinel CuMn0. 5Co2O4 nanoneedles with the regulated electronic structure by multiple metal elements as catalysts for efficient oxygen evolution reaction
Jin et al. Effect of MoO3 on Pd nanoparticles for efficient formic acid electrooxidation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant