CN110120751A - 电力转换装置 - Google Patents

电力转换装置 Download PDF

Info

Publication number
CN110120751A
CN110120751A CN201910099138.4A CN201910099138A CN110120751A CN 110120751 A CN110120751 A CN 110120751A CN 201910099138 A CN201910099138 A CN 201910099138A CN 110120751 A CN110120751 A CN 110120751A
Authority
CN
China
Prior art keywords
power module
terminal
face
switch element
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910099138.4A
Other languages
English (en)
Inventor
城岛悠树
岩田秀一
山崎宏美
川岛崇功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN110120751A publication Critical patent/CN110120751A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L23/4012Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws for stacked arrangements of a plurality of semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/117Stacked arrangements of devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提供一种电力转换装置,适合于将收容多个开关元件的功率模块串联。电力转换装置(10)具备第一、第二功率模块。各个功率模块收容并联的多个开关元件。各个功率模块具备第一面和与第一面交叉的第二面。多个开关元件在各个功率模块的内部沿着与第一面和第二面这两方平行的方向并列。多个开关元件的并联的发射极端子在距元件并列的两端的开关元件为等距离的位置从第二面延伸。并联的集电极端子在并列方向上与发射极端子并列配置。第一功率模块和第二功率模块以第一功率模块的第一面与第二功率模块的第一面相对的方式配置。

Description

电力转换装置
技术领域
本说明书公开的技术涉及电力转换装置。特别是涉及使用了收容有并联的多个开关元件的多个收容部件的电力转换装置。
背景技术
逆变器、双向DC-DC转换器等电力转换装置有时使用2个开关元件的串联的多个组。收容有2个开关元件的收容部件适合于这样的电力转换装置。日本特开2016-96620号公报公开了将收容有2个开关元件的多个收容部件层叠的电力转换装置。2个开关元件在各个收容部件之中被串联。
发明内容
为了减轻开关元件的负载,有时将开关元件并联。在这种情况下,收容有并联的多个开关元件的收容部件适合。在将开关元件串联的电路中使用这样的收容部件的情况下,对开关元件的并联进行收容的2个收容部件被串联。本说明书提供一种适合于各个收容部件收容并联的多个开关元件并且这些收容部件串联的电力转换装置的结构。
本说明书公开的电力转换装置具备第一收容部件和第二收容部件。各个收容部件收容并联的多个开关元件。各个收容部件具备第一面和与第一面交叉的第二面。第一收容部件和第二收容部件以第一收容部件的第一面与第二收容部件的第一面相对的方式配置。换言之,第一收容部件与第二收容部件面对(背对)地配置。
多个开关元件在各个收容部件的内部,沿着与第一面和第二面这两方平行的方向并列。为了便于说明,以下,将开关元件并列的方向称为“并列方向”。多个开关元件的并联的发射极端子或源极端子在距多个开关元件中的并列方向的两端的开关元件为等距离的位置处从第二面延伸。并联的集电极端子或漏极端子在并列方向上位于发射极端子或源极端子的附近。
上述的电力转换装置的收容部件从并列方向的两端的开关元件分别至发射极端子或源极端子的距离相等。因而,上述的结构能够减小在并联的多个开关元件流动的电流的变动。
收容部件的典型是功率模块。为了有助于理解,以下,以“功率模块”来代表“收容部件”。而且,为了有助于理解,在多个开关元件的并联中,以下,将与多个开关元件的发射极(MOSFET的情况下为源电极)连接的功率模块的端子称为“负极端子”,以下,将与多个集电极(MOSFET的情况下为漏电极)连接的功率模块的端子称为“正极端子”。
第一功率模块与第二功率模块串联。在将第一功率模块的正极端子与第二功率模块的负极端子连接的情况下,两者的导体(模块间汇流条)连接。此时,当将第一功率模块与第二功率模块面对(背对)地并列配置时,第一功率模块的负极端子和第二功率模块的正极端子在并列方向上相对于模块间汇流条而位于相同侧。第一功率模块的负极端子与第二功率模块的正极端子、即串联的正极端与负极端和其他的器件(例如电容器、其他的功率模块)并联的情况较多。当第一功率模块的负极端子和第二功率模块的正极端子相对于模块间汇流条而位于相同侧时,与其他的器件的连接结构变得简单。
模块间汇流条典型的是如下的形状。从其他的器件延伸的模块间汇流条具有:与第二功率模块的正极端子连接的基部;从基部的前端向第一功率模块弯折的中间部;及从中间部的前端以与第一功率模块的负极端子相对的方式弯折并连接于负极端子的末端部。通过弯折两次的模块间汇流条,将2个功率模块串联。模块间汇流条典型地只要弯折成曲轴形状即可。
本说明书公开的技术的详情和进一步的改良通过以下的“具体实施方式”来说明。
附图说明
图1是包含实施例的电力转换装置的电动汽车的电路图。
图2是功率模块内部的电路图。
图3是功率模块的立体图。
图4是沿图3的IV-IV线的功率模块的剖视图。
图5是沿图3的V-V线的功率模块的剖视图。
图6是除了第一散热板44和封装体42之外的功率模块的俯视图。
图7是第一散热板44的俯视图。
图8是电力转换装置的俯视图。
图9是图8的局部放大图。
图10是表示模块间汇流条的变形例的俯视图。
图11是第一变形例的功率模块的俯视图。
图12是第二变形例的功率模块的俯视图。
具体实施方式
参照附图,说明实施例的电力转换装置10。实施例的电力转换装置10搭载于电动汽车100。图1示出包含电力转换装置10的电动汽车100的电力系的框图。电力转换装置10使蓄电池90的电力的电压升压,进而转换成交流。电力转换装置10输出的交流电力向行驶用的电动机91供给。
电力转换装置10具备电压转换器电路12、逆变器电路13、平滑电容器7、电流传感器8、控制器11。电压转换器电路12具有将蓄电池90的电压升压而向逆变器电路13供给的升压功能和将从逆变器电路13传送的再生电力(通过电动机91的发电而得到的电力)降压而向蓄电池90供给的降压功能。电压转换器电路12是所谓双向DC-DC转换器。
电压转换器电路12具备滤波电容器5、电抗器2、2个开关电路6a、6b、控制器11。开关电路6a、6b分别是功率模块。开关电路6a、6b分别是将3个开关元件并联并在各开关元件上反并联有二极管的电路。开关电路6a、6b仿佛如一个开关元件那样动作。开关电路6a、6b的电路结构和硬件结构在后文说明。在此,开关电路6a、6b分别作为一个开关元件与一个二极管的反并联电路来处理。因而,在图1中,在表示开关电路6a、6b的矩形之中,描绘一个晶体管和一个二极管。
2个开关电路6a、6b串联于电压转换器电路12的高电压端12c、12d之间。电抗器2的一端连接于开关电路6a、6b的串联的中点,另一端连接于电压转换器电路12的低电压端正极12a。电压转换器电路12的低电压端负极12b与高电压端负极12d直接连接。在电压转换器电路12的低电压端正极12a与低电压端负极12b之间连接滤波电容器5。开关电路6a的开关元件涉及降压动作,开关电路6b的开关元件涉及升压动作。当通过互补的PWM信号来驱动开关电路6a、6b时,根据低电压端12a、12b与高电压端12c、12d的电压平衡而被动地切换降压动作与升压动作。互补的PWM信号是指使向一方的开关元件供给的驱动信号的高电平与低电平反转后的驱动信号向另一方的开关元件供给的情况。
逆变器电路13具备6个开关电路6c-6h。开关电路6c-6h具有与开关电路6a相同的结构。开关电路6c、6d被串联,开关电路6e、6f被串联,开关电路6g、6h被串联。3组的串联(2个开关电路的串联)并联于正极线9p与负极线9n之间。从各自的串联的中点输出交流。
图1的电压转换器电路12及逆变器电路13的结构和动作众所周知,因此省略详细说明。在电压转换器电路12与逆变器电路13之间连接有平滑电容器7。
电力转换装置10具备对逆变器电路13输出的三相交流各自的电流进行计测的电流传感器8。而且,电力转换装置10具备对8个开关电路6a-6h进行驱动的控制器11。
电压转换器电路12的开关电路6a、6b也在正极线9p与负极线9n之间串联。图1所示的电力转换装置10具有2个开关电路的4组串联,这4组串联在正极线9p与负极线9n之间并联。此外,在正极线9p与负极线9n之间连接平滑电容器7。开关电路6a-6h具有相同结构。以下,在不区分地表示开关电路6a-6h时,标记为开关电路6。如前所述,在一个开关电路6之中并联有多个开关元件。一个开关电路6通过一个功率模块来实现。接下来,说明适用于图1的电路的功率模块和多个功率模块的优选的连接结构。
图2示出开关电路6的电路图。在开关电路6中,3个开关元件3a-3c并联,在开关元件3a-3c分别反并联二极管4a-4c。将3个开关元件3a-3c的并联的集电极侧的端子称为正极端子6p,将发射极侧的端子称为负极端子6n。
电力转换装置10的控制器11对于开关电路6包含的3个开关元件3a-3c供给同一驱动信号。3个开关元件3a-3c为同一类型且具有同一特性。而且,3个二极管4a-4c也为同一类型且具有同一特性。由于向并联的3个开关元件3a-3c供给同一驱动信号,因此3个开关元件3a-3c仿佛如一个开关元件那样动作。3个开关元件3a-3c的并联电路能够容许1个开关元件的容许电流的3倍的电流。通过将多个开关元件并联,能够减轻每1个的开关元件的负载。换言之,通过将多个开关元件并联而能够实现与大电流对应的电力转换装置。
开关电路6通过一个功率模块来实现。以下,将开关电路6改称为功率模块6。图3示出功率模块6的立体图。功率模块6的主体是树脂制的封装体42。封装体42(功率模块6)具有扁平的形状。为了便于说明,将封装体42(功率模块6)的一方的宽幅面称为第一面421,将与第一面421交叉的一个窄幅面称为第二面422,将与第一面421平行的宽幅面称为第三面423。换言之,功率模块6是具有一对宽幅面(第一面421和第三面423)和与一对宽幅面这两方交叉的窄幅面(第二面422)的保护类型的器件。
在封装体42之中埋设有3个半导体芯片41a-41c。半导体芯片41a-41c是IGBT(开关元件)与二极管在一个基板上反并联地形成的RC-IGBT(Reverse-Conducting InsulatedGate Bipolar Transistor:逆导型绝缘栅晶体管)的芯片。因而,通过一个芯片实现图2的电路图的开关元件3a与二极管4a的反并联电路。
金属制的散热板(第一散热板44)在封装体42的第一面421露出。虽然在图3中被遮挡而看不见,但是另一散热板(第二散热板45)在相反侧的第三面423露出。正极端子6p和负极端子6n从与第一面421交叉的第二面422延伸。正极端子6p是与3个半导体芯片41a-41c的集电极413(后述)连接的端子。负极端子6n是与3个半导体芯片41a-41c的发射极412(后述)连接的端子。
图中的坐标系的X方向与功率模块6的第一面421的法线方向一致。坐标系的Y方向与细长的第二面422的长度方向一致。正极端子6p与负极端子6n沿Y方向并列设置。以下,有时将Y方向称为“并列方向”。负极端子6n在并列方向上设置于第二面422的中央,正极端子6p在并列方向上设置于负极端子6n的附近。
控制端子43a-43c从第二面422的相反侧的窄幅面延伸。控制端子43a是半导体芯片41a的端子,是与栅电极导通的端子、与对芯片内的温度进行计测的温度传感器导通的端子、与开关元件的感测发射极导通的端子等。控制端子43b是半导体芯片41b的端子,控制端子43c是半导体芯片41c的端子。
图4示出沿图3的IV-IV线的功率模块6的剖视图,图5示出沿图3的V-V线的功率模块6的剖视图。图4是将中央的半导体芯片41b横截的截面。图5是将3个半导体芯片41a-41c横截的截面。如前所述,第一散热板44在封装体42的第一面421露出,第二散热板45在第三面423露出。在封装体42的内部,在第一散热板44与第二散热板45之间夹有半导体芯片41a-41c和垫块46a-46c。散热板44、45、垫块46a-46c通过导电性的金属(典型的是铜)来制作。
半导体芯片41a-41c为平板类型,在一方的宽幅面设有发射极412,在另一方的宽幅面设有集电极413和电极焊盘414。在第二散热板45接合有半导体芯片41a-41c的发射极412。在半导体芯片41a-41c的集电极413连接有垫块46a-46c。垫块46a-46c的相反侧接合于第一散热板44。散热板44、45具有导电性,第一散热板44与半导体芯片41a-41c的集电极413导通,第二散热板45与半导体芯片41a-41c的发射极412导通。即,散热板44、45将3个半导体芯片41a-41c并联。
如图4所示,半导体芯片41b的电极焊盘414经由接合线47而连接于控制端子43b。
如图4所示,第二散热板45在封装体42的内部与负极端子6n相连。第二散热板45向封装体42的宽幅面(第三面423)露出,发挥将半导体芯片41a-41c的热量放出的作用和将半导体芯片41a-41c的发射极412并联的作用。第一散热板44也同样,发挥将半导体芯片41a-41c的热量放出的作用和将半导体芯片41a-41c的集电极413并联的作用。
半导体芯片41a-41c在封装体42的内部等间隔地配置。半导体芯片41b位于封装体42的并列方向的中央。如前所述,负极端子6n在功率模块6(封装体42)的第二面422设置于并列方向的中央。因此,负极端子6n处于距半导体芯片41a-41c的并列的两端的半导体芯片41a、41c的发射极412为等距离的位置。接下来,说明该结构特征的优点。
图6示出除了封装体42和第一散热板44之外的功率模块6的俯视图。如前所述,图中的坐标系的X方向相当于第一面421的法线方向,Y方向相当于并列方向。图6表示从第一面421的法线方向观察的功率模块6的内部结构。3个半导体芯片41a-41c沿并列方向等间隔地排列成一列,负极端子6n在并列方向上位于第二面422的中央。图6的虚线CL是从第一面421的法线方向观察时的功率模块6的中心线。换言之,虚线CL是并列方向上的功率模块6的中心线。
3个半导体芯片41a-41c以相对于中心线CL成为线对称的方式沿并列方向并列,负极端子6n在并列方向的中央沿中心线CL延伸。3个半导体芯片41a-41c和负极端子6n的整体布局相对于中心线CL呈线对称。在该布局中,从位于芯片的并列的一端的半导体芯片41a至负极端子6n的距离与从位于并列的另一端的半导体芯片41c至负极端子6n的距离相等。换言之,负极端子6n位于距半导体芯片41a-41c的并列的两端的芯片(半导体芯片41a、41c)的发射极412为等距离的位置。在图6中,发射极412配置于半导体芯片41a-41c的与集电极413相反侧的面。图6的附图标记L1所示的箭头线表示从半导体芯片41a、41c分别至负极端子6n的距离相等的情况。
通过上述的布局,从半导体芯片41a和41c的发射极流出的电流相等。图6所示的粗箭头线示意性地表示从半导体芯片41a向负极端子6n流动的电流和从半导体芯片41c向负极端子6n流动的电流。2条粗箭头线相对于中心线CL呈线对称地描绘。这种情况表示从半导体芯片41a和41c的发射极412流动的电流相等的情况。
假定负极端子6n配置在半导体芯片41a的正上方的情况。在这种情况下,从半导体芯片41a至负极端子6n的距离最短,从半导体芯片41b至负极端子6n的距离第二短,从半导体芯片41c至负极端子6n的距离最长。在半导体芯片41a和41c中,至负极端子6n的距离相差较大,流动的电流产生偏差。
3个半导体芯片41a-41c以相同驱动信号被驱动,仿佛如一个开关元件那样动作。通过将3个半导体芯片41a-41c并联,能够降低每1个的半导体芯片的负载。因此,希望在3个半导体芯片41a-41c均等地流过电流。将3个半导体芯片41a-41c沿并列方向并列成一列并将负极端子6n配置在距并列的两端的半导体芯片为等距离的位置,由此能够减小在3个半导体芯片41a-41c流动的电流的变动。
图7示出第一散热板44的俯视图。在第一散热板44连接正极端子6p。正极端子6p在封装体42的第二面422的并列方向上位于负极端子6n的附近。从正极端子6p至半导体芯片41a的距离最近,从正极端子6p至半导体芯片41b的距离第二近,从正极端子6p至半导体芯片41c的距离最远。正极端子6p侧相对于3个半导体芯片41a-41c各自的距离不同。与从正极端子6p至各个半导体芯片的距离的变动小相比,从负极端子6n至各个半导体芯片的距离的变动小的情况对于电流差的降低有效。原因是,对于在各个半导体芯片中流动的电流的变动,与芯片的电流上游侧的电阻值的变动相比,芯片的电流下游侧的电阻的变动受到较大地影响。因而,通过将负极端子6n配置在距并列的两端的半导体芯片的发射极为等距离的位置,能够有效地抑制在3个半导体芯片41a-41c流动的电流的变动。
另外,实施例的半导体芯片41a-41c是n沟道型的IGBT,栅极电压是发射极基准。在这种情况下,为了抑制对多个半导体芯片41a-41c进行同时驱动时的栅极振荡,优选使半导体芯片41a-41c的发射极电位尽可能相等。在实施例的电力转换装置10中,负极端子6n处于距并列的两端的半导体芯片41a、41c的发射极为等距离的位置,能抑制多个半导体芯片41a-41c的发射极电位的变动。实施例的电力转换装置10也能得到抑制栅极振荡的效果。
接下来,参照图8,说明多个功率模块6和将功率模块6连接的汇流条的优选的布局。图8示出电力转换装置10的硬件的俯视图。图8示出将电力转换装置10的壳体70的上罩拆卸的状态。参照图8,说明电力转换装置10的元件布局。需要说明的是,在图8中,图1所示的滤波电容器5的图示省略。
电力转换装置10具有8个功率模块6a-6h。8个功率模块6a-6h与扁平的多个冷却板71一起层叠。在图8中,仅对左端的冷却板标注附图标记71,对其余的冷却板省略附图标记。功率模块6a、6b是电压转换器电路12的结构元件,功率模块6c-6h是逆变器电路13的结构元件。在此,也是在不区分地表示功率模块6a-6h时,有时称为功率模块6。
8个功率模块6与多个冷却板71每隔1个交替层叠。8个功率模块6以宽幅面相对的方式配置。多个冷却板71贯通2根连结管78、79。冷却板71的内部为空洞,通过连结管78从外部供给冷却水。在通过冷却板71的期间,冷却水从相邻的功率模块6吸收热量,通过连结管79向外部放出。
多个功率模块6与多个冷却板71的层叠体夹在壳体70的一个外壁72与支承壁74之间。在层叠体与支承壁74之间夹有板簧73。板簧73对层叠体沿其层叠方向进行加压。通过来自板簧73的压力,功率模块6与冷却板71紧贴,冷却效率提高。
在图8中,能观察到功率模块6的第二面422(设置正极端子6p和负极端子6n的面)。在图8中,对于左端的2个功率模块6c、6d和右端的2个功率模块6a、6b的端子标注附图标记6p、6n,对于剩余的功率模块的端子省略附图标记。需要说明的是,在图8中,为了有助于理解而正极端子6p以灰色来分色。
图的左端的功率模块6c的正极端子6p位于负极端子6n的上侧,其相邻的功率模块6d的正极端子6p位于负极端子6n的下侧。这是为了将功率模块6c和功率模块6d以相同的宽幅面相对的方式面对(背对)地配置的缘故。即,功率模块6c与6d以它们的第一面421彼此相对的方式并列配置。需要说明的是,功率模块6c与6d可以是以第三面423彼此相对的方式并列配置。在这种情况下,如果将第三面423改称为“第一面”,则第一面彼此相对。接下来说明2张功率模块6c、6d面对(背对)地并列的布局的优点。
功率模块6c、6d构成逆变器电路13的一部分,且被串联(参照图1)。从功率模块6c、6d的串联的中点输出交流。功率模块6c、6d的串联的正极经由正极线9p而连接于平滑电容器7的一方的端子,负极经由负极线9n而连接于平滑电容器7的另一方的端子。在图8中,正极汇流条50和负极汇流条60夹持平滑电容器7。正极汇流条50与平滑电容器7的一方的端子连接,负极汇流条60连接于另一方的端子。正极汇流条支部51从正极汇流条50延伸,其前端连接于功率模块6c的正极端子6p。负极汇流条支部61从负极汇流条60延伸,其前端连接于功率模块6d的负极端子6n。相当于串联的中点的模块间汇流条52连接于功率模块6d的正极端子6p和功率模块6c的负极端子6n。模块间汇流条52的另一端连接于电流传感器8,并通过电流传感器8,在连接器77处构成连接端子52a。
功率模块6c的负极端子6n与功率模块6d的正极端子6p由1个汇流条(模块间汇流条52)连接。串联的功率模块6c、6d面对(背对)地配置时,功率模块6c的正极端子6p和功率模块6d的负极端子6n都位于模块间汇流条52的相同侧(在图8中为模块间汇流条52的上侧)。该布局不存在为了将功率模块6c的正极端子6p和功率模块6d的负极端子6n连接于平滑电容器7而汇流条交错的情况,汇流条的配线变得简单。具体而言,将功率模块6c、6d与平滑电容器7连接的正极汇流条支部51和负极汇流条支部61从并列方向的一方侧(-Y方向)朝向端子6p、6n延伸。另一方面,将功率模块6c的负极端子6n和功率模块6d的正极端子6p与电流传感器8连接的模块间汇流条52从并列方向的另一方侧(+Y方向)朝向端子6p、6n延伸。从第二面422的法线方向(Z方向)观察时,这3根汇流条51、52、61不用交错。
串联的功率模块6a与6b、6e与6f、6g与6h也以功率模块的第一面421彼此(或者第三面423彼此)相对的方式配置。换言之,串联的功率模块6a与6b、6e与6f、6g与6h也相互面对(背对)地配置。关于这些功率模块,也能得到与功率模块6c和6d相同的效果。
功率模块6c-6h是逆变器电路13的元件(参照图1)。将功率模块6e的负极端子6n与功率模块6f的正极端子6p连接的模块间汇流条52也连接于电流传感器8,并且其前端在连接器77中构成连接端子52b。将功率模块6g的负极端子6n与功率模块6h的正极端子6p连接的模块间汇流条52也连接于电流传感器8,并且其前端在连接器77中构成连接端子52c。连接端子52a-52c相当于逆变器电路13的3组的串联的中点的端子(参照图1)。连接端子52a-52c相当于向电动机91供给的三相交流的输出端子。
功率模块6a、6b是电压转换器电路12的元件(参照图1)。功率模块6a、6b串联,功率模块6a成为高电位侧。功率模块6a的负极端子6n与功率模块6b的正极端子6p由1根另外的模块间汇流条53连接。模块间汇流条53的另一端连接于电抗器2的一端2a。功率模块6a、6b的串联也与平滑电容器7连接。因此,与功率模块6c-6h同样,正极汇流条支部51连接于功率模块6a的正极端子6p,负极汇流条支部61连接于功率模块6b的负极端子6n。功率模块6a的正极端子6p和功率模块6b的负极端子6n都在并列方向上位于模块间汇流条53的相同侧,因此3根汇流条(正极汇流条支部51、负极汇流条支部61、模块间汇流条53)不交错地配线。
电抗器2的另一端2b连接于输入正极汇流条54的一端,输入正极汇流条54的另一端位于输入连接器76。连接于平滑电容器7的负极汇流条60与输入负极汇流条55连接,输入负极汇流条55的一端也位于输入连接器76。输入连接器76是将来自蓄电池90的线缆连接的连接器。
图9示出图8的局部放大图。图9是2张功率模块6c、6d及其周边的放大图。在图9中,将相邻的冷却板71连结的连结管78、79的图示省略。如图9所示,模块间汇流条52弯折成曲轴状。模块间汇流条52具备从电流传感器8延伸并连接于功率模块6d的正极端子6p的基部521、从基部521的前端朝向功率模块6c大致垂直地弯折的中间部522、从中间部522的前端以与功率模块6c的负极端子6n相对的方式弯折的末端部523。末端部523接合于功率模块6c的负极端子6n。功率模块6c的负极端子6n与功率模块6d的正极端子6p由简单的曲轴形状的模块间汇流条52连接。而且,模块间汇流条52弯折成曲轴状,由此在与功率模块6d的正极端子6p导通的模块间汇流条52和功率模块6d的负极端子6n之间能够确保绝缘距离dW。
图10示出变形例的模块间汇流条152。图10示出采用了正极端子6p与负极端子6n之间宽的功率模块106c、106d的情况。模块间汇流条152具备与功率模块106d的正极端子6p连接的基部1521、从基部1521的前端朝向功率模块106c弯折的中间部1522、从中间部1522的前端以与功率模块106c的负极端子6n相对的方式弯折的末端部1523。末端部1523与功率模块106c的负极端子6n接合。中间部1522相对于基部1521、末端部1523未正交而倾斜地交叉。也可以采用这样的形状的模块间汇流条152。
接下来,参照图11,说明第一变形例的功率模块206。图11是第一变形例的功率模块206的俯视图。图11与图6同样是将附图近前的散热板和封装体除外的图。封装体242由假想线来描绘。功率模块206在封装体242收容有2个半导体芯片41a、41b。半导体芯片41a、41b分别收容开关元件(IGBT)。2个半导体芯片41a、41b(2个开关元件)沿着图中的坐标系的Y方向并列。将2个半导体芯片41a、41b(2个开关元件)的发射极连接的负极端子6n配置在距并列的两端的半导体芯片、即半导体芯片41a、41b为等距离的位置。图11的附图标记L2所示的箭头线表示从半导体芯片41a、41b至负极端子6n的距离相等的情况。
取代功率模块6而使用了第一变形例的功率模块206的电力转换装置也带来与实施例的电力转换装置10同样的优点。需要说明的是,2个半导体芯片41a、41b在封装体242的内部靠近图中的左侧,负极端子6n未位于封装体242的中心线CL。负极端子的位置优选为封装体的中央,但也可以如第一变形例的功率模块206那样不为封装体的中央。
接下来,参照图12,说明第二变形例的功率模块306。图12是第二变形例的功率模块306的俯视图。图12与图6同样是将附图近前的散热板和封装体除去的图。封装体342以假想线描绘。功率模块306在封装体342内收容3个半导体芯片41a-41c。半导体芯片41a-41c分别收容开关元件(IGBT)。3个半导体芯片41a-41c(3个开关元件)沿图中的坐标系的Y方向并列。但是,半导体芯片41a与半导体芯片41b的距离和半导体芯片41b与半导体芯片41c的距离不相等。将3个半导体芯片41a-41c(3个开关元件)的发射极连接的负极端子6n配置在距并列的两端的半导体芯片、即半导体芯片41a、41c为等距离的位置。图12的附图标记L3所示的箭头线表示从半导体芯片41a、41c分别至负极端子6n的距离相等的情况。
取代功率模块6而使用了第二变形例的功率模块306的电力转换装置也带来与实施例的电力转换装置10同样的优点。需要说明的是,3个半导体芯片41a-41c在封装体342的内部靠近图中的左侧,负极端子6n未位于封装体342的中心线。负极端子的位置优选为封装体的中央,但也可以如第二变形例的功率模块306那样不为封装体的中央。
叙述关于实施例中说明的技术的留意点。实施例的开关元件是IGBT。开关元件没有限定为IGBT。开关元件也可以是例如n沟道型的MOSFET(Metal Oxide SemiconductorField Effect Transistor:金属氧化物半导体场效应晶体管)。n沟道型的MOSFET的电极将电流输入端称为漏电极,将电流输出端称为源电极。因而,在取代IGBT而使用MOSFET的情况下,只要将实施例的发射极改读为源电极,将集电极改读为漏电极即可。在n沟道型的MOSFET的情况下,栅极电压是源极基准,多个源电极的电位的变动小的情况能够抑制栅极振荡。因此,将多个源电极连接的负极端子位于距开关元件的并列的两端的开关元件为等距离的位置,由此能得到抑制栅极发送的效果。
实施例的功率模块收容有并联的多个开关元件。开关元件的典型是IGBT、MOSFET等晶体管。在实施例中,将多个晶体管(开关元件)的正方向的下游侧电极(n沟道型IGBT的发射极、MOSFET的源电极)连接的端子称为负极端子,将上游侧电极连接的端子称为正极端子。
以下,将实施例中说明的电力转换装置10的若干的特征进行汇总。电力转换装置10具备多个功率模块6。这些功率模块6收容有并联的多个开关元件。功率模块6为扁平,具有第一面421(第一宽幅面)、与第一面421交叉的第二面422(窄幅面)、与第一面421平行的第三面423(第二宽幅面)。多个开关元件通过向第一面421露出的第一散热板44和向第三面423露出的第二散热板45而并联。多个开关元件沿着分别与第一面421和第二面422平行的方向(并列方向)并列成一列。将多个开关元件的发射极(源电极)连接的负极端子6n以位于距并列的两端的开关元件的发射极为等距离的位置的方式从第二面422延伸。将多个开关元件的集电极(漏电极)连接的正极端子6p在第二面422处在并列方向上配置于负极端子6n的附近。
多个功率模块6与多个冷却板71每隔1个地交替层叠。相邻的功率模块(例如6c与6d)以第一面421彼此(或第三面423彼此)相对的方式相互面对(背对)地配置。相邻的其他的功率模块(例如6a与6b)也同样。通过使其面对(背对)地相对而相邻的功率模块(例如6c、6d)的负极端子6n彼此相对,但是正极端子6p不相对。一方的功率模块(例如6c)的负极端子6n与另一方的功率模块(例如6d)的正极端子6p由从并列方向的一方侧延伸的汇流条(模块间汇流条52)连接。一方的功率模块(例如6c)的正极端子6p与另一方的功率模块(例如6d)的负极端子6n通过从并列方向的另一方侧延伸的汇流条(正极汇流条支部51和负极汇流条支部61)而与其他的元件(平滑电容器7)连接。从并列方向的一方侧朝向端子6p、6n延伸的汇流条(模块间汇流条52)和从另一方侧朝向端子6p、6n延伸的汇流条(正极汇流条支部51和负极汇流条支部61)从第二面422的法线方向观察时能够不交错地与各个功率模块连接。
功率模块6c相当于第一收容部件的一例,功率模块6d相当于第二收容部件的一例。功率模块6a相当于第一收容部件的另一例,功率模块6b相当于第二收容部件的另一例。
以上,详细地说明了本发明的具体例,但是这些只不过是例示,没有限定权利要求书。权利要求书记载的技术包括对以上例示的具体例进行了各种变形、变更的技术。本说明书或附图说明的技术要素是单独或者通过各种组合来发挥技术有用性的要素,没有限定为申请时权利要求记载的组合。而且,本说明书或附图例示的技术是同时达成多个目的的技术,达成其中的一个目的的情况本身就具有技术有用性。

Claims (5)

1.一种电力转换装置,具备收容并联的多个开关元件的第一收容部件和第二收容部件,
所述第一收容部件和所述第二收容部件分别具有第一面和与该第一面交叉的第二面,
所述第一收容部件和所述第二收容部件以所述第一收容部件的所述第一面与所述第二收容部件的所述第一面相对的方式配置,
在所述第一收容部件和所述第二收容部件各自的内部,所述多个开关元件沿着与所述第一面及所述第二面平行的并列方向并列,
多个开关元件的并联的发射极端子或源极端子在距多个开关元件中的所述并列方向的两端的所述开关元件为等距离的位置处从所述第二面延伸,
并联的集电极端子或漏极端子在所述并列方向上位于所述发射极端子或所述源极端子的附近。
2.根据权利要求1所述的电力转换装置,其中,
所述电力转换装置具备将所述第一收容部件的所述发射极端子或所述源极端子及所述第二收容部件的所述集电极端子或所述漏极端子与其他的器件连接的汇流条,
所述汇流条具备:
基部,连接于所述第二收容部件的所述集电极端子或所述漏极端子;
中间部,从所述基部的前端向所述第一收容部件弯折;及
末端部,从所述中间部的前端以与所述第一收容部件的所述发射极端子或所述源极端子相对的方式弯折,并连接于所述第一收容部件的所述发射极端子或所述源极端子。
3.根据权利要求2所述的电力转换装置,其中,
所述汇流条弯折成曲轴形状。
4.根据权利要求1~3中任一项所述的电力转换装置,其中,
在所述第一收容部件和所述第二收容部件各自的内部,多个开关元件等间隔地并列。
5.根据权利要求1~4中任一项所述的电力转换装置,其中,
所述第1收容部件和所述第2收容部件是功率模块。
CN201910099138.4A 2018-02-06 2019-01-31 电力转换装置 Pending CN110120751A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018019601A JP2019140722A (ja) 2018-02-06 2018-02-06 電力変換装置
JP2018-019601 2018-02-06

Publications (1)

Publication Number Publication Date
CN110120751A true CN110120751A (zh) 2019-08-13

Family

ID=65228376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910099138.4A Pending CN110120751A (zh) 2018-02-06 2019-01-31 电力转换装置

Country Status (7)

Country Link
US (1) US10454375B2 (zh)
EP (1) EP3522351A1 (zh)
JP (1) JP2019140722A (zh)
KR (1) KR20190095137A (zh)
CN (1) CN110120751A (zh)
BR (1) BR102019001168A2 (zh)
RU (1) RU2699823C1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022193255A1 (en) * 2021-03-18 2022-09-22 Huawei Technologies Co., Ltd. High-symmetrical semiconductor arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030481A1 (en) * 2001-08-08 2003-02-13 Mitsubishi Denki Kabushiki Kaisha Power module
US20090201708A1 (en) * 2008-02-08 2009-08-13 Denso Corporation Semiconductor module
CN103563075A (zh) * 2011-06-16 2014-02-05 富士电机株式会社 半导体单元及使用该单元的半导体器件
CN103999213A (zh) * 2011-12-20 2014-08-20 丰田自动车株式会社 半导体模块
JP2016096620A (ja) * 2014-11-12 2016-05-26 トヨタ自動車株式会社 電動機制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103923A (en) * 1989-11-30 1992-04-14 Marathon Letourneau Company Method and apparatus for propelling and retarding off-road haulers
JP3858986B2 (ja) * 2002-03-26 2006-12-20 日産自動車株式会社 電源装置
US6721181B1 (en) * 2002-09-27 2004-04-13 Rockwell Automation Technologies, Inc. Elongated heat sink for use in converter assemblies
JP4600390B2 (ja) * 2006-12-14 2010-12-15 トヨタ自動車株式会社 電源システムおよびそれを備える車両、ならびにその制御方法
RU2557456C2 (ru) * 2011-05-12 2015-07-20 Ниссан Мотор Ко., Лтд. Переключающая схема и полупроводниковый модуль
WO2013065182A1 (ja) 2011-11-04 2013-05-10 トヨタ自動車株式会社 パワーモジュール、電力変換装置および電動車両
RU2667075C1 (ru) * 2015-05-29 2018-09-14 Ниссан Мотор Ко., Лтд. Устройство преобразования мощности

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030481A1 (en) * 2001-08-08 2003-02-13 Mitsubishi Denki Kabushiki Kaisha Power module
US20090201708A1 (en) * 2008-02-08 2009-08-13 Denso Corporation Semiconductor module
CN103563075A (zh) * 2011-06-16 2014-02-05 富士电机株式会社 半导体单元及使用该单元的半导体器件
CN103999213A (zh) * 2011-12-20 2014-08-20 丰田自动车株式会社 半导体模块
JP2016096620A (ja) * 2014-11-12 2016-05-26 トヨタ自動車株式会社 電動機制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022193255A1 (en) * 2021-03-18 2022-09-22 Huawei Technologies Co., Ltd. High-symmetrical semiconductor arrangement

Also Published As

Publication number Publication date
US10454375B2 (en) 2019-10-22
US20190245443A1 (en) 2019-08-08
RU2699823C1 (ru) 2019-09-11
BR102019001168A2 (pt) 2019-08-27
KR20190095137A (ko) 2019-08-14
EP3522351A1 (en) 2019-08-07
JP2019140722A (ja) 2019-08-22

Similar Documents

Publication Publication Date Title
JP7153649B2 (ja) ゲートパスインダクタンスが低いパワー半導体モジュール
JP5622043B2 (ja) インバータ装置
US10622909B2 (en) Power module for inverter switching devices having gate coils shielded from eddy currents
CN104506050B (zh) 电力转换装置
JP5029900B2 (ja) モータの制御装置
CN111480231B (zh) 电力转换装置
CN107644857A (zh) 多器件功率模块的信号引脚布局
CN109673166A (zh) 半导体模块、电动汽车和动力控制单元
CN103546015B (zh) 逆变器装置
CN108123620B (zh) 具有用于增强共源极电感的栅极线圈的逆变器开关器件
JP6259893B2 (ja) 半導体モジュール及びこれを備えた電力変換装置
GB2539761A (en) Power converter and railway vehicle
JP7243582B2 (ja) 電力変換装置
CN109906510A (zh) 半导体装置
CN107482945A (zh) 具有降低的共用源电感的分离式功率开关装置
CN110178304A (zh) 半导体装置
US10361147B1 (en) Inverter power module lead frame with enhanced common source inductance
CN110120751A (zh) 电力转换装置
JP4572247B2 (ja) ハイブリッド車両
JP5551808B2 (ja) 半導体モジュール及びこれを備えた電力変換装置
JP6123722B2 (ja) 半導体装置
US11424689B2 (en) Power conversion device
JP6047599B2 (ja) 半導体モジュール及びこれを備えた電力変換装置
JP2014147292A (ja) 半導体モジュール及びこれを備えた電力変換装置
CN220915675U (zh) 功率模块、电力电子设备和车辆

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190813

WD01 Invention patent application deemed withdrawn after publication