CN110130875B - 抽油机异常工况监控方法 - Google Patents

抽油机异常工况监控方法 Download PDF

Info

Publication number
CN110130875B
CN110130875B CN201910535088.XA CN201910535088A CN110130875B CN 110130875 B CN110130875 B CN 110130875B CN 201910535088 A CN201910535088 A CN 201910535088A CN 110130875 B CN110130875 B CN 110130875B
Authority
CN
China
Prior art keywords
pumping unit
kernel
formula
component
training data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910535088.XA
Other languages
English (en)
Other versions
CN110130875A (zh
Inventor
邓晓刚
蔡配配
曹玉苹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201910535088.XA priority Critical patent/CN110130875B/zh
Publication of CN110130875A publication Critical patent/CN110130875A/zh
Application granted granted Critical
Publication of CN110130875B publication Critical patent/CN110130875B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/008Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本发明涉及一种抽油机异常工况监控方法。其步骤为:采集抽油机正常操作工况下的示功图数据作为训练数据,对训练数据进行归一化处理后,利用KPCA方法从抽油机训练数据中提取非线性特征作为核成分,考虑核成分概率密度函数的一阶导数并结合KLD得到训练KLD成分,基于训练KLD成分计算统计量并确定相应的控制限;采集抽油机故障工况下的示功图数据作为测试数据,并利用KPCA提取对应的核成分,进一步计算测试数据的在线KLD成分,基于在线KLD成分计算统计量,并采用控制限进行监控。本发明将KLD引入到传统KPCA方法中,并充分利用抽油机过程数据所包含的概率信息,提高对抽油机异常工况的监控能力。

Description

抽油机异常工况监控方法
技术领域
本发明属于工业系统工况监控技术领域,具体地说,涉及一种抽油机异常工况监控方法。
背景技术
抽油机是石油开采的主要装置,在石油开采行业中发挥着重要的作用。由于大多数抽油机在恶劣环境中运行,通常存在不同的故障,这些故障会导致抽油机安全性的恶化和生产利润的降低。因此,有必要对抽油机进行实时监控,以保证石油开采过程的安全稳定运行。在抽油机故障诊断领域,示功图是最常用的工具,基于示功图已经开发出一些用于抽油机故障诊断的方法并取得了成功的应用,但这些方法本质上属于监督学习方法,需要正常和故障示功图来训练故障诊断模型。在实际应用中,抽油机的故障数据并不总是可用的,因此,需要研究无监督学习方法实现对抽油机异常工况的有效监控。
核主元分析(简称:KPCA)方法作为一种常见的非线性无监督方法,已经广泛应用于基于数据驱动的故障诊断领域。然而,在实际监控中,传统的KPCA方法仅利用核成分构造监控模型,忽略了抽油机示功图数据所包含的概率信息,难以深入挖掘抽油机过程信息,进而影响对抽油机故障监控的效果,故障检测性能低。
发明内容
本发明针对传统KPCA方法存在的忽略过程信息中的概率信息导致故障检测性能低等问题,提供一种抽油机异常工况监控方法。该方法将Kullback Leibler散度(英文:Kullback Leibler Divergence,简称:KLD)引入到KPCA方法中,利用KLD挖掘抽油机过程数据所包含的概率信息,能够进一步挖掘抽油机过程数据信息,提高故障检测率,进而改善对抽油机异常工况的监控能力。
为了达到上述目的,本发明提供了一种抽油机异常工况监控方法,含有以下步骤:
(一)采集抽油机正常操作工况下的示功图数据作为训练数据X0,并利用训练数据X0的均值
Figure BDA0002100957540000011
和标准差
Figure BDA0002100957540000012
对训练数据Xo进行归一化处理,得到归一化后的抽油机训练数据X;
(二)利用KPCA方法对所述归一化后的抽油机训练数据X进行处理,提取所述抽油机训练数据X的非线性特征作为核成分;
(三)计算所述抽油机训练数据X核成分的概率密度函数以及该概率密度函数对应的一阶导数,利用滑动窗口得到所述抽油机训练数据X的训练KLD成分;
(四)由训练KLD成分计算抽油机训练数据X的核主元空间统计量T2和核残差空间统计量SPE,给定置信水平α,通过核密度估计方法计算核主元空间统计量T2所对应的控制限
Figure BDA0002100957540000021
和核残差空间统计量SPE所对应的控制限SPEα
(五)采集抽油机故障工况下的示功图数据作为测试数据xnew,利用训练数据Xo的均值
Figure BDA0002100957540000022
和标准差
Figure BDA0002100957540000023
对测试数据xnew进行归一化处理,得到归一化后的抽油机测试数据xt
(六)利用KPCA方法提取所述抽油机测试数据xt所对应的核成分;
(七)计算所述抽油机测试数据xt核成分的概率密度函数以及该概率密度函数所对应的一阶导数,采用滑动窗口计算抽油机测试数据xt的在线KLD成分;
(八)由在线KLD成分计算抽油机测试数据xt的核主元空间统计量
Figure BDA0002100957540000024
和核残差空间统计量SPEnew
(九)依据核主元空间统计量
Figure BDA0002100957540000025
是否超出控制限
Figure BDA0002100957540000026
和核残差空间统计量SPEnew是否超出控制限SPEα,判断抽油机测试数据xt是否发生故障。
进一步的,所述步骤(一)中,利用训练数据X0的均值
Figure BDA0002100957540000027
和标准差
Figure BDA0002100957540000028
通过公式(1)对训练数据Xo进行归一化处理,得到归一化后的抽油机训练数据X,公式(1)的表达式为:
Figure BDA0002100957540000029
训练数据集X0经上述公式(1)归一化处理后即可获得归一化后的抽油机训练数据X。
进一步的,所述步骤(二)中,利用KPCA方法提取所述抽油机训练数据X的非线性特征作为核成分的具体步骤为:
对于归一化后的抽油机训练数据X=[x1,x2,...,xn]T∈Rn×m,其中n表示样本个数,m变量个数,首先计算所述KPCA方法中的核矩阵K,所述核矩阵K中的每个元素k(i,j)的计算公式表示为:
Figure BDA00021009575400000210
式中,c为预设的核函数参数;
对所述核矩阵K开展公式(3)中所示的特征值分解,公式(3)的表达式为:
Figure BDA0002100957540000031
式中,
Figure BDA0002100957540000032
为保留的特征空间维数;
求解公式(3)得到
Figure BDA0002100957540000036
个非零特征值
Figure BDA0002100957540000037
以及与非零特征值
Figure BDA0002100957540000038
对应的特征向量
Figure BDA0002100957540000039
按照特征值的85%累计贡献率准则确定主元个数l,所述抽油机训练数据X的样本空间被划分为核主成分空间和核残差空间两部分;
对于所述抽油机训练数据X中在第h个采样时刻的样本x(h),通过公式(4)提取对应的非线性特征ts=[ts(1),...,ts(h),...,ts(n)]T作为核成分,公式(4)的表达式为:
Figure BDA0002100957540000033
式中,ts(h)为抽油机训练数据X中第h个采样时刻的样本x(h)对应的第s个核成分;ps为求解公式(3)所获得的第s个特征向量,kx=[k(h,1),...,k(h,n)]T∈Rn为核向量。
进一步的,步骤(三)中,计算所述抽油机训练数据X核成分的概率密度函数以及该概率密度函数对应的一阶导数的具体步骤为:
由公式(5)计算所述抽油机训练数据X中第h个采样时刻的样本x(h)对应的第s个核成分ts(h)的概率密度函数g(ts(h)),公式(5)的表达式为:
Figure BDA0002100957540000034
式中,us表示所述抽油机训练数据X核成分ts所对应的均值,λs表示所述抽油机训练数据X核成分ts所对应的方差,当数据满足高斯分布假设时,λs等于由公式(3)所分解得到特征值;
由公式(6)计算所述概率密度函数g(ts(h))的一阶导数g′(ts(h)),公式(6)的表达式为:
Figure BDA0002100957540000035
计算所述抽油机训练数据X的训练KLD成分的具体步骤为:
利用滑动窗口求取核成分ts(h)的均值和方差,由公式(7)计算所述抽油机训练数据X第h个采样时刻处的KLDKLs(h),公式(7)的表达式为:
Figure BDA0002100957540000041
式中,
Figure BDA0002100957540000042
表示利用滑动窗口所求的ts(h)均值,
Figure BDA0002100957540000043
表示利用滑动窗口所求的ts(h)方差;
进一步由公式(8)计算得到训练KLD成分ys(h),公式(8)的表达式为:
Figure BDA0002100957540000044
式中,ε表示调节参数,其取值由交叉验证法确定。
进一步的,步骤(四)中,计算抽油机训练数据X的核主元空间统计量T2和核残差空间统计量SPE的具体步骤为:
基于KLD成分ys,由公式(9)构造用于过程监控的核主元空间统计量T2,由(10)构造用于过程监控的核残差空间统计量SPE,公式(9)、公式(10)的表达式为:
Figure BDA0002100957540000045
Figure BDA0002100957540000046
式中,Sl表示核主元空间所对应的协方差矩阵,Sr表示核残差空间所对应的协方差矩阵,l为步骤(二)中所得到的主元个数。
进一步的,步骤(五)中,利用训练数据X0的均值
Figure BDA0002100957540000047
和标准差
Figure BDA0002100957540000048
通过公式(11)对测试数据xnew进行归一化处理,得到归一化后的抽油机测试数据xt,公式(11)的表达式为:
Figure BDA0002100957540000049
测试数据xnew经上述公式(11)归一化处理后即可获得归一化后的抽油机测试数据xt
进一步的,步骤(六)中,利用KPCA方法提取所述抽油机测试数据xt所对应的核成分的具体步骤为:
计算归一化后的抽油机测试数据xt对应的测试核向量kt,kt中每个元素kt(i)的计算公式为:
Figure BDA00021009575400000410
式中,n表示样本数目,c为核参数;
由公式(13)从所述测试核向量kt中提取非线性特征tt,s=[tt,s(1),...,tt,s(h),...]T,公式(13)的表达式为:
Figure BDA0002100957540000051
式中,tt,s(h)为抽油机测试数据xt中第h个采样时刻的样本xt(h)对应的第s个核成分;ps为求解公式(4)获得的第s个特征向量。
进一步的,步骤(七)中,计算所述抽油机测试数据xt核成分的概率密度函数以及该概率密度函数对应的一阶导数的具体步骤为:
由公式(14)计算所述抽油机测试数据xt中第h个采样时刻的样本xt(h)对应的第s个核成分tt,s(h)的概率密度函数f(tt,s(h)),公式(14)的表达式为:
Figure BDA0002100957540000052
式中,ut,s表示抽油机测试数据xt核成分tt,s所对应的均值,λt,s表示抽油机测试数据xt核成分tt,s所对应的方差;
由公式(15)计算所述概率密度函数f(tt,s(h))的一阶导数f′(tt,s(h)),公式(15)的表达式为:
Figure BDA0002100957540000053
计算所述抽油机测试数据xt的在线KLD成分的具体步骤为:
利用滑动窗口求取核成分tt,s(h)的均值和方差,由公式(16)计算在第h个采样时刻处的KLDKLt,s(h),公式(16)的表达式为:
Figure BDA0002100957540000054
式中,
Figure BDA0002100957540000055
表示利用滑动窗口所求的tt,s(h)均值,
Figure BDA0002100957540000056
表示利用滑动窗口所求的tt,s(h)方差;
进一步由公式(17)计算得到在线KLD成分yt,s(h),公式(17)的表达式为:
Figure BDA0002100957540000057
式中,ε表示步骤(三)中所得到的调节参数。
进一步的,步骤(八)中,由在线KLD成分计算抽油机测试数据xt的核主元空间统计量
Figure BDA0002100957540000061
和核残差空间统计量SPEnew的具体步骤为:
基于在线KLD成分yt,s,由公式(18)构造用于过程监控的核主元空间统计量
Figure BDA0002100957540000062
由公式(19)构造用于过程监控的核残差空间统计量SPEnew,公式(18)、公式(19)的表达式为:
Figure BDA0002100957540000063
Figure BDA0002100957540000064
式中,Sl表示核主元空间所对应的协方差矩阵,Sr表示核残差空间所对应的协方差矩阵,l为步骤(二)中所得到的主元个数。
进一步的,步骤(九)中,判断抽油机测试数据xt是否发生故障的步骤为:当
Figure BDA0002100957540000065
且SPEnew≤SPEα时,认为抽油机处于正常工作状态,否则,认为抽油机出现故障。
与现有技术相比,本发明的有益效果在于:
本发明提供的抽油机异常工况监控方法,利用Kullback Leibler散度度量核成分的概率分布变化,并考虑抽油机正常工况数据与故障数据核成分概率密度函数的一阶导数信息差异,实现了过程数据信息的进一步挖掘,使得统计量能够更为明显的反应抽油机过程数据所包含故障信息,进而改善故障检测结果,提高对抽油机异常工况的监控能力,有效克服传统KPCA方法因忽略抽油机过程数据概率信息所造成的对抽油机异常工况监控性能不佳的问题。
附图说明
图1为本发明抽油机异常工况监控方法的流程图;
图2为本发明实施例所述有杆抽油(英文:Sucker Rod Pumping,简称:SRP)系统的结构图;
图3a为本发明实施例采用现有KPCA方法对SRP系统故障1的监控结果示意图;
图3b为本发明实施例采用本发明抽油机异常工况监控方法对SRP系统故障1的监控结果示意图;
图4a为本发明实施例采用现有KPCA方法对SRP系统故障3的监控结果示意图;
图4b为本发明实施例采用本发明抽油机异常工况监控方法对SRP系统故障3的监控结果示意图。
图中,1、电动机,2、连杆,3、游梁,4、悬绳,5、抽油杆,6、油管,7、游动阀,8、固定阀,9、套管,10、泵筒,11、配重,12、皮带,13、减速箱,14、电机控制箱,15、油层。
具体实施方式
下面,通过示例性的实施方式对本发明进行具体描述。然而应当理解,在没有进一步叙述的情况下,一个实施方式中的元件、结构和特征也可以有益地结合到其他实施方式中。
参见图1,本发明揭示了一种抽油机异常工况监控方法,含有以下步骤:
(一)采集抽油机正常操作工况下的示功图数据作为训练数据X0,利用训练数据X0的均值
Figure BDA0002100957540000071
和标准差
Figure BDA0002100957540000072
通过公式(1)对训练数据Xo进行归一化处理,得到归一化后的抽油机训练数据X,公式(1)的表达式为:
Figure BDA0002100957540000073
训练数据集X0经上述公式(1)归一化处理后即可获得归一化后的抽油机训练数据X。
(二)利用KPCA方法对所述归一化后的抽油机训练数据X进行处理,提取所述抽油机训练数据X的非线性特征作为核成分;其中,提取所述抽油机训练数据X的非线性特征作为核成分的具体步骤为:
对于归一化后的抽油机训练数据X=[x1,x2,...,xn]T∈Rn×m,其中n表示样本个数,m变量个数,首先计算所述KPCA方法中的核矩阵K,所述核矩阵K中的每个元素k(i,j)的计算公式表示为:
Figure BDA0002100957540000074
式中,c为预设的核函数参数。
对所述核矩阵K开展公式(3)中所示的特征值分解,公式(3)的表达式为:
Figure BDA0002100957540000075
式中,
Figure BDA0002100957540000076
为保留的特征空间维数;
求解公式(3)得到
Figure BDA0002100957540000077
个非零特征值
Figure BDA0002100957540000078
以及与非零特征值
Figure BDA0002100957540000079
对应的特征向量
Figure BDA00021009575400000710
按照特征值的85%累计贡献率准则确定主元个数l,所述抽油机训练数据X的样本空间被划分为核主成分空间和核残差空间两部分;
对于所述抽油机训练数据X中在第h个采样时刻的样本x(h),通过公式(4)提取对应的非线性特征ts=[ts(1),...,ts(h),...,ts(n)]T作为核成分,公式(4)的表达式为:
Figure BDA0002100957540000081
式中,ts(h)为抽油机训练数据X中第h个采样时刻的样本x(h)对应的第s个核成分;ps为求解公式(3)所获得的第s个特征向量,kx=[k(h,1),...,k(h,n)]T∈Rn为核向量。
(三)计算所述抽油机训练数据X核成分的概率密度函数以及该概率密度函数对应的一阶导数,利用滑动窗口得到所述抽油机训练数据X的训练KLD成分;具体步骤为:
由公式(5)计算所述抽油机训练数据X中第h个采样时刻的样本x(h)对应的第s个核成分ts(h)的概率密度函数g(ts(h)),公式(5)的表达式为:
Figure BDA0002100957540000082
式中,us表示所述抽油机训练数据X核成分ts所对应的均值,λs表示所述抽油机训练数据X核成分ts所对应的方差,当数据满足高斯分布假设时,λs等于由公式(3)所分解得到特征值;
由公式(6)计算所述概率密度函数g(ts(h))的一阶导数g′(ts(h)),公式(6)的表达式为:
Figure BDA0002100957540000083
利用滑动窗口求取核成分ts(h)的均值和方差,由公式(7)计算所述抽油机训练数据X第h个采样时刻处的KLDKLs(h),公式(7)的表达式为:
Figure BDA0002100957540000084
式中,
Figure BDA0002100957540000085
表示利用滑动窗口所求的ts(h)均值,
Figure BDA0002100957540000086
表示利用滑动窗口所求的ts(h)方差;
进一步由公式(8)计算得到训练KLD成分ys(h),公式(8)的表达式为:
Figure BDA0002100957540000087
式中,ε表示调节参数,其取值由交叉验证法确定。
(四)由训练KLD成分计算抽油机训练数据X的核主元空间统计量T2和核残差空间统计量SPE,具体步骤为:
基于KLD成分ys,由公式(9)构造用于过程监控的核主元空间统计量T2,由(10)构造用于过程监控的核残差空间统计量SPE,公式(9)、公式(10)的表达式为:
Figure BDA0002100957540000091
Figure BDA0002100957540000092
式中,Sl表示核主元空间所对应的协方差矩阵,Sr表示核残差空间所对应的协方差矩阵,l为步骤(二)中所得到的主元个数;
给定置信水平α,通过核密度估计(简称:KDE)方法计算核主元空间统计量T2所对应的控制限
Figure BDA0002100957540000093
和核残差空间统计量SPE所对应的控制限SPEα
(五)采集抽油机故障工况下的示功图数据作为测试数据xnew,利用训练数据X0的均值
Figure BDA0002100957540000094
和标准差
Figure BDA0002100957540000095
通过公式(11)对测试数据xnew进行归一化处理,得到归一化后的抽油机测试数据xt,公式(11)的表达式为:
Figure BDA0002100957540000096
测试数据xnew经上述公式(11)归一化处理后即可获得归一化后的抽油机测试数据xt
(六)利用KPCA方法提取所述抽油机测试数据xt所对应的核成分,具体步骤为:
计算归一化后的抽油机测试数据xt对应的测试核向量kt,kt中每个元素kt(i)的计算公式为:
Figure BDA0002100957540000097
式中,n表示样本数目,c为核参数;
由公式(13)从所述测试核向量kt中提取非线性特征tt,s=[tt,s(1),...,tt,s(h),...]T,公式(13)的表达式为:
Figure BDA0002100957540000098
式中,tt,s(h)为抽油机测试数据xt中第h个采样时刻的样本xt(h)对应的第s个核成分;ps为求解公式(4)获得的第s个特征向量。
(七)计算所述抽油机测试数据xt核成分的概率密度函数以及该概率密度函数所对应的一阶导数,采用滑动窗口计算抽油机测试数据xt的在线KLD成分,具体步骤为:
由公式(14)计算所述抽油机测试数据xt中第h个采样时刻的样本xt(h)对应的第s个核成分tt,s(h)的概率密度函数f(tt,s(h)),公式(14)的表达式为:
Figure BDA0002100957540000101
式中,ut,s表示抽油机测试数据xt核成分tt,s所对应的均值,λt,s表示抽油机测试数据xt核成分tt,s所对应的方差;
由公式(15)计算所述概率密度函数f(tt,s(h))的一阶导数f′(tt,s(h)),公式(15)的表达式为:
Figure BDA0002100957540000102
利用滑动窗口求取核成分tt,s(h)的均值和方差,由公式(16)计算在第h个采样时刻处的KLDKLt,s(h),公式(16)的表达式为:
Figure BDA0002100957540000103
式中,
Figure BDA0002100957540000104
表示利用滑动窗口所求的tt,s(h)均值,
Figure BDA0002100957540000105
表示利用滑动窗口所求的tt,s(h)方差;
进一步由公式(17)计算得到在线KLD成分yt,s(h),公式(17)的表达式为:
Figure BDA0002100957540000106
式中,ε表示步骤(三)中所得到的调节参数。
(八)由在线KLD成分计算抽油机测试数据xt的核主元空间统计量
Figure BDA0002100957540000107
和核残差空间统计量SPEnew,具体步骤为:
基于在线KLD成分yt,s,由公式(18)构造用于过程监控的核主元空间统计量
Figure BDA0002100957540000108
由公式(19)构造用于过程监控的核残差空间统计量SPEnew,公式(18)、公式(19)的表达式为:
Figure BDA0002100957540000111
Figure BDA0002100957540000112
式中,Sl表示核主元空间所对应的协方差矩阵,Sr表示核残差空间所对应的协方差矩阵,l为步骤(二)中所得到的主元个数。
(九)依据核主元空间统计量
Figure BDA0002100957540000113
是否超出控制限
Figure BDA0002100957540000114
和核残差空间统计量SPEnew是否超出控制限SPEα,判断抽油机测试数据xt是否发生故障。具体地,当
Figure BDA0002100957540000115
且SPEnew≤SPEα时,认为抽油机处于正常工作状态,否则,认为抽油机出现故障。
上述方法中,步骤(一)至(四)为离线建模阶段,步骤(五)至(九)为在线测试阶段。
本发明上述故障检测方法,利用Kullback Leibler散度挖掘抽油机过程数据所包含的概率信息,并考虑正常数据与故障数据核成分概率密度函数的导数信息差异,能够更加精准地衡量抽油机过程数据的故障特征信息,提高故障检测率,进而改善故障检测结果。
为了能更清楚地说明本发明上述故障检测方法的有益效果,以下结合实施例对本发明上述故障检测方法做出进一步说明。
实施例:
有杆泵抽油(以下简称:SRP)系统是石油开采的主要单元,广泛应用于石油开采行业。参见图2,SRP系统由电动机1、连杆2、游梁3、抽油泵等部件构成。系统运行时,电动机1产生的动力通过连杆2、游梁3和悬绳4使得抽油杆5作上下往复运动,进而将动力传递给井下部分,随着固定阀8与游动阀7交替打开和关闭,井内液体不断进入泵筒10,从而上行进入油管6,最后达到地面。在抽油机运行过程中,示功图是最常见的状态数据采集手段。本实施实例中,根据重心分解法和阀门工作位置对示功图进行特征提取,采集7个示功图特征作为监控变量,参见表1,Pall代表一次冲程内的流体生产率和泵的效率,P1、P2、P3和P4分别反映了不同阀门位置下柱塞的工作情况,D1、D2分别代表固定阀和游动阀的工作位移。通过机理模拟方式仿真正常工况数据,并同时仿真表2所示的3种故障工况数据。对于每种操作模式,均采集500个样本用于过程监测,其中测试数据集从第201个采样时刻开始引入故障并使故障一直持续到仿真结束为止。
表1
变量 变量描述
P<sub>all</sub> 示功图的总面积
P<sub>1</sub> 示功图左下方区域的面积
P<sub>2</sub> 示功图左上方区域的面积
P<sub>3</sub> 示功图右上方区域的面积
P<sub>4</sub> 示功图右下方区域的面积
D<sub>1</sub> 固定阀的工作位移
D<sub>2</sub> 游动阀的工作位移
表2
故障 描述
F1 供液不足
F2 泵上碰
F3 游动阀发生泄露
采用本发明上述监控方法(以下简称:KLD-KPCA方法)对本实施例所述SRP系统进行故障检测。检测到发生故障后,为评价不同故障检测方法的故障检测性能,通过故障检出率FDR指标对不同方法的故障检测结果对比。故障检出率FDR定义为检测出的故障数据与实际总的故障数据之比。很显然,FDR的数值越大,意味着故障检测方法的故障检测效果越好即对抽油机异常工况的监控性能越好;反之,对抽油机异常工况的监控性能越差。
在本实施例的SRP系统仿真中,采用KPCA方法和本发明KLD-KPCA方法两种方法进行仿真对比。在本实施例中,两种方法均根据99.99%的方差累计贡献率保留特征空间的维数
Figure BDA0002100957540000121
根据85%的方差贡献率确定主元个数l。本发明KLD-KPCA方法中利用交叉验证法选择滑动窗窗口宽度w为25。利用99%置信度计算两种方法统计量的控制限。
故障1是由供液不足引起的,采用传统KPCA方法和本发明KLD-KPCA方法对故障1的监控结果参见图3a-3b。图3a为传统KPCA方法对故障1的监控结果,核主元空间统计量T2的检出率为54%,核残差空间统计量SPE的检出率为60%,两个统计量的检出时间均为第303个采样时间。从图3b可以看出,与传统KPCA方法相比,本发明KLD-KPCA方法对故障1的监控性能有了的明显提高,核主元空间T2统计量的检出率为71%,相应的检出时间为第304个采样点。核残差空间统计量SPE的检出率为77.33%,相应的检出时间为第248个采样点。通过比较这两种方法的检测结果,初步证明了本发明所提的KLD-KPCA方法能够改善对SRP系统故障1的检测性能。
故障3为游动阀发生泄漏,采用传统KPCA方法和本发明KLD-KPCA方法对故障3的监控效果参见图4a-4b所示。参见图4a,传统KPCA方法对故障3的监测能力较差,大多数故障样本未被检测到。其中核残差空间统计量SPE在第215个采样点出检测到故障的发生,相应的检出率为15.67%,核主元空间统计量T2的检出率为22.33%。本发明KLD-KPCA方法对故障3的监测结果如图4b所示,所提方法利用Kullback Leibler散度挖掘过程数据中包含的概率信息,并进一步考虑正常数据与故障数据核成分概率密度函数的一阶导数信息差异,与传统KPCA方法相比,检测能力得到了显著提高。在第214个采样时刻核主元空间统计量T2开始检测到故障3的发生,相应的检出率为94%。核残差空间统计量SPE的检出率为92.67%,相应的检出时间为第218个采样点。对故障3的仿真结果表明,本发明KLD-KPCA方法能够更及时地检测到故障的发生,并具有更高的故障检出率。
表3给出了传统KPCA方法和本发明KLD-KPCA方法对于本实施例SRP系统3种故障的故障检出率。
表3
Figure BDA0002100957540000131
由表3可知,传统的KPCA方法对于本实施例SRP系统的3种故障不能给出满意的监控效果,本发明KLD-KPCA方法通过利用Kullback Leibler散度挖掘过程数据所包含的概率信息,并进一步考虑正常数据与故障数据核成分概率密度函数的一阶导数信息差异,本发明提供的KLD-KPCA方法对于这3种故障的检测效果能获得明显的改善。
综合以上分析,本发明所提供抽油机异常工况监控方法,其故障检测效果明显优于传统KPCA方法。
以上所举实施例仅用为方便举例说明本发明,并非对本发明保护范围的限制,在本发明所述技术方案范畴,所属技术领域的技术人员所作各种简单变形与修饰,均应包含在以上申请专利范围中。

Claims (10)

1.一种抽油机异常工况监控方法,其特征在于,含有以下步骤:
(一)采集抽油机正常操作工况下的示功图数据作为训练数据X0,并利用训练数据X0的均值
Figure FDA0003683484370000011
和标准差
Figure FDA0003683484370000012
对训练数据Xo进行归一化处理,得到归一化后的抽油机训练数据X;所述示功图数据包示功图的总面积、示功图左下方区域的面积、示功图左上方区域的面积、示功图右上方区域的面积、示功图右下方区域的面积、固定阀的工作位移、游动阀的工作位移;
(二)利用KPCA方法对所述归一化后的抽油机训练数据X进行处理,提取所述抽油机训练数据X的非线性特征作为核成分;
(三)计算所述抽油机训练数据X核成分的概率密度函数以及该概率密度函数对应的一阶导数,利用滑动窗口得到所述抽油机训练数据X的训练KLD成分;
(四)由训练KLD成分计算抽油机训练数据X的核主元空间统计量T2和核残差空间统计量SPE,给定置信水平α,通过核密度估计方法计算核主元空间统计量T2所对应的控制限
Figure FDA0003683484370000013
和核残差空间统计量SPE所对应的控制限SPEα
(五)采集抽油机故障工况下的示功图数据作为测试数据xnew,利用训练数据Xo的均值
Figure FDA0003683484370000014
和标准差
Figure FDA0003683484370000015
对测试数据xnew进行归一化处理,得到归一化后的抽油机测试数据xt
(六)利用KPCA方法提取所述抽油机测试数据xt所对应的核成分;
(七)计算所述抽油机测试数据xt核成分的概率密度函数以及该概率密度函数所对应的一阶导数,采用滑动窗口计算抽油机测试数据xt的在线KLD成分;
(八)由在线KLD成分计算抽油机测试数据xt的核主元空间统计量
Figure FDA0003683484370000016
和核残差空间统计量SPEnew
(九)依据核主元空间统计量
Figure FDA0003683484370000017
是否超出控制限
Figure FDA0003683484370000018
和核残差空间统计量SPEnew是否超出控制限SPEα,判断抽油机测试数据xt是否发生故障。
2.如权利要求1所述的抽油机异常工况监控方法,其特征在于,所述步骤(一)中,利用训练数据X0的均值
Figure FDA0003683484370000019
和标准差
Figure FDA00036834843700000110
通过公式(1)对训练数据Xo进行归一化处理,得到归一化后的抽油机训练数据X,公式(1)的表达式为:
Figure FDA0003683484370000021
训练数据集X0经上述公式(1)归一化处理后获得归一化后的抽油机训练数据X。
3.如权利要求2所述的抽油机异常工况监控方法,其特征在于,所述步骤(二)中,利用KPCA方法提取所述抽油机训练数据X的非线性特征作为核成分的具体步骤为:
对于归一化后的抽油机训练数据X=[x1,x2,...,xn]T∈Rn×m,其中n表示样本个数,m变量个数,首先计算所述KPCA方法中的核矩阵K,所述核矩阵K中的每个元素k(i,j)的计算公式表示为:
Figure FDA0003683484370000022
式中,c为预设的核函数参数;
对所述核矩阵K开展公式(3)中所示的特征值分解,公式(3)的表达式为:
Figure FDA0003683484370000023
式中,
Figure FDA0003683484370000024
为保留的特征空间维数;
求解公式(3)得到
Figure FDA0003683484370000025
个非零特征值λ1≥λ2≥...≥λn,以及与非零特征值λ12,...,λn对应的特征向量
Figure FDA0003683484370000026
按照特征值的85%累计贡献率准则确定主元个数l,所述抽油机训练数据X的样本空间被划分为核主成分空间和核残差空间两部分;
对于所述抽油机训练数据X中在第h个采样时刻的样本x(h),通过公式(4)提取对应的非线性特征ts=[ts(1),...,ts(h),...,ts(n)]T作为核成分,公式(4)的表达式为:
Figure FDA0003683484370000027
式中,ts(h)为抽油机训练数据X中第h个采样时刻的样本x(h)对应的第s个核成分;ps为求解公式(3)所获得的第s个特征向量,kx=[k(h,1),...,k(h,n)]T∈Rn为核向量。
4.如权利要求3所述的抽油机异常工况监控方法,其特征在于,步骤(三)中,计算所述抽油机训练数据X核成分的概率密度函数以及该概率密度函数对应的一阶导数的具体步骤为:
由公式(5)计算所述抽油机训练数据X中第h个采样时刻的样本x(h)对应的第s个核成分ts(h)的概率密度函数g(ts(h)),公式(5)的表达式为:
Figure FDA0003683484370000031
式中,us表示所述抽油机训练数据X核成分ts所对应的均值,λs表示所述抽油机训练数据X核成分ts所对应的方差,当数据满足高斯分布假设时,λs等于由公式(3)所分解得到的特征值;
由公式(6)计算所述概率密度函数g(ts(h))的一阶导数g′(ts(h)),公式(6)的表达式为:
Figure FDA0003683484370000032
计算所述抽油机训练数据X的训练KLD成分的具体步骤为:
利用滑动窗口求取核成分ts(h)的均值和均方差,由公式(7)计算所述抽油机训练数据X第h个采样时刻处的KLDKLs(h),公式(7)的表达式为:
Figure FDA0003683484370000033
式中,
Figure FDA0003683484370000034
表示利用滑动窗口所求的ts(h)均值,
Figure FDA0003683484370000035
表示利用滑动窗口所求的ts(h)方差;
进一步由公式(8)计算得到训练KLD成分ys(h),公式(8)的表达式为:
Figure FDA0003683484370000036
式中,ε表示调节参数,其取值由交叉验证法确定。
5.如权利要求4所述的抽油机异常工况监控方法,其特征在于,步骤(四)中,计算抽油机训练数据X的核主元空间统计量T2和核残差空间统计量SPE的具体步骤为:
基于KLD成分ys,由公式(9)构造用于过程监控的核主元空间统计量T2,由(10)构造用于过程监控的核残差空间统计量SPE,公式(9)、公式(10)的表达式为:
Figure FDA0003683484370000037
Figure FDA0003683484370000041
式中,Sl表示核主元空间所对应的协方差矩阵,Sr表示核残差空间所对应的协方差矩阵,l为步骤(二)中所得到的主元个数。
6.如权利要求5所述的抽油机异常工况监控方法,其特征在于,步骤(五)中,利用训练数据X0的均值
Figure FDA0003683484370000042
和标准差
Figure FDA0003683484370000043
通过公式(11)对测试数据xnew进行归一化处理,得到归一化后的抽油机测试数据xt,公式(11)的表达式为:
Figure FDA0003683484370000044
测试数据xnew经上述公式(11)归一化处理后获得归一化后的抽油机测试数据xt
7.如权利要求6所述的抽油机异常工况监控方法,其特征在于,步骤(六)中,利用KPCA方法提取所述抽油机测试数据xt所对应的核成分的具体步骤为:
计算归一化后的抽油机测试数据xt对应的测试核向量kt,kt中每个元素kt(i)的计算公式为:
Figure FDA0003683484370000045
式中,n表示样本数目,c为核参数;
由公式(13)从所述测试核向量kt中提取非线性特征tt,s=[tt,s(1),...,tt,s(h),...]T,公式(13)的表达式为:
Figure FDA0003683484370000046
式中,tt,s(h)为抽油机测试数据xt中第h个采样时刻的样本xt(h)对应的第s个核成分;ps为求解公式(4)获得的第s个特征向量。
8.如权利要求7所述的抽油机异常工况监控方法,其特征在于,步骤(七)中,计算所述抽油机测试数据xt核成分的概率密度函数以及该概率密度函数对应的一阶导数的具体步骤为:
由公式(14)计算所述抽油机测试数据xt中第h个采样时刻的样本xt(h)对应的第s个核成分tt,s(h)的概率密度函数f(tt,s(h)),公式(14)的表达式为:
Figure FDA0003683484370000051
式中,ut,s表示抽油机测试数据xt核成分tt,s所对应的均值,λt,s表示抽油机测试数据xt核成分tt,s所对应的方差;
由公式(15)计算所述概率密度函数f(tt,s(h))的一阶导数f′(tt,s(h)),公式(15)的表达式为:
Figure FDA0003683484370000052
计算所述抽油机测试数据xt的在线KLD成分的具体步骤为:
利用滑动窗口求取核成分tt,s(h)的均值和均方差,由公式(16)计算在第h个采样时刻处的KLDKLt,s(h),公式(16)的表达式为:
Figure FDA0003683484370000053
式中,
Figure FDA0003683484370000054
表示利用滑动窗口所求的tt,s(h)均值,
Figure FDA0003683484370000055
表示利用滑动窗口所求的tt,s(h)方差;
进一步由公式(17)计算得到在线KLD成分yt,s(h),公式(17)的表达式为:
Figure FDA0003683484370000056
式中,ε表示步骤(三)中所得到的调节参数。
9.如权利要求8所述的抽油机异常工况监控方法,其特征在于,步骤(八)中,由在线KLD成分计算抽油机测试数据xt的核主元空间统计量
Figure FDA0003683484370000057
和核残差空间统计量SPEnew的具体步骤为:
基于在线KLD成分yt,s,由公式(18)构造用于过程监控的核主元空间统计量
Figure FDA0003683484370000061
由公式(19)构造用于过程监控的核残差空间统计量SPEnew,公式(18)、公式(19)的表达式为:
Figure FDA0003683484370000062
Figure FDA0003683484370000063
式中,Sl表示核主元空间所对应的协方差矩阵,Sr表示核残差空间所对应的协方差矩阵,l为步骤(二)中所得到的主元个数。
10.如权利要求9所述的抽油机异常工况监控方法,其特征在于,步骤(九)中,判断抽油机测试数据xt是否发生故障的步骤为:当
Figure FDA0003683484370000064
且SPEnew≤SPEα时,认为抽油机处于正常工作状态,否则,认为抽油机出现故障。
CN201910535088.XA 2019-06-20 2019-06-20 抽油机异常工况监控方法 Active CN110130875B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910535088.XA CN110130875B (zh) 2019-06-20 2019-06-20 抽油机异常工况监控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910535088.XA CN110130875B (zh) 2019-06-20 2019-06-20 抽油机异常工况监控方法

