CN110133612A - 一种基于跟踪反馈的扩展目标检测方法 - Google Patents

一种基于跟踪反馈的扩展目标检测方法 Download PDF

Info

Publication number
CN110133612A
CN110133612A CN201910420715.5A CN201910420715A CN110133612A CN 110133612 A CN110133612 A CN 110133612A CN 201910420715 A CN201910420715 A CN 201910420715A CN 110133612 A CN110133612 A CN 110133612A
Authority
CN
China
Prior art keywords
target
point
extension
extension target
kth frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910420715.5A
Other languages
English (en)
Other versions
CN110133612B (zh
Inventor
李杨
张振宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910420715.5A priority Critical patent/CN110133612B/zh
Publication of CN110133612A publication Critical patent/CN110133612A/zh
Application granted granted Critical
Publication of CN110133612B publication Critical patent/CN110133612B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter

Abstract

一种基于跟踪反馈的扩展目标检测方法,它属于雷达信号处理技术领域。本发明解决了现有导航雷达目标检测方法未利用目标帧间回波信号的相关性,导致对扩展目标的检测概率低以及虚警概率高的问题。本发明利用卡尔曼滤波器实现了对扩展目标的位置及形状信息的稳定估计,并将扩展目标的位置信息反馈给贝叶斯检测器,将检测与跟踪过程结合,使得检测与跟踪性能均得到优化。实验证明,在扩展目标信噪比相同的情况下,本发明方法可以使检测的虚警概率大幅下降,跟踪精度大幅提高。在扩展目标信噪比为18dB时,采用本发明方法可以使虚警概率低至0.0001。本发明可以应用于雷达信号处理技术领域。

Description

一种基于跟踪反馈的扩展目标检测方法
技术领域
本发明属于雷达信号处理技术领域,具体涉及一种基于跟踪反馈的扩展目标检测方法。
背景技术
船用导航雷达是航海电子系统的重要组成部分,可以对船舶实现全天侯防撞预警和航行引导。提高导航雷达的检测能力对保证船只航行安全至关重要。由于导航雷达工作环境复杂,接收到的信号包括大量干扰与杂波,目标信杂比往往较低;船只物理尺寸大于导航雷达分辨单元,目标在检测平面占据多个分辨单元,出现距离方向维扩展现象。可见,导航雷达目标检测是典型的低信噪比下扩展目标检测。
现有导航雷达目标检测方法主要有MN检测,双参数恒虚警检测(双参数CFAR)以及K-分布恒虚警检测等,现有导航雷达目标检测方法均通过对当前时刻回波信号进行处理,即实现扩展目标检测,而未利用目标帧间回波信号的相关性,导致在低信噪比的情况下,扩展目标检测概率较低,虚警概率较高。
发明内容
本发明的目的是为解决现有导航雷达目标检测方法未利用目标帧间回波信号的相关性,导致对扩展目标的检测概率低以及虚警概率高的问题,而提出了一种基于跟踪反馈的扩展目标检测方法。
本发明为解决上述技术问题采取的技术方案是:一种基于跟踪反馈的扩展目标检测方法,该方法包括以下步骤:
步骤一:初始化扩展目标航迹,获得扩展目标的初始状态向量X1与初始量测向量Z1
步骤二:利用公式计算出第k帧各点处的贝叶斯检测器门限,k≥2;
步骤三:判断第k帧检测平面内各点处的回波幅值是否大于步骤二计算出的贝叶斯检测器门限,将第k帧中大于贝叶斯检测器门限的n个点的位置与回波幅度记录下来;
步骤四:在方位维与距离维分别滑窗搜索连续点迹,计算出第k帧扩展目标中心到雷达的距离与角度量测
将步骤三中的大于贝叶斯检测器门限的n个点拟合成椭圆,并提取出第k帧对应的拟合成的椭圆的长轴轴长短轴轴长和椭圆朝向
步骤五:将步骤三中的大于贝叶斯检测器门限的n个点与预设值n0进行比对,若数值n大于等于预设值n0,则认为通过第二门限,否则认为未通过第二门限;
步骤六:利用步骤四的和步骤一的X1与Z1进行卡尔曼滤波更新,获得第k+1帧的状态向量Xk+1预测值;
步骤七:重复步骤二到步骤六的过程,直到连续两帧未通过第二门限判别,则完成扩展目标检测。
本发明的有益效果是:本发明的一种基于跟踪反馈的扩展目标检测方法,本发明利用卡尔曼滤波器实现了对扩展目标的位置及形状信息的稳定估计,并将扩展目标的位置信息反馈给贝叶斯检测器,将检测与跟踪过程结合,使得检测与跟踪性能均得到优化。实验证明,在扩展目标信噪比相同的情况下,本发明方法可以使检测概率大幅提升,检测的虚警概率大幅下降,跟踪精度大幅提高。
在扩展目标信噪比为18dB时,采用本发明方法可以使虚警概率低至0.0001。
附图说明
图1是本发明的一种基于跟踪反馈的扩展目标检测方法的流程图;
图2是本发明的扩展目标中心位置航迹图;
图3为扩展目标尺寸为18m*12m时,成功跟踪概率与扩展目标信噪比的曲线图;
图4为扩展目标尺寸为12m*6m时,成功跟踪概率与扩展目标信噪比的曲线图;
图5为扩展目标位置滤波误差的RMS随帧数变化的曲线图。
具体实施方式
具体实施方式一:如图1所示,本实施方式所述的一种基于跟踪反馈的扩展目标检测方法,该方法包括以下步骤:
步骤一:初始化扩展目标航迹,获得扩展目标的初始状态向量X1与初始量测向量Z1
步骤二:利用公式计算出第k帧各点处的贝叶斯检测器门限,k≥2;
步骤三:判断第k帧检测平面内各点处的回波幅值是否大于步骤二计算出的贝叶斯检测器门限,将第k帧中大于贝叶斯检测器门限的n个点的位置与回波幅度记录下来;
步骤四:在方位维与距离维分别滑窗搜索连续点迹,计算出第k帧扩展目标中心到雷达的距离与角度量测
将步骤三中的大于贝叶斯检测器门限的n个点拟合成椭圆,并提取出第k帧对应的拟合成的椭圆的长轴轴长短轴轴长和椭圆朝向
步骤五:将步骤三中的大于贝叶斯检测器门限的n个点与预设值n0进行比对,若数值n大于等于预设值n0,则认为通过第二门限,否则认为未通过第二门限;
步骤六:利用步骤四的和步骤一的X1与Z1进行卡尔曼滤波更新,获得第k+1帧的状态向量Xk+1预测值;
步骤七:重复步骤二到步骤六的过程,直到连续两帧未通过第二门限判别,则完成扩展目标检测。
本发明涉及船用导航雷达目标检测技术。
具体实施方式二:本实施方式与具体实施方式一不同的是:所述扩展目标的初始状态向量X1的表达式为:
X1=[x1,vx1,y1,vy1,l1,w1]T (1)
其中:x1与y1分别代表扩展目标初始位置的x与y轴坐标,vx1与vy1分别代表扩展目标在x与y轴方向的初始速度,l1与w1分别代表扩展目标的长度和宽度,上角标T代表矩阵的转置。
具体实施方式三:本实施方式与具体实施方式二不同的是:所述扩展目标的初始量测向量Z1的表达式为:
其中:分别代表第1帧扩展目标中心到雷达的距离与角度量测,分别代表扩展目标拟合后椭圆的长轴和短轴的轴长,代表扩展目标拟合后椭圆的朝向。
具体实施方式四:本实施方式与具体实施方式三不同的是:所述步骤二的具体过程为:
利用假设H代表待检测单元没有目标,利用假设K代表待检测单元处有目标,并假设杂波能量呈现指数分布;
则在假设H条件下,第k帧l点处信号能量分布的概率密度函数的形式为:
其中:fH(ak(l))代表假设H条件下的第k帧l点处信号能量分布的概率密度函数,e为自然常数;ak(l)代表第k帧l点处能量的幅度;
在假设K条件下,第k帧l点处信号能量分布的概率密度函数的形式为:
其中:fK(ak(l))代表假设K条件下的第k帧l点处信号能量分布的概率密度函数,ρ代表扩展目标的信噪比;
根据贝叶斯准则,获得贝叶斯检测器门限的表达式为:
利用卡尔曼滤波器的性质,下一帧扩展目标位置应为与预测下一帧扩展目标位置相关的指数分布,推导了跟踪器预测目标位置与目标存在先验概率之间的关系;
其中:Vk(l)代表第k帧l点位置与预测扩展目标中心位置之间的差值,Sk代表新息自相关矩阵;上角标-1代表矩阵的逆,P(K)代表假设K成立的先验概率,P(H)代表假设H成立的先验概率;
其中:Yk(l)代表第k帧l点的位置,h代表量测方程,F代表状态转移方程,代表对第k帧扩展目标中心位置的预测;代表状态向量Xk中的xk与yk
即第2帧l点位置与预测扩展目标中心位置之间的差值V2(l)与初始状态向量X1有关;
将公式(6)和公式(7)代入公式(5),得到第k帧l点处的贝叶斯检测器门限的表达式:
其中:η为常量。
η是可以调节的,通过调节常量η来调节扩展目标的检测概率与虚警概率。
将公式(6)和公式(7)代入公式(5)时,
若第k帧l点处符合假设K条件,则将公式(6)和(7)代入表达式得到第k帧l点处对应的贝叶斯检测器门限为
若第k帧l点处符合假设H条件,则将公式(6)和(7)代入表达式得到第k帧l点处对应的贝叶斯检测器门限为
具体实施方式五:本实施方式与具体实施方式四不同的是:所述步骤四的具体过程为:
由于雷达高分辨,所以目标在方位距离维度上均占据不止一个单元;
在方位维与距离维分别滑窗搜索连续点迹,计算出代表第k帧扩展目标中心到雷达的距离与角度量测
的计算公式为:
Ri代表扩展目标的距离维第i个散射点的位置,Vi代表扩展目标的距离维第i个散射点的回波幅度;
θi代表扩展目标的方向维第i个散射点位置;Vi′代表扩展目标的方向维第i个散射点的回波幅度;
利用最小二乘法将步骤三的n个点拟合成椭圆,并提取出第k帧对应的拟合成的椭圆的长轴轴长短轴轴长和椭圆朝向
实施例
为了验证本发明提出的基于跟踪反馈的扩展目标检测方法性能,进行仿真实验,并将本发明方法(图3和图4中的方法一)与扩展目标不反馈方法(图3和图4中的方法二)以及未利用扩展信息反馈方法(图3和图4中的方法三)进行对比。仿真参数依照实际船用导航雷达参数设置如下:
表1仿真参数设定
假设场景中只有单一扩展目标且航迹已经进行起始,扩展目标质心起始位置为(100,100),扩展目标尺寸为12m*6m,占据4*2共8个分辨单元大小。扩展目标速度为(5m/s,5m/s),扩展目标运动形式为匀速直线运动。
扩展目标的状态转移矩阵可以被写作下式:
其中: 2代表单位矩阵,04×2代表零矩阵,代表克罗内克积。设置过程噪声
图2为扩展目标中心位置航迹图;
设置扩展目标信噪比为0dB至30dB进行蒙特卡洛仿真,将最后一帧中,目标仍在波门内的情况定义为扩展目标成功跟踪,在每个信噪比处做10000次蒙特卡洛实验,图3与图4分别为扩展目标尺寸为18m*12m与12m*6m时成功跟踪概率与扩展目标信噪比的图像。
在不同信噪比处,采用跟踪反馈的方法性能均为最优,未采用扩展信息反馈的方法性能均为最差,扩展目标未反馈的方法性能介于二者之间。
可以见得,由于利用了上一帧扩展目标的位置信息,跟踪反馈的方法对提高扩展目标在低信噪比下的检测性能有所帮助,在成功跟踪概率为80%处,采用跟踪反馈的方法比不采用反馈的方法约有2dB左右的增益,比不采用扩展信息反馈的方法约有3-5dB增益。
相同信噪比下,扩展目标扩展点数越多,扩展信息对检测的帮助就越大,所以相同信噪比下不同扩展目标大小成功跟踪概率也有不同。
从检测的角度,虚警概率是分析检测性能的重要指标,选择扩展目标大小为18m*12m,设定虚警概率为0.0001对比分析不同方法的虚警概率:
表2不同信噪比下虚警概率对比
根据上表可见,不同信噪比下,采用扩展目标跟踪反馈方法虚警概率均为最低,说明采取反馈方法可以有效抑制虚警出现。在信噪比为12dB时,由于信噪比较低,所以实际测出的虚警概率要高于设置虚警概率,在信噪比达到18dB时,实测虚警概率性能可以达到理论值。
从跟踪的角度,对比分析不同方法的跟踪精度。仍选择目标大小为18m*12m,图5为扩展目标位置滤波误差的RMS(扩展目标位置滤波的误差性能)随帧数变化的图像:由图5可以看出,信噪比为15dB时,扩展目标反馈的方法的RMS为最小,未采用扩展信息反馈的方法的RMS为最大。开始时,由于初始参数设定原因,扩展目标的RMS均相对较大,随着时间的累计,对扩展目标位置的估计逐渐精确,RMS逐渐减小。
本发明的上述算例仅为详细地说明本发明的计算模型和计算流程,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (5)

1.一种基于跟踪反馈的扩展目标检测方法,其特征在于,该方法包括以下步骤:
步骤一:初始化扩展目标航迹,获得扩展目标的初始状态向量X1与初始量测向量Z1
步骤二:利用公式计算出第k帧各点处的贝叶斯检测器门限,k≥2;
步骤三:判断第k帧检测平面内各点处的回波幅值是否大于步骤二计算出的贝叶斯检测器门限,将第k帧中大于贝叶斯检测器门限的n个点的位置与回波幅度记录下来;
步骤四:在方位维与距离维分别滑窗搜索连续点迹,计算出第k帧扩展目标中心到雷达的距离与角度量测
将步骤三中的大于贝叶斯检测器门限的n个点拟合成椭圆,并提取出第k帧对应的拟合成的椭圆的长轴轴长短轴轴长和椭圆朝向
步骤五:将步骤三中的大于贝叶斯检测器门限的n个点与预设值n0进行比对,若数值n大于等于预设值n0,则认为通过第二门限,否则认为未通过第二门限;
步骤六:利用步骤四的和步骤一的X1与Z1进行卡尔曼滤波更新,获得第k+1帧的状态向量Xk+1预测值;
步骤七:重复步骤二到步骤六的过程,直到连续两帧未通过第二门限判别,则完成扩展目标检测。
2.根据权利要求1所述的一种基于跟踪反馈的扩展目标检测方法,其特征在于,所述扩展目标的初始状态向量X1的表达式为:
X1=[x1,vx1,y1,vy1,l1,w1]T (1)
其中:x1与y1分别代表扩展目标初始位置的x与y轴坐标,vx1与vy1分别代表扩展目标在x与y轴方向的初始速度,l1与w1分别代表扩展目标的长度和宽度,上角标T代表矩阵的转置。
3.根据权利要求2所述的一种基于跟踪反馈的扩展目标检测方法,其特征在于,所述扩展目标的初始量测向量Z1的表达式为:
其中:分别代表第1帧扩展目标中心到雷达的距离与角度量测,分别代表扩展目标拟合后椭圆的长轴和短轴的轴长,代表扩展目标拟合后椭圆的朝向。
4.根据权利要求3所述的一种基于跟踪反馈的扩展目标检测方法,其特征在于,所述步骤二的具体过程为:
利用假设H代表待检测单元没有目标,利用假设K代表待检测单元处有目标,并假设杂波能量呈现指数分布;
则在假设H条件下,第k帧l点处信号能量分布的概率密度函数的形式为:
其中:fH(ak(l))代表假设H条件下的第k帧l点处信号能量分布的概率密度函数,e为自然常数;ak(l)代表第k帧l点处能量的幅度;
在假设K条件下,第k帧l点处信号能量分布的概率密度函数的形式为:
其中:fK(ak(l))代表假设K条件下的第k帧l点处信号能量分布的概率密度函数,ρ代表扩展目标的信噪比;
根据贝叶斯准则,获得贝叶斯检测器门限的表达式为:
其中:Vk(l)代表第k帧l点位置与预测扩展目标中心位置之间的差值,Sk代表新息自相关矩阵;上角标-1代表矩阵的逆,P(K)代表假设K成立的先验概率,P(H)代表假设H成立的先验概率;
其中:Yk(l)代表第k帧l点的位置,h代表量测方程,F代表状态转移方程,代表对第k帧扩展目标中心位置的预测;
将公式(6)和公式(7)代入公式(5),得到第k帧l点处的贝叶斯检测器门限的表达式:
其中:η为常量。
5.根据权利要求4所述的一种基于跟踪反馈的扩展目标检测方法,其特征在于,所述步骤四的具体过程为:
在方位维与距离维分别滑窗搜索连续点迹,计算出代表第k帧扩展目标中心到雷达的距离与角度量测
的计算公式为:
Ri代表扩展目标的距离维第i个散射点的位置,Vi代表扩展目标的距离维第i个散射点的回波幅度;
θi代表扩展目标的方向维第i个散射点位置;Vi′代表扩展目标的方向维第i个散射点的回波幅度;
利用最小二乘法将步骤三的n个点拟合成椭圆,并提取出第k帧对应的拟合成的椭圆的长轴轴长短轴轴长和椭圆朝向
CN201910420715.5A 2019-05-20 2019-05-20 一种基于跟踪反馈的扩展目标检测方法 Active CN110133612B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910420715.5A CN110133612B (zh) 2019-05-20 2019-05-20 一种基于跟踪反馈的扩展目标检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910420715.5A CN110133612B (zh) 2019-05-20 2019-05-20 一种基于跟踪反馈的扩展目标检测方法

Publications (2)

Publication Number Publication Date
CN110133612A true CN110133612A (zh) 2019-08-16
CN110133612B CN110133612B (zh) 2021-04-02

Family

ID=67571765

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910420715.5A Active CN110133612B (zh) 2019-05-20 2019-05-20 一种基于跟踪反馈的扩展目标检测方法

Country Status (1)

Country Link
CN (1) CN110133612B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562569A (zh) * 2020-04-21 2020-08-21 哈尔滨工业大学 基于加权群稀疏约束的Weibull背景下多目标恒虚警检测方法
CN112816973A (zh) * 2020-12-31 2021-05-18 清华大学 一种跟踪信息辅助的目标检测方法
CN112836707A (zh) * 2021-01-11 2021-05-25 西安电子科技大学 一种isar图像空中目标长度特征提取方法
CN113138372A (zh) * 2021-05-24 2021-07-20 哈尔滨工业大学 一种基于改进型m/n检测器的多径环境下雷达目标检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644758A (zh) * 2009-02-24 2010-02-10 中国科学院声学研究所 一种目标定位跟踪系统及方法
CN106443661A (zh) * 2016-09-08 2017-02-22 河南科技大学 基于无迹卡尔曼滤波的机动扩展目标跟踪方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644758A (zh) * 2009-02-24 2010-02-10 中国科学院声学研究所 一种目标定位跟踪系统及方法
CN106443661A (zh) * 2016-09-08 2017-02-22 河南科技大学 基于无迹卡尔曼滤波的机动扩展目标跟踪方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙存光: "低信噪比扩展目标跟踪方法研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
张晓娟 等: "基于CT非线性模型的水下目标跟踪算法比较", 《海洋技术学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562569A (zh) * 2020-04-21 2020-08-21 哈尔滨工业大学 基于加权群稀疏约束的Weibull背景下多目标恒虚警检测方法
CN112816973A (zh) * 2020-12-31 2021-05-18 清华大学 一种跟踪信息辅助的目标检测方法
CN112836707A (zh) * 2021-01-11 2021-05-25 西安电子科技大学 一种isar图像空中目标长度特征提取方法
CN113138372A (zh) * 2021-05-24 2021-07-20 哈尔滨工业大学 一种基于改进型m/n检测器的多径环境下雷达目标检测方法

Also Published As

Publication number Publication date
CN110133612B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN110133612A (zh) 一种基于跟踪反馈的扩展目标检测方法
CN107861123B (zh) 一种穿墙雷达在复杂环境下对多运动目标实时跟踪的方法
CN103885057B (zh) 自适应变滑窗多目标跟踪方法
CN105785340B (zh) 单脉冲雷达对主瓣内目标和诱饵干扰的测角与识别方法
CN107576959B (zh) 一种基于区域映射解模糊的高重频雷达目标检测前跟踪方法
US20100315904A1 (en) Direction-finding method and installation for detection and tracking of successive bearing angles
CN106199584A (zh) 一种基于量测存储的航迹起始方法
CN106291534B (zh) 一种改进的航迹确认方法
KR101628154B1 (ko) 수신 신호 세기를 이용한 다중 표적 추적 방법
CN107064865B (zh) 基于深度聚类的极坐标动态规划无源协同定位方法
CN105044686A (zh) 一种雷达密集假目标干扰抑制方法
CN109633599A (zh) 一种机载预警雷达多目标跟踪方法
CN105842688A (zh) 单脉冲雷达对空目标快速捕获方法
CN110673130A (zh) 一种基于航迹关联的运动目标航迹跟踪方法
Zhou et al. Multiple-kernelized-correlation-filter-based track-before-detect algorithm for tracking weak and extended target in marine radar systems
CN111796288B (zh) 一种基于杂波频谱补偿技术的三坐标雷达动目标处理方法
CN105652256B (zh) 一种基于极化信息的高频地波雷达tbd方法
CN109683158A (zh) 基于干涉仪信息融合的雷达地面静止防空单元检测方法
CN108828584A (zh) 基于航迹折叠因子解模糊的多重频目标检测前跟踪方法
Zheng et al. Optimization and analysis of PDAF with Bayesian detection
Timoshenko et al. Detection and estimation of parameters of a random process set in multi-Scanning radar observation based on the" track-before-detect" methods
CN102426357B (zh) 一种具有图像确认的多目标跟踪方法
Li et al. Multi-target tracking algorithm based on RSHT-TBD preprocessing
CN106342244B (zh) 雷达微弱目标检测方法
Brekke et al. Target tracking in heavy-tailed clutter using amplitude information

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant