CN110126649B - 一种集群式电动汽车动态无线充电分段导轨稳定功率控制方法 - Google Patents

一种集群式电动汽车动态无线充电分段导轨稳定功率控制方法 Download PDF

Info

Publication number
CN110126649B
CN110126649B CN201910343615.7A CN201910343615A CN110126649B CN 110126649 B CN110126649 B CN 110126649B CN 201910343615 A CN201910343615 A CN 201910343615A CN 110126649 B CN110126649 B CN 110126649B
Authority
CN
China
Prior art keywords
coil
transmitting coil
mutual inductance
electric automobile
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910343615.7A
Other languages
English (en)
Other versions
CN110126649A (zh
Inventor
王维
杨靖宇
许晨进
张存
羊树文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN201910343615.7A priority Critical patent/CN110126649B/zh
Publication of CN110126649A publication Critical patent/CN110126649A/zh
Application granted granted Critical
Publication of CN110126649B publication Critical patent/CN110126649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J7/025
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种集群式电动汽车动态无线充电分段导轨稳定功率控制方法,具体包括:(1)按照发射线圈宽度为接收线圈宽的2倍及以上,发射线圈长度为接收线圈长4倍及以上设计发射线圈尺寸,采用多个相同的,满足上述比例的发射线圈首尾相接,叠加铺设形成导轨;(2)根据电动汽车上接收线圈移动过程中与导轨上发射线圈之间产生的互感的变化规律,分析得到满足电动汽车充电功率变化幅度小于p%的情况时,接收线圈位于任意发射线圈i的位置区间[XL i、XR i];(3)根据任意发射线圈的位置区间[XL i、XR i]以及该线圈上的充电车辆个数,制定控制策略,控制该发射线圈导通与关断,实现电动汽车充电功率变化幅度小于p%。

Description

一种集群式电动汽车动态无线充电分段导轨稳定功率控制 方法
技术领域
本发明涉及电动汽车无线充电控制技术,尤其涉及一种集群式电动汽车动态无线充电分段导轨稳定功率控制方法。
背景技术
随着电动汽车的普及,以及无线充电技术的发展,在现有的静态无线充电技术的基础上,电动汽车动态无线充电技术受到越来越多的关注。由于充电过程的动态化,理论上动态无线充电系统可以大幅增加电动汽车续航能力。然而动态充电过程中线圈互感的变化会引起充电功率的波动,因此维持互感稳定,将互感波动限制在系统可接受范围内成为急需解决的问题。
发明内容
发明目的:本发明针对现有技术存在的问题,提供一种集群式电动汽车动态无线充电分段导轨稳定功率控制方法。
技术方案:本发明所述的集群式电动汽车动态无线充电分段导轨稳定功率控制方法包括:
(1)按照发射线圈宽度为接收线圈宽的2倍及以上,发射线圈长度为接收线圈长4倍及以上设计发射线圈尺寸,采用多个相同的,满足上述比例的发射线圈首尾相接,叠加铺设形成导轨;
(2)根据电动汽车上接收线圈移动过程中与导轨上发射线圈之间产生的互感的变化规律,分析得到满足电动汽车充电功率变化幅度小于p%的情况时,接收线圈位于任意发射线圈i的位置区间[XL i、XR i];
(3)根据任意发射线圈的位置区间[XL i、XR i]以及该线圈上的充电车辆个数,制定控制策略,控制该发射线圈导通与关断,实现电动汽车充电功率变化幅度小于p%
进一步的,步骤(1)中发射线圈尺寸的获取方法为:
发射线圈宽度为接收线圈宽的2倍及以上,发射线圈长度为接收线圈长4倍及以上。
进一步的,步骤(2)具体包括:
(2.1)根据电动汽车所能接受的充电功率变化幅度p%,求解所能接受的互感变化幅度M%;
(2.2)获取电动汽车上接收线圈移动过程中与导轨上发射线圈i之间产生的互感与位移之间的变化规律,将互感波动幅度小于预设阈值的区域中的最小值作为基准互感Mn,并根据Mn及互感变化幅度M%确定电动汽车所能接受的互感最大值Ml
(2.3)根据步骤(2.2)得到的互感与位移的变化规律,得到互感值Ml在互感波动幅度小于预设阈值的区域中对应的左、右位移量SL i、SR i,再结合发射线圈i距起点的距离Ei获得发射线圈i上对应位移量SL i、SR i的位置XL i、XR i,则区间[XL i、XR i]为满足电动汽车最大充电功率变化幅度小于p%时的接收线圈位置区间。
步骤(2.2)中互感最大值Ml的计算公式为:Ml=(1+M%)·Mn。位置XL i、XR i与SL i、SR i的关系为:XL i=SL i-Ei,XR i=SR i-Ei
进一步的,步骤(3)中对于发射线圈i的控制方法为:
(3.1)设置计数P=0,Q=0;
(3.2)当发射线圈i-1的XR i-1位置通过车辆时,将P=P+1,当线圈i+1的XL i+1位置通过车辆时,将Q=Q+1;
(3.3)对P和Q的大小进行比较,若P>Q,则令发射线圈i导通,否则令发射线圈i关断。
有益效果:本发明与现有技术相比,其显著优点是:
1、发射线圈设计方法明确,发射、接收线圈使用基本简化结构,无需多余平衡线圈;
2、具有良好的经济性,发射线圈首尾相接后,通过控制逻辑能够最大化利用发射线圈长度;
3、适用于集群式电动汽车充电场景,每个发射线圈导通与关断与线圈上充电车辆的位置紧密关联,仅当发射线圈需要供电时才导通,不会造成误导通或误关断;
4、功率稳定性好,通过发射线圈尺寸设计、线圈分段式叠加铺设方法与控制方法降低动态充电过程中的互感波动,达到稳定输出功率的目的。
附图说明
图1为电动汽车无线充电系统图;
图2为接收、发射线圈尺寸图;
图3为不同尺寸发射线圈对应的互感随位移变化图;
图4为采用符合比例的发射线圈后互感随位移变化图;
图5为本发明的发射线圈位置排布图;
图6为相邻线圈同时导通时互感随位移变化图;
图7为本发明对发射线圈进行控制的逻辑图。
具体实施方式
本实施例提供了一种集群式电动汽车动态无线充电分段导轨稳定功率控制方法,包括如下步骤:
(1)按照发射线圈宽度为接收线圈宽的2倍及以上,发射线圈长度为接收线圈长4倍及以上设计发射线圈尺寸,采用多个相同的,满足上述比例的发射线圈首尾相接,叠加铺设形成导轨。
轨道如图1所示,发射线圈的尺寸选择如下所述:
发射线圈及接收线圈的尺寸图如附图2所示,图中接收线圈的长为A宽为B,发射线圈的长和宽用C和D表示,两线圈垂直距离为h,E为发射线圈距起点的水平距离,线圈间互感可由诺伊曼公式求得:
Figure BDA0002041527110000031
又因为l1,l2分别由L1,L2,L3,L4和L`1,L`2,L`3,L`4组成,所以
Figure BDA0002041527110000032
根据公式(2)可以分析不同线圈间的互感随位移的变化图像。由于电动汽车的大小和离地高度限制了车载接收线圈的尺寸及接收、发射线圈间的垂直距离,当接收线圈尺寸和发射接收线圈垂直距离一定时,接收线圈在各不同尺寸发射线圈上移动时的互感变化图如附图3所示,可以看出在保证发射线圈宽为接收线圈宽2倍及以上,发射线圈长为接收线圈长4倍及以上时,调节发射线圈尺寸可使互感随位移变化图像的两波峰间形成互感值变化幅度较小的区域。
(2)根据电动汽车上接收线圈移动过程中与导轨上发射线圈之间产生的互感的变化规律,分析得到满足电动汽车充电功率变化幅度小于p%的情况时,接收线圈位于任意发射线圈i的位置区间[XL i、XR i]。
步骤(2)具体包括:
(2.1)根据电动汽车所能接受的充电功率变化幅度p%,求解所能接受的互感变化幅度。
以LCC-LCC拓扑为例,根据电动汽车所能接受的充电功率变化幅度P%以及充电功率和互感的关系式M=ω0L1L2·sqrt(PRL/RL)/Uin可以求解系统所能接受的互感变化幅度为M%=(sqrt(1+p%)-1)%。
(2.2)获取电动汽车上接收线圈移动过程中与导轨上发射线圈i之间产生的互感与位移之间的变化规律,将互感波动幅度小于预设阈值的区域中的最小值作为基准互感Mn,并根据Mn及互感变化幅度M%确定电动汽车所能接受的互感最大值Ml=(1+M%)·Mn
具体的,调节发射线圈尺寸后可得到如附图4所示的互感随位移变化图,互感图像存在两个波谷及两个波峰,波峰P2对应的位移为SP2,波峰P3对应的位移为SP3。以互感变化幅度较小区域的最小值Mn为基准,若电池所能接受的充电功率波动幅度为p%,根据无线电能拓扑结构输出功率表达式可求电池所能接受的互感波动幅度。以理想情况下LCC-LCC拓扑的输出功率表达式
Figure BDA0002041527110000041
为例,根据互感波动幅度p%可得到对应的互感变化量:
Figure BDA0002041527110000042
可得系统正常运行所能接受的最大互感值为
Figure BDA0002041527110000043
即M1与Mn的互感差值引起的输出功率波动在p%内。
(2.3)根据步骤(2.2)得到的互感与位移的变化规律,得到互感值Ml在互感波动幅度小于预设阈值的区域中对应的左、右位移量SL i、SR i,再结合发射线圈i距起点的距离Ei获得发射线圈i上对应位移量SL i、SR i的位置XL i、XR i,XL i=SL i-Ei,XR i=SR i-Ei,则区间[XL i、XR i]为满足电动汽车充电功率变化幅度小于p%时的接收线圈位置区间。
具体的,查看图4,根据互感随位移变化图可知两互感波峰间互感值为Ml的点分别是P5和P6,因此P5,P6间的互感值均能保证系统稳定运行。将P5对应的发射线圈位移表示为SP5=E+c,并定义发射线圈上与L`1边距离为c的位置为XL,将P6对应的发射线圈位移表示成SP6=E+d,并定义发射线圈上与L`1边距离为d的位置为XR。根据对称性及线圈尺寸可得d=D-B-c。综上,将输出功率波动限定在p%内的位移范围为S∈[E1+c,E1+d],即接收线圈在发射线圈XL和XR位置间移动时,可以减小互感波动从而使输出功率稳定。
(3)根据任意发射线圈的位置区间[XL i、XR i]以及该线圈上的充电车辆个数,制定控制策略,控制该发射线圈导通与关断,实现电动汽车充电功率变化幅度小于p%。
其中,发射线圈首尾相接,如图5所示,当同时导通任意相邻发射线圈时,接收线圈位移过程中所受到的合互感图像如附图6所示,当相邻线圈同时导通时,互感波动较小区域的长度与单发射线圈相比得到了增加,所以通过相邻发射线圈间首尾相接的方式分段化铺设发射线圈可以延长互感波动较小区域的长度。需要注意的是同时导通相邻线圈后,互感波动较小区域的最小互感值M`n比单独导通一个发射线圈时的Mn小,因此需要根据M`n重新确定每个发射线圈的XL i和XR i位置并以此为基础制定控制策略。
集群式电动汽车充电系统涉及的充电车辆较多,且充电道路较长,因此会发生部分线圈上无充电车辆,部分发射线圈上存在多辆充电车辆的情况,为了防止发射线圈的误导通和误关断情况,制定相关的控制策略是有必要的。对于发射线圈i的控制方法如图7所示,具体为:
(3.1)设置计数P=0,Q=0;
(3.2)当发射线圈i-1的XR i-1位置通过车辆时,将P=P+1,当线圈i+1的XL i+1位置通过车辆时,将Q=Q+1;
(3.3)对P和Q的大小进行比较,若P>Q,则令发射线圈i导通,否则令发射线圈i关断。
以上所揭露的仅为本发明一种较佳实施例而已,不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (4)

1.一种集群式电动汽车动态无线充电分段导轨稳定功率控制方法,其特征在于包括:
(1)按照发射线圈宽度为接收线圈宽的2倍及以上,发射线圈长度为接收线圈长4倍及以上设计发射线圈尺寸,并采用多个相同的,满足上述比例的发射线圈首尾相接,叠加铺设形成导轨;
(2)根据电动汽车上接收线圈移动过程中与导轨上发射线圈之间产生的互感的变化规律,分析得到满足电动汽车充电功率变化幅度小于p%的情况时,接收线圈位于任意发射线圈i的位置区间[XL i、XR i];
(3)根据任意发射线圈的位置区间[XL i、XR i]以及该线圈上的充电车辆个数,制定控制策略,控制该发射线圈导通与关断,实现电动汽车充电功率变化幅度小于p%;其中对于发射线圈i的控制方法为:
(3.1)设置计数P=0,Q=0;
(3.2)当发射线圈i-1的XR i-1位置通过车辆时,将P=P+1,当线圈i+1的XL i+1位置通过车辆时,将Q=Q+1;
(3.3)对P和Q的大小进行比较,若P>Q,则令发射线圈i导通,否则令发射线圈i关断。
2.根据权利要求1所述的集群式电动汽车动态无线充电分段导轨稳定功率控制方法,其特征在于:步骤(2)具体包括:
(2.1)根据电动汽车所能接受的充电功率变化幅度p%,求解所能接受的最大互感变化幅度M%;
(2.2)获取电动汽车上接收线圈移动过程中与导轨上发射线圈i之间产生的互感与位移之间的变化规律,将互感波动幅度小于预设阈值的区域中的最小值作为基准互感Mn,并根据Mn及互感变化幅度M%确定电动汽车所能接受的互感值Ml
(2.3)根据步骤(2.2)得到的互感与位移的变化规律,得到互感值Ml在互感波动幅度小于预设阈值的区域中对应的左、右位移量SL i、SR i,再结合发射线圈i距起点的距离Ei获得发射线圈i上对应位移量SL i、SR i的位置XL i、XR i,则区间[XL i、XR i]为满足电动汽车充电功率变化幅度小于p%时的接收线圈位置区间。
3.根据权利要求2所述的集群式电动汽车动态无线充电分段导轨稳定功率控制方法,其特征在于:步骤(2.2)中互感值Ml的计算公式为:
Ml=(1+M%)·Mn
4.根据权利要求2所述的集群式电动汽车动态无线充电分段导轨稳定功率控制方法,其特征在于:位置XL i、XR i与SL i、SR i的关系为:XL i=SL i-Ei,XR i=SR i-Ei,Ei为发射线圈i距起点的距离。
CN201910343615.7A 2019-04-26 2019-04-26 一种集群式电动汽车动态无线充电分段导轨稳定功率控制方法 Active CN110126649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910343615.7A CN110126649B (zh) 2019-04-26 2019-04-26 一种集群式电动汽车动态无线充电分段导轨稳定功率控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910343615.7A CN110126649B (zh) 2019-04-26 2019-04-26 一种集群式电动汽车动态无线充电分段导轨稳定功率控制方法

Publications (2)

Publication Number Publication Date
CN110126649A CN110126649A (zh) 2019-08-16
CN110126649B true CN110126649B (zh) 2020-07-31

Family

ID=67575349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910343615.7A Active CN110126649B (zh) 2019-04-26 2019-04-26 一种集群式电动汽车动态无线充电分段导轨稳定功率控制方法

Country Status (1)

Country Link
CN (1) CN110126649B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10829000B2 (en) 2017-04-19 2020-11-10 Arnold Chase Remote control system for intelligent vehicle charging
US10988042B1 (en) 2018-10-12 2021-04-27 Arnold Chase Vehicle charging system
US11485246B1 (en) 2021-04-05 2022-11-01 Arnold Chase Individualized vehicular charging mat

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105048651A (zh) * 2015-08-12 2015-11-11 中国科学院电工研究所 一种电动汽车移动式无线充电装置的切换供电方法
CN105406563A (zh) * 2015-11-24 2016-03-16 东南大学 一种电动汽车动态无线供电系统分段发射线圈切换方法
CN106314187A (zh) * 2016-09-14 2017-01-11 东南大学 一种电动汽车短分段动态无线供电系统的控制方法
CN107565702A (zh) * 2017-09-27 2018-01-09 哈尔滨工业大学 一种基于接收端开路电压等效的动态无线供电的静态模拟方法
CN107813729A (zh) * 2017-12-08 2018-03-20 华中科技大学 一种电动汽车动态无线充电系统中充电位置的辨识方法
CN108494031A (zh) * 2018-03-14 2018-09-04 南京航空航天大学 一种非接触电能传输装置及位置检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6834877B2 (ja) * 2017-09-20 2021-02-24 トヨタ自動車株式会社 非接触給電システム及び受電側装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105048651A (zh) * 2015-08-12 2015-11-11 中国科学院电工研究所 一种电动汽车移动式无线充电装置的切换供电方法
CN105406563A (zh) * 2015-11-24 2016-03-16 东南大学 一种电动汽车动态无线供电系统分段发射线圈切换方法
CN106314187A (zh) * 2016-09-14 2017-01-11 东南大学 一种电动汽车短分段动态无线供电系统的控制方法
CN107565702A (zh) * 2017-09-27 2018-01-09 哈尔滨工业大学 一种基于接收端开路电压等效的动态无线供电的静态模拟方法
CN107813729A (zh) * 2017-12-08 2018-03-20 华中科技大学 一种电动汽车动态无线充电系统中充电位置的辨识方法
CN108494031A (zh) * 2018-03-14 2018-09-04 南京航空航天大学 一种非接触电能传输装置及位置检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《基于分段导轨模式的电动车无线供电技术关键问题研究》;田勇;《中国博士学位论文全文数据库工程科技II辑》;20130515(第05期);第39-45页 *

Also Published As

Publication number Publication date
CN110126649A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
CN110126649B (zh) 一种集群式电动汽车动态无线充电分段导轨稳定功率控制方法
JP6495330B2 (ja) 動的システムのための基礎磁気学およびシーケンス設計
JP6179826B2 (ja) 車両用充給電システム
KR102406659B1 (ko) 차량 및 차량 충전 장치
JP5592124B2 (ja) 非接触給電装置
WO2016125392A1 (ja) 非接触給電システム
WO2011118404A1 (ja) 給電装置
US20200365317A1 (en) Primary-Sided and a Secondary-Sided Arrangement of Winding Structures, a System for Inductive Power Transfer and a Method for Inductively Supplying Power to a Vehicle
CN104512271A (zh) 电动汽车的蓄电器的充电
US20160301250A1 (en) Method of Operating a Three Phase Primary Winding Structure and a Primary Unit
CN106314187B (zh) 一种电动汽车短分段动态无线供电系统的控制方法
JP2015065804A (ja) 車両用充給電システム
WO2015053030A1 (ja) 移動体、無線電力伝送システムおよび無線電力伝送方法
CN109038842A (zh) 带有移动式中间线圈的电动汽车无线充电磁耦合器及应用
CN106740238A (zh) 一种电动汽车无线充电电路及其控制方法
JP6701645B2 (ja) 非接触給電システム
KR20180134480A (ko) 전력 변환 장치, 상기 전력 변환 장치의 제어 방법 및 상기 전력 변환 장치가 설치된 차량
CN209852096U (zh) 一种调整agv无线充电的接收装置
US10573456B2 (en) Coil unit, wireless power transmitting device, wireless power receiving device, and wireless power transmission system
CN114161952A (zh) 通过磁集成抑制功率波动的电动汽车动态无线充电系统
Jeong et al. DQ-quadrature power supply coil sets with large tolerances for wireless stationary EV chargers
US9789778B2 (en) Circuit arrangement for providing a DC voltage in a vehicle and method of operating a circuit arrangement
WO2019183157A1 (en) Road charging for electric vehicle in motion
CN110299767A (zh) 一种具有三维抗偏移的恒压输出无线电能传输系统
JP7304530B2 (ja) 送電モジュール、受電モジュール、送電装置、受電装置、および無線電力伝送システム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant