CN110124035B - 一种金纳米棒/碳酸钙纳米颗粒材料、其制备方法及应用 - Google Patents

一种金纳米棒/碳酸钙纳米颗粒材料、其制备方法及应用 Download PDF

Info

Publication number
CN110124035B
CN110124035B CN201910490226.7A CN201910490226A CN110124035B CN 110124035 B CN110124035 B CN 110124035B CN 201910490226 A CN201910490226 A CN 201910490226A CN 110124035 B CN110124035 B CN 110124035B
Authority
CN
China
Prior art keywords
calcium carbonate
modified
polymer
gold
polyethyleneimine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910490226.7A
Other languages
English (en)
Other versions
CN110124035A (zh
Inventor
田华雨
徐彩娜
王艳兵
陈杰
郭兆培
林琳
陈学思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN201910490226.7A priority Critical patent/CN110124035B/zh
Publication of CN110124035A publication Critical patent/CN110124035A/zh
Application granted granted Critical
Publication of CN110124035B publication Critical patent/CN110124035B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/58Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6933Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained by reactions only involving carbon to carbon, e.g. poly(meth)acrylate, polystyrene, polyvinylpyrrolidone or polyvinylalcohol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/225Microparticles, microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及生物医用新材料领域,尤其涉及一种金纳米棒/碳酸钙纳米颗粒材料、其制备方法及应用。所述金纳米棒/碳酸钙纳米颗粒材料包括聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒;所述聚合物为聚乙烯亚胺和聚乙二醇。本发明提供的金纳米棒/碳酸钙纳米颗粒材料基本没有毒副作用,光声成像效果较优。将本发明中的聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒分别经尾静脉给药后,聚合物修饰的碳酸钙纳米颗粒到达肿瘤区域内,可以产生二氧化碳,达到增强光声成像的目的,从而可以实时监测;聚合物修饰的金纳米棒到达肿瘤区域内,可以在光声成像的指导下进行有效的光热治疗,从而实现诊疗一体。

Description

一种金纳米棒/碳酸钙纳米颗粒材料、其制备方法及应用
技术领域
本发明涉及生物医用新材料领域,尤其涉及一种金纳米棒/碳酸钙纳米颗粒材料、其制备方法及应用。
背景技术
近年来,恶性肿瘤已经成为威胁人类健康的主要疾病之一(参见Siegel RL,Miller KD,Jemal A.Cancer statistics,2016.CA Cancer J Clin.2016,66(1):7-30.)。目前,临床对恶性肿瘤一般采用诊断后进行治疗、治疗后再对疗效进行评估的策略,往往错过最佳的治疗时机。因此,开发能实现诊疗一体化的方法具有迫切的临床需求和重大的现实意义。目前,纳米技术的发展为恶性肿瘤的诊断和治疗提供了契机。新型纳米技术可以将诊断和治疗功能一体化,可以实现在肿瘤诊断的同时对肿瘤进行治疗。因此,开发诊断和治疗一体化的多功能纳米材料对恶性肿瘤的精准诊断和高效治疗具有极其重要的意义。
目前,临床上常用的肿瘤的治疗方法有手术切除、放疗、化疗等手段,这些方法均存在一定的局限性。光热治疗(Photothermal Therapy,PTT)是近年来新兴的一种肿瘤治疗手段(参见Chen Q,Wen J,Li H,Xu Y,Liu F,Sun S.Recent advances in differentmodal imaging-guided photothermal therapy.Biomaterials.2016,106:144-66.)。主要采用具有光热性能的材料将光能转换成热能杀死肿瘤细胞。正常组织对近红外光吸收较少,因此光热治疗对正常组织和细胞几乎不会产生毒副作用。高效的光热治疗的前提需要对肿瘤进行精准诊断,从而获取肿瘤位置和大小等相关信息。
近年来,随着纳米技术的快速发展,具有优良光学、电学、催化等功能的金纳米晶体在生物医用、光化学、电化学及生物传感器方面具有广泛的应用。金纳米晶具有多种形态,如金纳米球、金纳米棒、金纳米颗粒等。其中,金纳米棒具有尺寸可控、较高的光热转换效率、优良的成像功能等优点,被越来越多的研究者重视(参见Huang X,El-Sayed IH,QianW,El-Sayed MA,Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J Am Chem Soc.2006,128(6):2115-20.)。金纳米棒的表面等离子体共振现象(Localized Surface Plasmon Resonance,LSPR),可以产生高效的光热转换效率,实现在光声成像指导下进行有效的光热治疗。但金纳米棒制备过程中残留的CTAB带来的毒性影响金纳米棒的临床应用,以及金纳米棒的光声成像过程中,其空间分辨率低等原因使其在临床实际应用中受到限制。因此,需要降低金纳米棒的毒性及增强光声成像的效果。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种金纳米棒/碳酸钙纳米颗粒材料、其制备方法及应用,本发明提供的金纳米棒/碳酸钙纳米颗粒材料基本没有毒副作用,光声成像效果较优,可以在光声成像指导下进行有效的光热治疗。
本发明提供了一种金纳米棒/碳酸钙纳米颗粒材料,包括聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒;
所述聚合物为聚乙烯亚胺和聚乙二醇。
优选的,所述聚合物修饰的金纳米棒中,金纳米棒、聚乙烯亚胺和聚乙二醇的摩尔比为1:0.1~50:0.1~50。
优选的,所述聚合物修饰的碳酸钙纳米颗粒中,所述聚乙烯亚胺、聚乙二醇和碳酸钙纳米颗粒的摩尔比为1:0.1~50:1~100。
优选的,所述聚乙烯亚胺的重均分子量为500~35000,所述聚乙二醇的重均分子量为500~35000。
本发明还提供了一种金纳米棒/碳酸钙纳米颗粒材料的制备方法,包括以下步骤:
A)将聚乙烯亚胺修饰的金纳米棒与醛基改性的聚乙二醇在水中混合搅拌,得到聚合物修饰的金纳米棒;
B)将碳酸钙纳米颗粒、聚乙烯亚胺和醛基改性的聚乙二醇在水中混合搅拌,得到聚合物修饰的碳酸钙纳米颗粒;
步骤A)和步骤B)并无顺序限制。
优选的,步骤B)中,所述碳酸钙纳米颗粒按照以下方法进行制备:
将氯化钙溶液和碱金属碳酸盐溶液混合,离心后,超声分散得到碳酸钙纳米颗粒。
优选的,所述氯化钙溶液的溶剂和碱金属碳酸盐溶液的溶剂均为阴离子表面活性剂溶液;
所述氯化钙溶液中的氯化钙和碱金属碳酸盐溶液中的碱金属碳酸盐的摩尔比为1:1;
所述氯化钙溶液和碱金属碳酸盐溶液混合的时间为0.5~24h;
所述超声分散的时间为1~30min。
优选的,所述聚乙烯亚胺修饰的金纳米棒与醛基改性的聚乙二醇在水中混合搅拌的时间为0.5~24h;
所述碳酸钙纳米颗粒、聚乙烯亚胺和醛基改性的聚乙二醇在水中混合搅拌的时间为0.5~24h。
本发明还提供了一种上文所述的金纳米棒/碳酸钙纳米颗粒材料或上文所述的制备方法制备得到的金纳米棒/碳酸钙纳米颗粒材料在制备治疗剂中的应用,所述治疗剂包括光热治疗剂。
本发明还提供了一种上文所述的金纳米棒/碳酸钙纳米颗粒材料或上文所述的制备方法制备得到的金纳米棒/碳酸钙纳米颗粒材料在制备成像剂中的应用,所述成像剂包括光声成像剂。
本发明提供了一种金纳米棒/碳酸钙纳米颗粒材料,包括聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒;所述聚合物为聚乙烯亚胺和聚乙二醇。本发明提供的金纳米棒/碳酸钙纳米颗粒材料基本没有毒副作用,光声成像效果较优。将本发明中的聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒分别经尾静脉给药后,聚合物修饰的碳酸钙纳米颗粒到达肿瘤区域内,可以产生二氧化碳,达到增强光声成像的目的,从而可以实时监测;聚合物修饰的金纳米棒到达肿瘤区域内,可以在光声成像的指导下进行有效的光热治疗,从而实现诊疗一体。
附图说明
图1为实施例11制备的聚合物修饰的金纳米棒的透射电镜图;
图2为本发明实施例38制备的聚合物修饰的碳酸钙纳米颗粒的透射电镜图;
图3为实施例44制备的金纳米棒/碳酸钙纳米颗粒材料在不同pH值下的光声成像效果图。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种金纳米棒/碳酸钙纳米颗粒材料,包括聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒;
所述聚合物为聚乙烯亚胺和聚乙二醇。
本发明提供的金纳米棒/碳酸钙纳米颗粒材料中,优选的,所述聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒并不混合在一起,而是分开保存。
实际应用中,将本发明中的聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒分别经尾静脉给药后,聚合物修饰的碳酸钙纳米颗粒到达肿瘤区域内,可以产生二氧化碳,达到增强光声成像的目的,从而可以实时监测;聚合物修饰的金纳米棒到达肿瘤区域内,可以在光声成像的指导下进行有效的光热治疗,从而实现诊疗一体。
本发明对所述金纳米棒的制备方法并无特殊的限制,采用本领域技术人员熟知的晶种生长法即可。可以为:采用氯金酸和硼氢化钠配制金纳米种;然后采用硝酸银、氯金酸、盐酸、十六烷基三甲基溴化铵(CTAB)和抗坏血酸混合制备种子生长液;最后将金纳米种与种子生长液混和,得到金纳米棒。
具体的操作步骤可以如下:
1)金纳米种的配制:室温搅拌条件下,将氯金酸(HAuCl4)溶液加入到CTAB溶液中。并快速加入硼氢化钠(NaBH4)溶液,置于30℃的恒温油浴锅中,避光静置2h后,得到金纳米种溶液。2)种子生长液的制备:在室温搅拌下,依次将硝酸银(AgNO3)溶液、氯金酸(HAuCl4)溶液、盐酸(HCl)溶液加入到CTAB溶液中,快速加入抗坏血酸(AA)溶液,抗坏血酸(AA)的作用是可以将氯金酸(HAuCl4)还原为金纳米粒子,得到种子生长液。3)将金纳米种与种子生长液混合:取一定量的金种溶液加入到配制好的种子生长液中,避光条件下,30℃下恒温油浴12h,离心除去过量的CTAB,用MilliQ水分散,反复3次,最后分散于MilliQ水中,得到金纳米棒。