Publications (2)

Publication Number Publication Date
CN110130875A CN110130875A (zh) 2019-08-16
CN110130875B true CN110130875B (zh) 2022-07-12

Family

ID=67578749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910535088.XA Active CN110130875B (zh) 2019-06-20 2019-06-20 抽油机异常工况监控方法

Country Status (1)

Country Link
CN (1) CN110130875B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110687895B (zh) * 2019-10-24 2022-11-18 上海工程技术大学 一种基于自适应核主成分分析的化工过程故障检测方法
CN111652414B (zh) * 2020-05-20 2023-05-05 浙江大学 基于高斯混合模型的滑窗pca高炉异常监测方法
CN112228042B (zh) * 2020-10-22 2022-07-15 南京富岛信息工程有限公司 一种基于云边协同计算的抽油机井工况相似性判别方法
CN112664184A (zh) * 2020-12-23 2021-04-16 中国石油大学(华东) 基于支持向量回归算法的抽油机井检泵周期预测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108227653A (zh) * 2017-12-28 2018-06-29 湖州师范学院 一种基于随机化核主元分析的大规模非线性过程监控方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527223B2 (en) * 2009-09-11 2013-09-03 University Of Cincinnati Methods and systems for energy prognosis
US9280517B2 (en) * 2011-06-23 2016-03-08 University Of Southern California System and method for failure detection for artificial lift systems
CN107544477B (zh) * 2017-10-23 2019-05-31 中国石油大学(华东) 基于核主元分析的非线性工业过程故障检测方法
CN108830006B (zh) * 2018-06-27 2022-02-18 中国石油大学(华东) 基于线性评价因子的线性-非线性工业过程故障检测方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108227653A (zh) * 2017-12-28 2018-06-29 湖州师范学院 一种基于随机化核主元分析的大规模非线性过程监控方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
一种抽油机示功图数据无损压缩存储方法;李金诺等;《石油学报》;20160215(第02期);全文 *
基于Hessian正则化多视角学习的抽油机井工况识别新方法;周斌等;《中国石油大学学报(自然科学版)》;20180620(第03期);全文 *
基于矩特征傅里叶描述的示功图故障诊断研究;付光杰等;《化工自动化及仪表》;20151231(第4期);全文 *

Also Published As

Publication number Publication date
CN110130875A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
CN110130875B (zh) 抽油机异常工况监控方法
US9280517B2 (en) System and method for failure detection for artificial lift systems
CN104699077B (zh) 一种基于嵌套迭代费舍尔判别分析的故障变量隔离方法
CN109255134B (zh) 一种抽油机井故障情况的获取方法
Zheng et al. Sucker rod pumping diagnosis using valve working position and parameter optimal continuous hidden Markov model
CN111046341A (zh) 一种基于主成分分析的非常规天然气压裂效果评价及产能预测方法
CN108549908B (zh) 基于多采样概率核主成分模型的化工过程故障检测方法
CN102736546A (zh) 一种流程工业复杂机电系统的状态监测装置及方法
CN116658492B (zh) 智能动力猫道及其方法
Li et al. Incipient fault detection for geological drilling processes using multivariate generalized Gaussian distributions and Kullback–Leibler divergence
CN112949196A (zh) 一种基于残差神经网络的抽油机井故障诊断方法及系统
CN104536439B (zh) 一种基于嵌套迭代费舍尔判别分析的故障诊断方法
CN108716398B (zh) 基于慢特征分析的控压钻井过程故障检测方法及装置
CN109298633A (zh) 基于自适应分块非负矩阵分解的化工生产过程故障监测方法
CN112598144A (zh) 基于相关性分析的cnn-lstm突发故障预警方法
CN114462662A (zh) 一种钻井工具寿命大数据预测及分析方法
CN114611958A (zh) 一种基于机器学习的石油钻井大数据处理方法和装置
Yang et al. A Fault Identification Method for Electric Submersible Pumps Based on DAE‐SVM
CN113153267B (zh) 一种抽油机井示功图多尺度归一化方法及系统
Yang et al. Fault diagnosis of electric submersible pump tubing string leakage
Li et al. Identification of downhole conditions in geological drilling processes based on quantitative trends and expert rules
Yang et al. Fault Diagnosis Method and Application of ESP Well Based on SPC Rules and Real‐Time Data Fusion
CN114439457A (zh) 一种用于评价抽油机井健康状态的方法及系统
CN110009033A (zh) 一种基于动态主元分析的钻井过程异常预警模型
CN114120043A (zh) 一种基于生产动态数据和示功图检测异常抽油井的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant