CN110119044A - 微阵列压电陶瓷光纤声光调制器及其制造方法 - Google Patents

微阵列压电陶瓷光纤声光调制器及其制造方法 Download PDF

Info

Publication number
CN110119044A
CN110119044A CN201810122467.1A CN201810122467A CN110119044A CN 110119044 A CN110119044 A CN 110119044A CN 201810122467 A CN201810122467 A CN 201810122467A CN 110119044 A CN110119044 A CN 110119044A
Authority
CN
China
Prior art keywords
optical fiber
piezoelectric ceramics
array
electrode
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810122467.1A
Other languages
English (en)
Inventor
苑立波
马超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201810122467.1A priority Critical patent/CN110119044A/zh
Publication of CN110119044A publication Critical patent/CN110119044A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • G02F1/113Circuit or control arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • G02F1/125Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明提供的是一种微阵列压电陶瓷光纤声光调制器及其制造方法。该光纤声光调制器主要采用金属的溅射镀膜及压电陶瓷的喷墨打印技术,通过在光纤表面制作阵列式微型压电换能器而成,因此通过电信号控制的压电结构能够对光纤施以力的作用,这种高频振动引起的声光作用,进而转化成光纤内折射率的变化,从而达到对光信号的调制效果。本发明在整体上具有结构微小、调制灵活等特点,可广泛用于光纤技术领域。

Description

微阵列压电陶瓷光纤声光调制器及其制造方法
(一)技术领域
本发明涉及的是一种光纤调制器及其制备技术,具体涉及一种微阵列压电陶瓷光纤声光调制器及其制造方法,属于光纤技术领域。
(二)背景技术
光纤声光调制器主要由压电换能器及光纤两部分组成,具有体积小、插入损耗低、可靠性高、宽带宽、便于集成、可以实现高速控制等一系列优点。将特定频率的电信号输入到压电换能器,由于逆压电效应,压电换能器将会产生振动,振动的能量以一定频率的超声波的形式耦合到具有声光作用的光纤之中。光纤在超声波的作用下折射率将产生周期性的变化,从而构成折射率光栅。当光波沿光纤传输时,在光栅的作用下产生衍射效应。因此,光纤声光调制器通过调节输入到压电换能器上的电信号,可以达到调制光信号的效果。
换能器是声光调制器中最为关键的部分。目前,光纤声光调制器中换能器主要存在两种类型:一是将压电陶瓷的块状结构,通过与光纤的接触(或者采用包裹的方式)使振动的能量以声波的形式传递到光纤内部;另一种是直接在光纤表面制备压电薄膜,通过薄膜的收缩振动对光纤进行挤压,进而对光信号进行调制。
Wending Zhang等人,制作的可调宽带光耦合器(Tunable broadband lightcoupler based on two parallel all-fiber acousto-optic tunable filters,Opt.Express,21,16621-16628(2013)),其中介绍的两个声光调制器中所用的声波耦合装置属于第一种类型,将压电陶瓷片上方的锥形的放大器的尖角直接与主光纤相接触,利用锥形放大器的振动,产生弯曲型声波,并直接将声波耦合到光纤当中。虽然此种耦合方式较为简便,但是为了能够将声波更多的耦合到光纤内部,一般需要将光纤外部的保护层刮掉,同时需要保证锥形放大器的尖角与光纤能够紧密的结合在一起。因为裸光纤的机械性能并不理想,因此想要保证光纤声光调制器的可靠性以及声光的耦合效率,需要对装置的制作提出较高的要求。
同时,由于此类光纤声光调制器中声波的耦合主要是单点式触发,不论是将声波发声装置与光纤相接触,还是将声波发生装置直接粘贴在光纤表面,都仅仅通过一点或者说小面积的接触来将声波耦合进光纤内部。这种装置虽然制作简便,但声波能量在光纤内部的衰减较为明显。
不同于块状压电陶瓷结构的换能器,Barrow,D.A.等人通过采用溶胶-凝胶法在光纤表面制备了5-10cm的压电陶瓷薄膜(″In-line phase modulators using coaxialthick lead zirconate titanate coated optical fibers.″Journal of appliedphysics 79.6(1996):3323-3329.),该结构组成的换能器与块状压电换能器相比体积小,集成度高。但压电陶瓷薄膜的制备工艺较为复杂,制备速度相对较慢。为了保证压电陶瓷颗粒能够更多的沉积到光纤表面,光纤的移动速度不易过快,在步进电机的控制下以5cm/min的速度进行反复提升,且沉积一次的厚度约为5um。因此,要想制备200um厚的压电陶瓷薄膜,在保证每次良好操作的前提下,需要花费较多的时间与精力。
本发明公开了一种微阵列压电陶瓷光纤声光调制器及其制造方法。可广泛用于光纤技术领域。它采用喷墨打印技术,将PZT打印到光纤表面,在两侧或者内外两个电极所产生的电场的作用下产生振动,并将声波能量耦合到光纤内部。与在先技术相比,由于使用了喷墨技术,优化了制备工艺,缩短了制作时间。不仅提高了器件的加工精度,而且使得声波发声装置的设计更为多元。同时,该光纤声光调制器采用了微型的纵向及径向周期性压电阵列结构,通过对不同电信号的输入,可以灵活的控制光栅的形成,有利于提高声光作用的耦合效率,加强信号的调制深度。
(三)发明内容
本发明的目的在于提供一种结构简单紧凑、耦合效率高的基于喷墨打印技术的光纤声光调制器及其制备方法。
本发明的目的是这样实现的:
该声光调制器是由光纤1、纵向金属阵列电极2、纵向压电陶瓷阵列3、可编程阵列电极4、径向内层金属阵列电极5、径向外层金属阵列电极6、径向压电陶瓷阵列7、金属引线8、石英基底9、封装外壳10组成。通过可编程阵列电极,可将电压的变化通过打印在光纤表面的压电陶瓷阵列单元转化成所需的声波信号,这些声波信号经过压电陶瓷阵列与光纤的相互作用转化为光纤中的折射率的变化,又进一步转化为光纤中传输的声信号和光信号之间的相互作用,从而实现对光信号的调制。
为了实现高质量的喷墨打印,进而提高换能器的性能,本发明所配制的压电陶瓷墨水是纳米级锆钛酸铅陶瓷墨水。将锆钛酸铅陶瓷粉加入到盛有研磨球的玛瑙球磨罐当中,在全方位行星式球磨机中高速研磨至纳米级。将有机溶剂以及配制好的分散剂与纳米级锆钛酸铅陶瓷粉混合并搅拌均匀,经过静置、过滤后得到喷墨打印用压电陶瓷墨水,能够保证打印机不堵塞喷头,同时具有较好的压电性能。
为了保证喷墨打印的效果,本发明在喷墨打印机内部加装了光纤转动装置,在喷墨的同时,光纤可以轴向的转动,能够使陶瓷粉均匀的覆盖在光纤的表面,同时也提高了打印的精度。
对于压电陶瓷的烧结,本发明借助于高温炉。将喷有压电陶瓷的光纤置于高温炉中进行烧结,烧结完成后进行退火处理,随后取出,在室温下自然冷却后即可保证压电陶瓷具有较好的机械性能。
该声光调制器采用了径向及纵向的压电换能结构,并以换能器阵的形式对光信号进行周期性调制。对可编程阵列电极选择性的输入电信号,可以控制某部分压电换能器的断开,从而实现不同的调制功能。根据输入的电信号的频率以及类型的不同,调制的类型以及调制的强度将会产生相应的变化,进而达到对光信号的调制目的。
通过对本发明设计中已经提出的两种压电换能结构,在光纤表面进行合理的排布,可以使得光纤声光调制器能够实现多种的调制功能。
(四)附图说明
图1是微阵列压电陶瓷光纤声光调制器的结构以及局部放大示意图。
图2是微阵列型纵向压电结构对光纤折射率影响的仿真结果。
图3是微阵列型径向压电结构对光纤折射率影响的仿真结果。
图4为纵向作用型微阵列压电陶瓷光纤声光调制器的制作流程图。
图5为径向作用型微阵列压电陶瓷光纤声光调制器的制作流程图。
(五)具体实施方式
下面结合附图来进一步阐述本发明。
图1给出了基于喷墨打印技术的微阵列压电陶瓷光纤声光调制器结构示意图。系统由光纤1、纵向金属阵列电极2、纵向压电陶瓷阵列3、可编程阵列电极4、径向内层金属阵列电极5、径向外层金属阵列电极6、径向压电陶瓷阵列7、金属引线8、石英基底9、封装外壳10组成。通过可编程阵列电极,可将电压的变化通过打印在光纤表面的压电陶瓷阵列单元转化成所需的声波信号,这些声波信号经过压电陶瓷阵列与光纤的相互作用转化为光纤中的折射率的变化,又进一步转化为光纤中传输的声信号和光信号之间的相互作用,从而实现对光信号的调制。
每个压电单元的工作原理均基于压电陶瓷的逆压电效应,由压电陶瓷的h型压电方程
可以确定压电陶瓷内力学量与电学量之间的关系。其中,T、S、D分别为应力、应变以及电位移,其下标分别表示受力及所加电场的方向。C、h、β分别为压电陶瓷的弹性常数、压电常数以及介电隔离率,且均可通过材料手册查询。
将压电方程与压电陶瓷的动力学方程及应变-位移的关系式联立求解,并根据边界条件(各材料在界面处的应力及位移连续),可以确定压电陶瓷随所加电信号在径向、纵向以及圆周方向产生的应力与应变。
作用在光纤上的应力将使光纤产生相应的应变,并进一步导致光纤内折射率的变化,其具体的表达形式为
其中,p为光纤的弹光系数。因此,通过改变输入的电信号可以实现对光纤内折射率的调制。
根据所述的调制器,构建模型并对折射率进行仿真(具体的仿真结果见附图)。
微阵列压电陶瓷光纤声光调制器的制作流程见图4、图5。
其中,纵向作用型微阵列压电陶瓷光纤声光调制器的制造方法如下:
为实现纵向结构的设计目的,申请人首先将锆钛酸铅的压电陶瓷粉放入到球磨机当中研磨至纳米级,与配制好的分散剂以及其它有机溶剂混合,并搅拌均匀,形成均一稳定的压电陶瓷墨水。之后通过喷墨打印机将压电陶瓷墨水直接打印到光纤的表面上,随着光纤的旋转,在光纤表面上形成微结构的环形压电陶瓷单元阵列。将光纤预热后放入到高温炉中烧结,之后进行退火处理,取出后在室温下自然冷却。
利用金属镀膜溅射技术来制备电极,并将掩模板置于光纤和待溅射金属靶之间,通过掩模来控制光纤表面上的金属电极的形状,通过旋转光纤,可将环形金属电极制备在紧靠压电陶瓷环的两侧的光纤表面上,形成压电陶瓷单元阵列两侧的电极。
通过超声焊接技术将引线与光纤上的压电陶瓷单元阵列两侧的金属电极相焊接,以便能够将控制电压以编码的方式施加到纵向压电陶瓷单元阵列上,从而实现对光纤中传输的光波的声光调制。
随后,对压电陶瓷环进行极化处理。将载有压电结构的光纤置于110-130℃的环境中,并通过外接引线在环形压电陶瓷阵列单元两侧的金属电极上加电压信号,使得压电陶瓷所处电场强度为1.5-2.2V/um,持续时间为15-20分钟。
用紫外胶将已制备好的带有调制结构的光纤固定在石英基底上,通过3D打印技术将设计好的壳体进行打印,并将载有光纤的石英基底固定在壳体当中。图4为纵向作用型微阵列压电陶瓷光纤声光调制器的制作流程图。
径向作用型微阵列压电陶瓷光纤声光调制器的制造方法如下:
首先,通过金属镀膜溅射技术制备内层电极,并将掩模板置于光纤和待溅射金属靶之间,通过掩模来控制光纤表面上的金属电极的形状,通过旋转光纤,可将环形金属电极阵列制备在光纤表面,形成压电陶瓷单元阵列的内层电极。
将锆钛酸铅的压电陶瓷粉放入到球磨机当中研磨至纳米级,与配制好的分散剂以及其它有机溶剂混合,并搅拌均匀,形成均一稳定的压电陶瓷墨水。通过喷墨打印机将压电陶瓷墨水直接打印到光纤内层阵列电极的表面上,在打印过程中预留一部分内层电极,使其不被压电陶瓷覆盖,作为内层电极以便与外部引线焊接。这样就沿着光纤在阵列内层电极上,形成微结构的压电陶瓷单元阵列。然后将光纤预热后放入到高温炉中加热,之后进行退火处理,取出后在室温下自然冷却。
再次利用金属镀膜溅射以及掩模法电极制备技术将金属电极通过溅射制备到已经制备有压电陶瓷单元阵列包层的光纤外层表面上,形成压电陶瓷阵列的外层电极。
通过超声焊接技术将引线分别与光纤上的压电陶瓷单元阵列的内层金属电极和外层金属电极进行焊接,以便能够将控制电压以编码的方式施加到压电陶瓷单元阵列上,从而实现对光纤中传输的光波的声光调制。
极化时,同样将压电陶瓷置于110-130℃的环境中,通过外接引线在环形压电陶瓷阵列单元上下表面的两个金属电极上加电压信号,并使得压电陶瓷所处电场强度为1.52.2V/um,持续时间为1520分钟。
用紫外胶将已制备好的带有调制结构的光纤固定在石英基底上,通过3D打印技术将设计好的壳体进行打印,并将载有光纤的石英基底固定在壳体当中。图5为径向作用型微阵列压电陶瓷光纤声光调制器的制作流程图。
可以根据纵向和径向作用型微阵列压电陶瓷光纤声光调制器的制造方法,采用喷墨机打印以及金属镀膜等技术在光纤表面设计多种复合周期性振动结构。通过可编程阵列电极,可将电压的变化通过打印在光纤表面的压电陶瓷阵列单元转化成所需的声波信号,这些声波信号经过压电陶瓷阵列与光纤的相互作用转化为光纤中的折射率的变化,又进一步转化为光纤中传输的声信号和光信号之间的相互作用,从而实现对光信号的调制。

Claims (4)

1.微阵列压电陶瓷光纤声光调制器。其主要特征是:它由光纤1、纵向金属阵列电极2、纵向压电陶瓷阵列3、可编程阵列电极4、径向内层金属阵列电极5、径向外层金属阵列电极6、径向压电陶瓷阵列7、金属引线8、石英基底9、封装外壳10组成。通过可编程阵列电极,可将电压的变化通过打印在光纤表面的压电陶瓷阵列单元转化成所需的声波信号,这些声波信号经过压电陶瓷阵列与光纤的相互作用转化为光纤中的折射率的变化,又进一步转化为光纤中传输的声信号和光信号之间的相互作用,从而实现对光信号的调制。
2.根据权利要求1所述的微阵列压电陶瓷光纤声光调制器中,在光纤的表面上制备了纵向以及径向压电换能结构,同时采用多个压电换能结构单元构成换能器阵,实现对光纤的周期性的调制。
3.根据权利要求2所述的微阵列压电陶瓷光纤声光调制器中纵向作用型压电换能器的制作方法,其主要特征是:
(1)纵向作用压电陶瓷阵列的制造特征是:通过喷墨打印机将压电陶瓷墨水直接打印到光纤的表面上,随着光纤的旋转,在光纤表面上形成环形压电陶瓷单元阵列。制备过程是:将锆钛酸铅的压电陶瓷粉放入到球磨机当中研磨至纳米级,与配制好的分散剂以及其它有机溶剂混合,并搅拌均匀,形成均一稳定的压电陶瓷墨水。将制好的压电陶瓷墨水过滤后注入到喷墨打印机的墨盒当中,以喷墨的形式将墨水打印到光纤的表面。每打印一行,光纤绕其轴心旋转一个角度以便能在光纤圆周表面的指定部位打印上一层纳米压电材料。然后将光纤预热后放入到高温炉中加热,之后进行退火处理,取出后在室温下自然冷却。
(2)所述的纵向作用型微阵列压电陶瓷光纤声光调制器中的环形压电陶瓷阵列两侧的金属电极的制造特征是:将掩模板置于光纤和待溅射金属靶之间,通过掩模来控制光纤表面上的金属电极的形状,通过旋转光纤,可将环形金属电极制备在紧靠压电陶瓷环的两侧的光纤表面上,形成压电陶瓷阵列两侧的电极。
4.根据权利要求2所述的微阵列压电陶瓷光纤声光调制器中径向作用型压电换能器的制作方法,其主要特征是:
(1)内层阵列电极的制造特征是:将掩模板置于光纤和待溅射金属靶之间,通过掩模来控制光纤表面上的金属电极的形状,通过旋转光纤,可将环形金属电极阵列制备在光纤表面,形成压电陶瓷阵列的内层电极。
(2)径向作用型压电陶瓷阵列的制造特征是:通过喷墨打印机将压电陶瓷墨水直接打印到光纤内层阵列电极的表面上,在打印过程中预留一部分内层电极,使其不被压电陶瓷覆盖,作为内层电极以便与外部引线焊接。这样就沿着光纤在内层阵列电极上,形成压电陶瓷单元阵列。制备过程是:将制好的压电陶瓷墨水过滤后注入到喷墨打印机的墨盒当中,以喷墨的形式将墨水打印到光纤的电极表面。每打印一行,光纤绕其轴心旋转一个角度以便能在光纤圆周表面的指定部位打印上一层纳米压电材料。然后将光纤预热后放入到高温炉中加热,之后进行退火处理,取出后在室温下自然冷却。
(3)所述的径向作用型微阵列压电陶瓷光纤声光调制器中的外层金属电极的制造特征是:通过掩模法电极制备技术以及权利要求4(1)中的金属镀膜溅射技术,将金属电极溅射到已经制备有压电陶瓷阵列的外层表面上,形成压电陶瓷阵列的外层电极。
CN201810122467.1A 2018-02-07 2018-02-07 微阵列压电陶瓷光纤声光调制器及其制造方法 Pending CN110119044A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810122467.1A CN110119044A (zh) 2018-02-07 2018-02-07 微阵列压电陶瓷光纤声光调制器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810122467.1A CN110119044A (zh) 2018-02-07 2018-02-07 微阵列压电陶瓷光纤声光调制器及其制造方法

Publications (1)

Publication Number Publication Date
CN110119044A true CN110119044A (zh) 2019-08-13

Family

ID=67520057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810122467.1A Pending CN110119044A (zh) 2018-02-07 2018-02-07 微阵列压电陶瓷光纤声光调制器及其制造方法

Country Status (1)

Country Link
CN (1) CN110119044A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825453A (zh) * 2020-07-24 2020-10-27 江苏师范大学 一种具有包芯结构的透明陶瓷光纤的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969739A (zh) * 2013-01-28 2014-08-06 无锡万润光子技术有限公司 基于线性折射率分布的涡旋光纤及其制备方法
CN104570410A (zh) * 2015-01-21 2015-04-29 杭州电子科技大学 一种基于声漩涡调控的光场转换装置
CN106646730A (zh) * 2016-11-23 2017-05-10 华南理工大学 一种用于轨道角动量产生及调谐的涡旋光纤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969739A (zh) * 2013-01-28 2014-08-06 无锡万润光子技术有限公司 基于线性折射率分布的涡旋光纤及其制备方法
CN104570410A (zh) * 2015-01-21 2015-04-29 杭州电子科技大学 一种基于声漩涡调控的光场转换装置
CN106646730A (zh) * 2016-11-23 2017-05-10 华南理工大学 一种用于轨道角动量产生及调谐的涡旋光纤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘超等: "光纤布拉格光栅型全光纤声光调制器的特性研究", 《物理学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825453A (zh) * 2020-07-24 2020-10-27 江苏师范大学 一种具有包芯结构的透明陶瓷光纤的制备方法

Similar Documents

Publication Publication Date Title
JP5500173B2 (ja) 圧電体、超音波トランスデューサー、医療用超音波診断装置および非破壊超音波検査装置
US5135295A (en) Fiber-optic piezoelectric devices
CN109890619A (zh) 用于声泳打印的设备和方法
JP5693081B2 (ja) 振動発生装置、その駆動方法、異物除去装置および光学装置
CN104396039A (zh) 压电器件、压电致动器、硬盘驱动器、喷墨打印机装置和压电传感器
Chabok et al. Ultrasound transducer array fabrication based on additive manufacturing of piezocomposites
EP2591475A2 (en) Multimaterial thermally drawn piezoelectric fibers
Zhu et al. New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array [Correspondence]
CN110119044A (zh) 微阵列压电陶瓷光纤声光调制器及其制造方法
Mirza et al. Dice-and-fill processing and characterization of microscale and high-aspect-ratio (K, Na) NbO3-based 1–3 lead-free piezoelectric composites
CN103041978A (zh) 聚焦型超声换能器及其制备方法
JPWO2016190110A1 (ja) 圧電薄膜、圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法
Xu et al. Micromachined high frequency 1–3 piezocomposite transducer using picosecond laser
CN104395087A (zh) 压电器件、压电致动器、硬盘驱动器、喷墨打印机装置和压电传感器
CN103252997A (zh) 一种液体喷头及其制造方法
CN109656032A (zh) 基于微型压电换能器阵的纤维集成Mach-Zehnder强度调制器
KR100570585B1 (ko) 강유전성 단결정 막 구조물 제조 방법
JP6281629B2 (ja) 圧電薄膜付き基板、圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび強誘電体薄膜の製造方法
Bradley et al. Application of low-temperature processed 0–3 composite piezoelectric thick films in flexible, nonplanar, high-frequency ultrasonic devices
Lam et al. Piezoelectrically actuated ejector using PMN–PT single crystal
CN109557741A (zh) 基于微型压电换能器阵的纤维集成Michelson强度调制器
CN109721371A (zh) 一种压电陶瓷阵列的制备方法
JP3319223B2 (ja) 圧電素子およびその製造方法
CN110119039A (zh) 螺旋微阵列模式调制型光纤涡旋场发生器
Sayer et al. Macroscopic actuators using thick piezoelectric coatings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190813

WD01 Invention patent application deemed withdrawn after publication