在本发明的实施例中,所述聚合物修饰的金纳米棒是由聚乙烯亚胺替换金纳米棒表面的十六烷基三甲基溴化铵,然后采用席夫碱键将聚乙二醇键合至聚乙烯亚胺上得到。可以为:将聚乙烯亚胺修饰的金纳米棒与醛基改性的聚乙二醇在水中混合搅拌,得到聚合物修饰的金纳米棒。
本发明对所述聚乙烯亚胺修饰的金纳米棒的制备方法并无特殊的限制,采用本领域技术人员熟知的聚乙烯亚胺修饰的金纳米棒的制备方法即可。在本发明的某些实施例中,所述聚乙烯亚胺修饰的金纳米棒按照以下方法制备:
将N-羟基琥珀酰亚胺、碳酰二亚胺盐酸盐、聚乙烯亚胺与巯基丙酸(MPA)溶液混合,然后与金纳米棒混合,避光反应后得到聚乙烯亚胺修饰的金纳米棒。
具体的操作步骤可以如下:
取一定量的巯基丙酸加入MilliQ水中,分别取N-羟基琥珀酰亚胺和碳酰二亚胺盐酸盐分别溶于MilliQ水中,取一定量的聚乙烯亚胺溶于MilliQ水中,按照巯基丙酸、N-羟基琥珀酰亚胺(NHS)和碳酰二亚胺盐酸盐(EDC)摩尔比1:1:1,将N-羟基琥珀酰亚胺、碳酰二亚胺盐酸盐和聚乙烯亚胺同时加入巯基丙酸溶液中,在30℃恒温油浴条件下,搅拌反应过夜,然后加入配制好的金纳米棒,避光反应24h,最后离心10~15min,用MilliQ水洗3次,并用MilliQ水超声分散,得到聚乙烯亚胺修饰的金纳米棒。
在本发明的某些实施例中,所述聚乙烯亚胺的重均分子量为500~35000。在某些实施例中,所述聚乙烯亚胺的重均分子量为1800~30000或1800~25000。在某些实施例中,所述聚乙烯亚胺的重均分子量为1800或25000。
在本发明的某些实施例中,所述巯基丙酸与聚乙烯亚胺的摩尔比为1:5~20。在某些实施例中,所述巯基丙酸与聚乙烯亚胺的摩尔比为1:5、1:10或1:20。在本发明的某些实施例中,所述金纳米棒与聚乙烯亚胺的摩尔比为1:0.1~50。在某些实施例中,所述金纳米棒与聚乙烯亚胺的摩尔比为1:1。
在本发明的实施例中,所述醛基改性的聚乙二醇按照以下方法制备:
将对甲酰基苯甲酸、碳酰二亚胺盐酸盐、二氯甲烷、聚乙二醇和4-二甲氨基吡啶混合,室温下反应后,得到醛基改性的聚乙二醇。
具体的操作步骤可以如下:
将对甲酰基苯甲酸和碳酰二亚胺盐酸盐溶解于二氯甲烷中,加入聚乙二醇和4-二甲氨基吡啶,继续在室温下反应48h。将得到的产物进行提纯、透析、冻干得到醛基改性的聚乙二醇。
在本发明的某些实施例中,所述聚乙二醇的重均分子量为500~35000。在某些实施例中,所述聚乙二醇的重均分子量为1800~30000或2000~10000。在某些实施例中,所述聚乙二醇的重均分子量为2000或5000。
在本发明的某些实施例中,所述聚乙二醇与对甲酰基苯甲酸的摩尔比为1:1~3。在某些实施例中,所述聚乙二醇与对甲酰基苯甲酸的摩尔比为1:1、1:2或1:3。
然后,将所述聚乙烯亚胺修饰的金纳米棒与所述醛基改性的聚乙二醇在水中混合搅拌,得到聚合物修饰的金纳米棒。
在本发明的某些实施例中,所述聚乙烯亚胺修饰的金纳米棒与醛基改性的聚乙二醇在水中混合搅拌的时间为0.5~24h;在某些实施例中,所述混合搅拌的时间为2~24h、6~12h或12h。
在本发明的某些实施例中,所述聚合物修饰的金纳米棒中,金纳米棒、聚乙烯亚胺和聚乙二醇的摩尔比为1:0.1~50:0.1~50。在某些实施例中,所述聚合物修饰的金纳米棒中,金纳米棒、聚乙烯亚胺和聚乙二醇的摩尔比为1:0.5~30:0.5~30、1:0.5~20:1~20或1:0.5~15:1~10。
本发明对所述提纯、透析、冻干的步骤并无特殊的限制,采用本领域技术人员熟知的提纯、透析、冻干的步骤即可。
在本发明的实施例中,所述聚合物修饰的碳酸钙纳米颗粒是由碳酸钙纳米颗粒经聚乙烯亚胺和聚乙二醇修饰后得到。可以为:将碳酸钙纳米颗粒、聚乙烯亚胺和醛基改性的聚乙二醇在水中混合搅拌,得到聚合物修饰的碳酸钙纳米颗粒。
本发明对所述碳酸钙纳米颗粒的制备方法并无特殊的限制,采用本领域技术人员熟知的碳酸钙纳米颗粒的制备方法即可。在本发明的某些实施例中,所述碳酸钙纳米颗粒按照以下方法制备:
将氯化钙溶液和碱金属碳酸盐溶液混合,离心后,超声分散得到碳酸钙纳米颗粒。
在本发明的某些实施例中,所述氯化钙溶液的溶剂和碱金属碳酸盐溶液的溶剂独立地选自阴离子表面活性剂溶液。在某些实施例中,所述阴离子表面活性剂选自直链烷基苯磺酸钠、α-烯基磺酸钠和十二烷基硫酸钠的一种或两种,优选为十二烷基硫酸钠。在某些实施例中,所述阴离子表面活性剂溶液的质量浓度为1%。所述碱金属碳酸盐为本领域技术人员熟知的碱金属碳酸盐即可,没有特殊的限制,在本发明中优选为可溶性碳酸钠。
在本发明的某些实施例中,所述氯化钙溶液中的氯化钙和碱金属碳酸盐溶液中的碱金属碳酸盐的摩尔比为1:1。
在本发明的某些实施例中,将氯化钙溶液和碱金属碳酸盐溶液混合具体为:
将碱金属碳酸盐溶液滴加入搅拌的氯化钙溶液中。
在某些实施例中,所述滴加的速度为1mL/min。
在本发明的某些实施例中,所述氯化钙溶液和碱金属碳酸盐溶液混合的时间为0.5~24h。在某些实施例中,所述氯化钙溶液和碱金属碳酸盐溶液混合的时间为2~24h、6~12h或12h。所述混合优选为搅拌混合。
将氯化钙溶液和碱金属碳酸盐溶液混合后,进行离心。在本发明的某些实施例中,所述离心的速率为6000~8000rpm。在某些实施例中,所述离心的速率为8000rpm。在本发明的某些实施例中,所述离心的时间为5~10min。在某些实施例中,所述离心的时间为10min。
离心后,超声分散得到碳酸钙纳米颗粒。本发明对所述超声分散的步骤和参数并无特殊的限制,采用本领域技术人员熟知的超声分散的步骤和参数即可。在本发明的某些实施例中,所述超声分散的时间为1~30min。在某些实施例中,所述超声分散的时间为5~15min或10min。
得到碳酸钙纳米颗粒后,将碳酸钙纳米颗粒、聚乙烯亚胺和醛基改性的聚乙二醇在水中混合搅拌,得到聚合物修饰的碳酸钙纳米颗粒。
所述醛基改性的聚乙二醇的制备方法同上,在此不再赘述。
在本发明的实施例中,所述聚合物修饰的碳酸钙纳米颗粒中,所述聚乙烯亚胺、聚乙二醇和碳酸钙纳米颗粒的摩尔比为1:0.1~50:1~100。在某些实施例中,所述聚合物修饰的碳酸钙纳米颗粒中,所述聚乙烯亚胺、聚乙二醇和碳酸钙纳米颗粒的摩尔比为1:1~30:1~80、1:1~20:10~80或1:1~10:20~80。在某些实施例中,所述聚合物修饰的碳酸钙纳米颗粒中,所述聚乙烯亚胺、聚乙二醇和碳酸钙纳米颗粒的摩尔比为1:1:20、1:1:40、1:1:80、1:3:20、1:3:40或1:3:80。
在本发明的某些实施例中,所述碳酸钙纳米颗粒、聚乙烯亚胺和醛基改性的聚乙二醇在水中混合搅拌的时间为0.5~24h。在某些实施例中,所述碳酸钙纳米颗粒、聚乙烯亚胺和醛基改性的聚乙二醇在水中混合搅拌的时间为2~24h、6~12h或12h。
本发明还提供了一种上文所述金纳米棒/碳酸钙纳米颗粒材料的制备方法,包括以下步骤:
A)将聚乙烯亚胺修饰的金纳米棒与醛基改性的聚乙二醇在水中混合搅拌,得到聚合物修饰的金纳米棒;
B)将碳酸钙纳米颗粒、聚乙烯亚胺和醛基改性的聚乙二醇在水中混合搅拌,得到聚合物修饰的碳酸钙纳米颗粒;
步骤A)和步骤B)并无顺序限制。
所述聚合物修饰的金纳米棒和所述聚合物修饰的碳酸钙纳米颗粒的制备方法在上文中已经进行了清楚的描述,在此不再赘述。
本发明还提供了一种上文所述的金纳米棒/碳酸钙纳米颗粒材料或上文所述的制备方法制备得到的金纳米棒/碳酸钙纳米颗粒材料在制备治疗剂中的应用,所述治疗剂包括光热治疗剂。
本发明还提供了一种上文所述的金纳米棒/碳酸钙纳米颗粒材料或上文所述的制备方法制备得到的金纳米棒/碳酸钙纳米颗粒材料在制备成像剂中的应用,所述成像剂包括光声成像剂。
本发明提供了一种金纳米棒/碳酸钙纳米颗粒材料,包括聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒;所述聚合物为聚乙烯亚胺和聚乙二醇。本发明提供的金纳米棒/碳酸钙纳米颗粒材料基本没有毒副作用,光声成像效果较优。将本发明中的聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒分别经尾静脉给药后,聚合物修饰的碳酸钙纳米颗粒到达肿瘤区域内,可以产生二氧化碳,达到增强光声成像的目的,从而可以实时监测;聚合物修饰的金纳米棒到达肿瘤区域内,可以在光声成像的指导下进行有效的光热治疗,从而实现诊疗一体。
本发明中,所述金纳米棒/碳酸钙纳米颗粒材料将应用于光声成像和光热治疗。本发明优选按照以下方法进行:
1)细胞培养:选用4T1、MDA-MB-231、A549、HeLa、MCF-7、SMMC7721和HepG2等细胞系,所述所有细胞培养方法按照本领域技术人员熟知的方法即可,并无特殊限制。在本发明中,优选将细胞采用含有10%胎牛血清的培养基中培养,所述培养条件优选为在37℃条件下,体积分数为5%的二氧化碳的培养箱中连续培养。本发明中,4T1、MDA-MB-231、A549、HeLa、MCF-7、SMMC7721和HepG2等细胞系的来源为一般市售。
2)在不同pH条件下的内吞实验:首先分别将聚合物修饰后的金纳米棒和聚合物修饰后的碳酸钙纳米颗粒采用Cy5染料标记。取对数生长期的细胞,胰蛋白酶消化后,按照每孔4×105细胞的密度接种于6孔板中,置于培养箱中过夜培养。分别采用pH为7.4和6.5的培养换液,将不同浓度的Cy5标记的金纳米棒/碳酸钙纳米颗粒材料分别加入,与细胞共同培养6h后,胰蛋白酶消化,PBS缓冲液洗2遍,采用流式细胞仪进行分析。
3)光声成像:本发明所述光声成像实验采用体外假体和体内实验来进行,所述假体是用来模拟老鼠进行体外光声实验,制备方法按照本领域技术人员熟知的方法即可,并无特殊限制。假体采用琼脂和脂肪乳混合的方法来制备。配制不同pH值的聚合物修饰后的金纳米棒或聚合物修饰后的碳酸钙纳米颗粒溶液,分别置于假体中或分别直接尾静脉进行给药后测试。测试方法选用本领域技术人员熟知的方法即可,并无特殊限制。设定测试波长范围为600~800nm,背景吸收设置为900nm。测试过程中,采用异氟烷将老鼠进行麻醉,并不停给老鼠提供异氟烷和氧气,用于维持老鼠生命体征和在测试过程中处于麻醉状态。
4)光热治疗测试:本发明所述的光热治疗测试包括体外和体内光热治疗。测试方法按照本领域技术人员熟知的方法即可,并无特殊限制。体外光热治疗测试选用4T1、MDA-MB-231、A549、HeLa、MCF-7、SMMC7721、HepG2等细胞系。首先将细胞按照每孔1×104细胞的密度种植于96孔板中,置于培养箱中培养过夜。将不同浓度的聚合物修饰后的金纳米棒溶液加入细胞中,培养4h后,采用激光器照射细胞(808nm,1.0~2.0W/cm2),照射时间为每孔3~10min,优选为5~10min,最优选为6min。照射后继续培养24h,然后用PBS洗2遍,并采用噻唑蓝比色法测定细胞存活率。每孔加入20μL噻唑蓝溶液(5mg/mL),继续培养4h,吸取上清液后,加入160μL二甲基亚砜溶解。在490nm下,采用酶标仪测定每孔吸光度值。细胞存活率采用以下公式计算:
细胞存活率(%)=(A样品/A空白)×100。
本发明体内光热实验优选采用MCF-7肿瘤细胞,首先采用20g左右的Balb/C裸鼠,肿瘤接种前,取对数生长期的MCF-7细胞,胰蛋白酶消化,采用PBS洗涤2次,用PBS悬浮细胞,按照每只小鼠5×106细胞的密度接种于小鼠腋下,瘤体积长至60~100mm3,将聚合物修饰后的金纳米棒和聚合物修饰后的碳酸钙纳米颗粒溶液分别尾静脉注射,采用光声成像检测肿瘤蓄积情况,当肿瘤蓄积达到最大时,进行光热治疗,采用激光器照射肿瘤处(808nm,1.0~2.0W/cm2),照射时间为优选为6min。照射完成后,跟踪瘤体积大小,实验共21天。本发明中,所述Balb/C裸鼠的来源单位为北京华阜康生物科技股份有限公司。
本发明提供的金纳米棒/碳酸钙纳米颗粒,均具有pH响应性,在肿瘤微酸性条件下席夫碱键可断,可促进内吞。在pH值为6.5条件下,培养6h,其内吞效率提高了1.1~2倍。在体外光声成像实验中,加入金纳米棒/碳酸钙纳米颗粒组与只加金纳米棒组相比,其光声信号强度提高了2~8倍。将修饰后的金纳米棒和修饰后的碳酸钙纳米颗粒分别尾静脉给药后,一方面,修饰后的碳酸钙纳米颗粒到达肿瘤区域内,可以显著增强金纳米棒的光声成像效果,其光声信号强度增强了2~6倍;另一方面,修饰后的金纳米棒到达肿瘤区域内,可以在光声成像的指导下进行光热治疗,实现高效的光热治疗,结果显示,经激光照射一次后,可以显著抑制肿瘤的生长,实现了诊疗一体。
本发明对上文采用的原料的来源并无特殊的限制,可以为一般市售。
为了进一步说明本发明,下面结合实施例对本发明提供的一种金纳米棒/碳酸钙纳米颗粒材料、其制备方法及应用进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
以下实施例所用的原料均为一般市售。
实施例1~18
聚合物修饰的金纳米棒的制备:
首先,金纳米棒的制备同上所述,在此不再赘述。
对制备出的金纳米棒进行修饰,取一定量的巯基丙酸加入的MilliQ水中。按照巯基丙酸、N-羟基琥珀酰亚胺(NHS)和碳酰二亚胺盐酸盐(EDC)摩尔比1:1:1,分别取N-羟基琥珀酰亚胺和碳酰二亚胺盐酸盐分别溶于MilliQ水中,取一定量的聚乙烯亚胺溶于MilliQ水中。将N-羟基琥珀酰亚胺、碳酰二亚胺盐酸盐和聚乙烯亚胺同时加入巯基丙酸溶液中,在30℃恒温油浴条件下,搅拌反应过夜,然后加入配制好的金纳米棒,避光反应24h,最后7000rpm/min离心10min,用MilliQ水洗3次,并用MilliQ水超声分散,得到聚乙烯亚胺修饰的金纳米棒。
将对甲酰基苯甲酸和碳酰二亚胺盐酸盐溶解于二氯甲烷中,加入聚乙二醇和4-二甲氨基吡啶,继续在室温下反应48h。将得到的产物进行提纯、透析、冻干得到醛基改性的聚乙二醇。将聚乙烯亚胺修饰的金纳米棒和醛基改性的聚乙二醇在水中混合搅拌12h,得到聚乙烯亚胺/聚乙二醇修饰的金纳米棒。其中,巯基丙酸用量、聚乙烯亚胺的用量及分子量、金纳米棒的用量见表1。
表1实施例1~6不同原料的用量
Figure BDA0002086752970000111
按照实施例5制备聚乙烯亚胺修饰的金纳米棒,与醛基改性的聚乙二醇混合搅拌,得到聚合物修饰的金纳米棒。所述聚乙烯亚胺修饰的金纳米棒和醛基改性的聚乙二醇在水中混合搅拌时间为12h。其中,聚乙二醇、甲酰基苯甲酸与聚乙二醇摩尔比、聚乙烯亚胺修饰的金纳米棒与醛基改性的聚乙二醇摩尔比见表2。
表2实施例7~18不同原料的用量
Figure BDA0002086752970000121
利用透射电镜对实施例11中得到的聚合物修饰的金纳米棒进行分析,得到透射电镜图片,如图1所示。图1为实施例11制备的聚合物修饰的金纳米棒的透射电镜图。通过对聚合物修饰的金纳米棒的横向平均长度和纵向平均长度进行测定,结果表明,聚合物修饰的金纳米棒纵向平均长度68nm,横向平均长度为22nm。
实施例19~42
将氯化钙和碳酸钠按照摩尔比为1:1的量分别分散于质量浓度为1%的十二烷基硫酸钠溶液中,将碳酸钠溶液采用1mL/min的速度滴加至氯化钙溶液中,混合搅拌12h。混合搅拌结束后进行离心,离心速率为8000rpm/min,离心时间10min。离心后,采用MillQ水洗3次,采用超声对碳酸钙纳米颗粒进行分散,超声分散的时间优为10min。超声分散后,制备出碳酸钙纳米颗粒。将分散的碳酸钙纳米颗粒、聚乙烯亚胺和醛基改性的聚乙二醇在水中混合搅拌,混合搅拌时间为12h。制备出聚合物修饰的碳酸钙纳米颗粒。其中,聚乙烯亚胺、醛基改性的聚乙二醇及碳酸钙纳米颗粒的用量及分子量见表3。
表3实施例19~42不同原料的用量
Figure BDA0002086752970000131
利用透射电镜对实施例38中得到的聚合物修饰的碳酸钙纳米颗粒进行分析,得到透射电镜图片,如图2所示。图2为本发明实施例38制备的聚合物修饰的碳酸钙纳米颗粒的透射电镜图。结果表明,聚合物修饰的碳酸钙纳米颗粒的平均大小为85nm。
实施例43
不同pH下,可以促进肿瘤细胞内吞。以MCF-7细胞为例,采用含有10%胎牛血清的培养基中培养,在37℃条件下,体积分数为5%的二氧化碳的培养箱中连续培养。首先分别将实施例11得到的聚合物修饰的金纳米棒和实施例38得到的聚合物修饰的碳酸钙纳米颗粒采用Cy5染料标记。取对数生长期的细胞,胰蛋白酶消化后,按照每孔4×105细胞的密度接种于6孔板中,置于培养箱中过夜培养。分别采用pH为7.4和6.5的培养换液,将不同浓度的cy5标记的金纳米棒和碳酸钙纳米颗粒材料分别加入,与细胞共同培养6h后,胰蛋白酶消化,PBS缓冲液洗2遍,采用流式细胞仪进行分析。
结果表明,在pH值为6.5的培养条件与pH值7.4的培养条件相比,聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒的内吞效率均显著提高,这是由于在酸性条件下,席夫碱键可以断裂,聚乙二醇分别可以从金纳米棒和碳酸钙纳米颗粒上面脱落下来,表面正电荷数量显著增加,从而显著提高了内吞效率。
比较例1
采用实施例11制备出的表面修饰的金纳米棒,配制不同pH值(pH=5.5,7.4)溶液,置入假体中,进行测试。测试条件设定波长范围为680~800nm,背景吸收设定为900nm。
实施例44
对金纳米棒/碳酸钙纳米颗粒材料进行体外光声成像应用。
体外光声成像实验采用假体实验来进行,所述假体是用来模拟老鼠进行体外光声实验,采用琼脂和脂肪乳混合的方法来制备。采用实施例11得到的聚合物修饰的金纳米棒和实施例38得到的聚合物修饰的碳酸钙纳米颗粒,配制不同pH值(pH=5.5、7.4)的金纳米棒或碳酸钙纳米颗粒,按照摩尔比1:1浓度加入假体中,进行测试。测试条件设定波长范围为680~800nm,背景吸收设定为900nm。测试结果见图3,图3为实施例44制备的金纳米棒/碳酸钙纳米颗粒材料在不同pH值下的光声成像效果图。
从图3可以看出,依次加入聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒后,在酸性pH值下,其光声信号与中性pH值相比,其光声信号明显增强,进行定量分析后,其光声信号增强了4.3倍。进一步地,与比较例1相比,在相同pH下,加入金纳米棒/碳酸钙纳米颗粒组与只加金纳米棒组相比,光声信号增强了5倍。结果表明,碳酸钙纳米颗粒,可以在酸性条件下,产生二氧化碳,显著增强金纳米棒的成像效果,利于体内肿瘤区域成像应用。
比较例2
体内光声成像实验过程如下:以MCF-7细胞为例,采用含有10%胎牛血清的培养基中培养,在37℃条件下,体积分数为5%的二氧化碳的培养箱中连续培养。采用20g左右的Balb/C裸鼠,肿瘤接种前,取对数生长期的MCF-7细胞,胰蛋白酶消化,采用PBS洗涤2次,用PBS悬浮细胞,按照每只小鼠5×106细胞的密度接种于小鼠腋下,瘤体积长至200~500mm3,将实施例11得到的表面修饰的金纳米棒尾静脉注射后,采用光声成像检测肿瘤蓄积情况,测试条件设定波长范围为680~800nm,背景吸收设定为900nm。测试过程中,采用异氟烷将老鼠进行麻醉,并不停给老鼠提供异氟烷和氧气,用于维持老鼠生命体征和在测试过程中处于麻醉状态。
实施例45
对金纳米棒/碳酸钙纳米颗粒进行体内光声成像应用。体内光声成像实验过程如下:以MCF-7细胞为例,采用含有10%胎牛血清的培养基中培养,在37℃条件下,体积分数为5%的二氧化碳的培养箱中连续培养。采用20g左右的Balb/C裸鼠,肿瘤接种前,取对数生长期的MCF-7细胞,胰蛋白酶消化,采用PBS洗涤2次,用PBS悬浮细胞,按照每只小鼠5×106细胞的密度接种于小鼠腋下,瘤体积长至200~500mm3,将实施例11得到的表面修饰的金纳米棒和实施例38得到的表面修饰的碳酸钙纳米颗粒分别尾静脉注射后,采用光声成像检测肿瘤蓄积情况,测试条件设定波长范围为680~800nm,背景吸收设定为900nm。测试过程中,采用异氟烷将老鼠进行麻醉,并不停给老鼠提供异氟烷和氧气,用于维持老鼠生命体征和在测试过程中处于麻醉状态。结果表明,与比较例2相比,尾静脉注入金纳米棒/碳酸钙纳米颗粒后,在肿瘤区域的光声信号增强了3.7倍。分析原因,可能是由于碳酸钙纳米颗粒可以在肿瘤酸性条件下产生二氧化碳气体,从而显著增强金纳米棒的在肿瘤区域的成像效果。
实施例46
以MCF-7细胞为例,采用含有10%胎牛血清的培养基中培养,在37℃条件下,体积分数为5%的二氧化碳的培养箱中连续培养。将细胞按照每孔1×104细胞的密度种植于96孔板中,置于培养箱中培养过夜。将不同浓度的修饰后的金纳米棒/碳酸钙纳米颗粒材料加入细胞中,培养4h后,采用激光器照射细胞(808nm,1.5W/cm2),照射时间为每孔6min。照射后继续培养24h,然后用PBS洗2遍,并采用噻唑蓝比色法测定细胞存活率。每孔加入20μL噻唑蓝溶液(5mg/mL),继续培养4h,吸取上清液后,加入160μL二甲基亚砜溶解。在490nm下,采用酶标仪测定每孔吸光度值。细胞存活率采用以下公式计算:
细胞存活率(%)=(A样品/A空白)×100。
经体外光热治疗后,金纳米棒能显著抑制细胞存活率,且与浓度呈现一定的依赖关系,其肿瘤细胞抑制存活率达60%以上。加入碳酸钙纳米颗粒对金纳米棒的光热治疗效果影响不显著,说明碳酸钙的加入对金纳米棒的肿瘤光热治疗没有影响,但实施例44结果表明,碳酸钙的加入,显著提高了金纳米棒的光声成像效果。
实施例47
对金纳米棒/碳酸钙纳米颗粒进行体内光声成像和光热治疗诊疗一体的应用。
以MCF-7细胞为例,采用含有10%胎牛血清的培养基中培养,在37℃条件下,体积分数为5%的二氧化碳的培养箱中连续培养。采用20g左右的Balb/C裸鼠,肿瘤接种前,取对数生长期的MCF-7细胞,胰蛋白酶消化,采用PBS洗涤2次,用PBS悬浮细胞,按照每只小鼠5×106细胞的密度接种于小鼠腋下,瘤体积长至100mm3,将表面修饰的金纳米棒和表面修饰的碳酸钙纳米颗粒材料分别尾静脉注射,采用光声成像检测肿瘤蓄积情况,当肿瘤蓄积达到最大时,照射时间6 min。照射完成后,跟踪瘤体积大小,实验共21天。
在光声成像指导下,光热治疗能显著抑制小鼠肿瘤的生长,跟踪21天后,金纳米棒/碳酸钙纳米颗粒组与PBS组相比,经激光照射后,金纳米棒/碳酸钙纳米颗粒组基本检测不到肿瘤的生长,甚至肿瘤完全结痂并消失。且对老鼠体重进行了跟踪,结果表明,治疗组和对照组相比,老鼠的体重变化不大,说明金纳米棒/碳酸钙纳米颗粒材料没有影响老鼠体重,基本没有毒副作用。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

1.一种金纳米棒/碳酸钙纳米颗粒材料,其特征在于,包括聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒;
所述聚合物为聚乙烯亚胺和聚乙二醇;
所述聚合物修饰的金纳米棒和聚合物修饰的碳酸钙纳米颗粒分开保存;
所述聚合物修饰的碳酸钙纳米颗粒的制备方法由以下步骤组成:
将碳酸钙纳米颗粒、聚乙烯亚胺和醛基改性的聚乙二醇在水中混合搅拌,得到聚合物修饰的碳酸钙纳米颗粒;
所述聚合物修饰的碳酸钙纳米颗粒中,所述聚乙烯亚胺、聚乙二醇和碳酸钙纳米颗粒的摩尔比为1:0.1~50:1~100。
2.根据权利要求1所述的金纳米棒/碳酸钙纳米颗粒材料,其特征在于,所述聚合物修饰的金纳米棒中,金纳米棒、聚乙烯亚胺和聚乙二醇的摩尔比为1:0.1~50:0.1~50。
3.根据权利要求1所述的金纳米棒/碳酸钙纳米颗粒材料,其特征在于,所述聚乙烯亚胺的重均分子量为500~35000,所述聚乙二醇的重均分子量为500~35000。
4.权利要求1所述的金纳米棒/碳酸钙纳米颗粒材料的制备方法,包括以下步骤:
A)将聚乙烯亚胺修饰的金纳米棒与醛基改性的聚乙二醇在水中混合搅拌,得到聚合物修饰的金纳米棒;
B)将碳酸钙纳米颗粒、聚乙烯亚胺和醛基改性的聚乙二醇在水中混合搅拌,得到聚合物修饰的碳酸钙纳米颗粒;
步骤A)和步骤B)并无顺序限制。
5.根据权利要求4所述的制备方法,其特征在于,步骤B)中,所述碳酸钙纳米颗粒按照以下方法进行制备:
将氯化钙溶液和碱金属碳酸盐溶液混合,离心后,超声分散得到碳酸钙纳米颗粒。
6.根据权利要求5所述的制备方法,其特征在于,所述氯化钙溶液的溶剂和碱金属碳酸盐溶液的溶剂均为阴离子表面活性剂溶液;
所述氯化钙溶液中的氯化钙和碱金属碳酸盐溶液中的碱金属碳酸盐的摩尔比为1:1;
所述氯化钙溶液和碱金属碳酸盐溶液混合的时间为0.5~24h;
所述超声分散的时间为1~30min。
7.根据权利要求4所述的制备方法,其特征在于,所述聚乙烯亚胺修饰的金纳米棒与醛基改性的聚乙二醇在水中混合搅拌的时间为0.5~24h;
所述碳酸钙纳米颗粒、聚乙烯亚胺和醛基改性的聚乙二醇在水中混合搅拌的时间为0.5~24h。
8.一种权利要求1~3任意一项所述的金纳米棒/碳酸钙纳米颗粒材料或权利要求4~7任意一项所述的制备方法制备得到的金纳米棒/碳酸钙纳米颗粒材料在制备治疗剂中的应用,所述治疗剂包括光热治疗剂。
9.一种权利要求1~3任意一项所述的金纳米棒/碳酸钙纳米颗粒材料或权利要求4~7任意一项所述的制备方法制备得到的金纳米棒/碳酸钙纳米颗粒材料在制备成像剂中的应用,所述成像剂包括光声成像剂。
CN201910490226.7A 2019-06-06 2019-06-06 一种金纳米棒/碳酸钙纳米颗粒材料、其制备方法及应用 Active CN110124035B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910490226.7A CN110124035B (zh) 2019-06-06 2019-06-06 一种金纳米棒/碳酸钙纳米颗粒材料、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910490226.7A CN110124035B (zh) 2019-06-06 2019-06-06 一种金纳米棒/碳酸钙纳米颗粒材料、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN110124035A CN110124035A (zh) 2019-08-16
CN110124035B true CN110124035B (zh) 2021-07-02

Family

ID=67580569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910490226.7A Active CN110124035B (zh) 2019-06-06 2019-06-06 一种金纳米棒/碳酸钙纳米颗粒材料、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN110124035B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110559455B (zh) * 2019-08-27 2022-04-01 深圳大学 一种基于金纳米棒的纳米诊疗剂、制备方法及应用
CN114288407B (zh) * 2022-01-21 2023-03-31 吉林大学 一种仿莲蓬的水凝胶、制备及其在光热治疗骨肉瘤的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106983863A (zh) * 2017-05-25 2017-07-28 中国科学院长春应用化学研究所 一种碳酸钙包裹的金纳米棒、其制备方法及应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106983863A (zh) * 2017-05-25 2017-07-28 中国科学院长春应用化学研究所 一种碳酸钙包裹的金纳米棒、其制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem;Xuexiang Han et al.;《NATURE COMMUNICATIONS》;20180823;第9卷;第3390页 *
金纳米棒的表面电荷改性及碳酸钙包裹的金纳米棒在抗肿瘤应用上的探究;杜洋;《中国优秀硕士学位论文全文数据库 医药卫生科技辑》;20180823(第02期);第E072-22页 *

Also Published As

Publication number Publication date
CN110124035A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
Cao et al. Pt@ polydopamine nanoparticles as nanozymes for enhanced photodynamic and photothermal therapy
CN106139144B (zh) 一种具有协同抗肿瘤特性的透明质酸修饰的金-碳纳米球及其制备方法与应用
Han et al. Ag2S nanoparticle-mediated multiple ablations reinvigorates the immune response for enhanced cancer photo-immunotherapy
Wei et al. Cysteine modified rare-earth up-converting nanoparticles for in vitro and in vivo bioimaging
Yang et al. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy
Sheng et al. Fabrication of dopamine enveloped WO3− x quantum dots as single-NIR laser activated photonic nanodrug for synergistic photothermal/photodynamic therapy against cancer
Tian et al. Gold nanomaterials for imaging-guided near-infrared in vivo cancer therapy
Sun et al. Camouflaged gold nanodendrites enable synergistic photodynamic therapy and NIR biowindow II photothermal therapy and multimodal imaging
CN106177950B (zh) 一种包金纳米棒、其制备方法及应用
CN110124035B (zh) 一种金纳米棒/碳酸钙纳米颗粒材料、其制备方法及应用
Ye et al. Cu–Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics
Gao et al. AuNRs@ MIL-101-based stimuli-responsive nanoplatform with supramolecular gates for image-guided chemo-photothermal therapy
Yang et al. Ultrasound assisted one-step synthesis of Au@ Pt dendritic nanoparticles with enhanced NIR absorption for photothermal cancer therapy
CN107432932B (zh) 纳米钌复合材料及其制备方法和在载药和制备抗肿瘤药物中的应用
CN111358964A (zh) 磁性八面体铂掺杂金纳米壳、其制备方法和应用
Miao et al. Recent advances in the biomedical applications of black phosphorus quantum dots
Zhang et al. Engineering oxygen vacancy of MoOx nanoenzyme by Mn doping for dual-route cascaded catalysis mediated high tumor eradication
Pang et al. Aptamer modified MoS2 nanosheets application in targeted photothermal therapy for breast cancer
Zhou et al. Two-dimensional semiconductor heterojunction nanostructure for mutually synergistic sonodynamic and chemoreactive cancer nanotherapy
CN110893237A (zh) 铜钯合金纳米颗粒和自噬抑制剂在制备基于光热效应杀伤肿瘤的药物或试剂盒中的应用
Li et al. A self-assembled nanoplatform based on Ag2S quantum dots and tellurium nanorods for combined chemo-photothermal therapy guided by H2O2-activated near-infrared-II fluorescence imaging
Zhao et al. Selective thermotherapy of tumor by self-regulating photothermal conversion system
Staroverov et al. Synthesis of silymarin− selenium nanoparticle conjugate and examination of its biological activity in vitro
Zhang et al. A copper nanocluster-based multifunctional nanoplatform for augmented chemo/chemodynamic/photodynamic combination therapy of breast cancer
Sengar et al. Progress on carbon dots and hydroxyapatite based biocompatible luminescent nanomaterials for cancer theranostics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant