CN110116216A - 一种氮化硼纳米管-银杂化颗粒材料的制备方法 - Google Patents
一种氮化硼纳米管-银杂化颗粒材料的制备方法 Download PDFInfo
- Publication number
- CN110116216A CN110116216A CN201810117805.2A CN201810117805A CN110116216A CN 110116216 A CN110116216 A CN 110116216A CN 201810117805 A CN201810117805 A CN 201810117805A CN 110116216 A CN110116216 A CN 110116216A
- Authority
- CN
- China
- Prior art keywords
- tube
- boron nitride
- nitride nano
- silver
- sodium borohydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
- C23C18/44—Coating with noble metals using reducing agents
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Fibers (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明实施例提供一种氮化硼纳米管‑银杂化颗粒的制备方法,涉及纳米材料制备技术领域。其中,该方法包括:按照氮化硼纳米管与硝酸银的质量比100:1~10,将氮化硼纳米管的溶液与硝酸银混合,加入硼氢化钠,搅拌,反应1~4h,过滤,干燥,得到氮化硼纳米管‑银杂化颗粒,其中,硼氢化钠与硝酸银的质量比为1~2:1。利用硼氢化钠作为还原剂还原硝酸银,使生成的银纳米颗粒沉积在氮化硼纳米管上面,工艺简单,适合大批量生产。
Description
技术领域
本发明属于纳米材料制备技术领域,尤其涉及一种氮化硼纳米管-银杂化颗粒的制备方法。
背景技术
金属纳米粒子由于具有量子尺寸效应、体积效应、表面效应,可以应用于磁学、光学、热学等领域。将金属纳米粒子与无机材料相结合,可使得无机材料的性能大大改善。氮化硼纳米管作为无机材料,与碳纳米管具有相似的管状结构,不仅具有类似于碳纳米管的导热、机械性能,还具有良好的化学稳定性,优良的绝缘性,较低的热膨胀系数,良好的耐腐蚀性等优良性能。
但是现有的氮化硼纳米管银杂化颗粒的制备方法繁琐、工艺复杂,不能满足各行各业的需求。
发明内容
本发明提供一种氮化硼纳米管-银杂化颗粒的制备方法,旨在解决现有的制备方法繁琐、工艺复杂的问题。
本发明提供的一种氮化硼纳米管-银杂化颗粒的制备方法,包括:
按照氮化硼纳米管与硝酸银的质量比100:1~10,将氮化硼纳米管的溶液与硝酸银混合;
加入硼氢化钠,搅拌,反应1~4h,过滤,干燥,得到氮化硼纳米管-银杂化颗粒;其中,硼氢化钠与硝酸银的质量比为1~2:1。
本发明提供的一种氮化硼纳米管-银杂化颗粒的制备方法,利用硼氢化钠作为还原剂还原硝酸银,使生成的银纳米颗粒沉积在氮化硼纳米管上面,工艺简单,适合大批量生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例。
图1是本发明实施例1制备得到的氮化硼纳米管-银杂化颗粒的透射电镜测试图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的一种氮化硼纳米管-银杂化颗粒的制备方法,该方法包括:
步骤一、按照氮化硼纳米管与硝酸银的质量比100:1~10,将氮化硼纳米管的溶液与硝酸银混合;
步骤二、加入硼氢化钠,搅拌,反应1~4h,过滤,干燥,得到氮化硼纳米管-银杂化颗粒;
其中,硼氢化钠与硝酸银的质量比为1~2:1。
本发明提供的一种氮化硼纳米管-银杂化颗粒的制备方法,利用硼氢化钠作为还原剂还原硝酸银,使生成的银纳米颗粒沉积在氮化硼纳米管上面,得到的氮化硼纳米管-银杂化颗粒中银的直径为5~15nm,银纳米颗粒占氮化硼纳米管-银杂化颗粒的质量百分比为0.1~0.5%。上述制备方法简单,适合大批量生产。
具体地,步骤一中,氮化硼纳米管的溶液选用的溶剂为异丙醇、去离子水和乙醇中的任意一种。氮化硼纳米管溶液的浓度为0.1~0.5mg/mL。氮化硼纳米管的直径为30~60nm,长度为0.2~1.2um。优选地,氮化硼纳米管溶液的浓度为0.3mg/mL。氮化硼纳米管的直径为60nm,长度为1um。
具体地,步骤二中,硼氢化钠选用浓度为0.01~0.05mg/mL的硼氢化钠溶液,优选为0.04mg/mL。搅拌速率为300~500rpm,干燥温度为50~80摄氏度,优选地,搅拌速率为500rpm,干燥温度为50摄氏度。
优选地,硼氢化钠与硝酸银的质量比为1.5:1。
实施例1
称取50mg直径为40nm长度为0.7um的氮化硼纳米管置于烧杯中,加入100mL异丙醇,超声24h,得到浓度为0.5mg/mL的氮化硼纳米管分散液。
按照氮化硼纳米管与硝酸银的质量比100:5,取氮化硼纳米管分散液和浓度为0.03mg/mL硝酸银溶液混合,在转速为400rpm的条件下进行磁力搅拌,并滴加浓度为0.04mg/mL硼氢化钠溶液(硼氢化钠与硝酸银的质量比为1.5:1),反应1h,过滤,在50摄氏度的条件下烘干,得到氮化硼纳米管-银杂化颗粒。
对实施例1制备得到的氮化硼纳米管-银杂化颗粒材料进行TEM(透射电镜)测试,如图1所示,图1为实施例1制备到的得到的氮化硼纳米管-银杂化颗粒的透射电镜测试图。由图1可以看出,实施例1制备得到的氮化硼纳米管-银杂化颗粒中,沉积在氮化硼纳米管上的银纳米颗粒的尺寸为5nm~15nm。
实施例2
称取10mg直径为30nm长度为0.2um的氮化硼纳米管置于烧杯中,加入100mL异丙醇,超声48h,得到浓度为0.1mg/mL的氮化硼纳米管分散液。
按照氮化硼纳米管与硝酸银的质量比100:1,取氮化硼纳米管分散液和浓度为0.04mg/mL硝酸银溶液混合,在转速为500rpm的条件下进行磁力搅拌,并滴加浓度为0.01mg/mL硼氢化钠溶液(硼氢化钠与硝酸银的质量比为2:1),反应2h,过滤,在80摄氏度的条件下烘干,得到氮化硼纳米管-银杂化颗粒。
实施例3
称取30mg直径为60nm长度为1.2um的氮化硼纳米管置于烧杯中,加入100mL异丙醇,超声36h,得到浓度为0.3mg/mL的氮化硼纳米管分散液。
按照氮化硼纳米管与硝酸银的质量比100:10,取氮化硼纳米管分散液和浓度为0.02mg/mL硝酸银溶液混合,在转速为500rpm的条件下进行磁力搅拌,并滴加浓度0.05mg/mL的硼氢化钠溶液(硼氢化钠与硝酸银的质量比为1:1),反应4h,过滤,在60摄氏度的条件下烘干,得到氮化硼纳米管-银杂化颗粒。
对实施例1~3制备得到的氮化硼纳米管-银杂化颗粒材料作为聚合物(纤维素)的导热填料,并对其进行导热性能测试,如表1所示,表1为实施例1~3制备得到的氮化硼纳米管-银杂化颗粒作为聚合物(纤维素)导热填料的导热系数表。由表1可以看出,实施例1制备得到的氮化硼纳米管-银杂化颗粒作为聚合物(纤维素)的导热填料,在其掺入量为25wt%时,其导热系数提高至18.816Wm-1K-1。
表1
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (9)
1.一种氮化硼纳米管-银杂化颗粒的制备方法,其特征在于,所述方法包括:
按照氮化硼纳米管与硝酸银的质量比100:1~10,将氮化硼纳米管的溶液与硝酸银混合;
加入硼氢化钠,搅拌,反应1~4h,过滤,干燥,得到氮化硼纳米管-银杂化颗粒;
其中,硼氢化钠与硝酸银的质量比为1~2:1。
2.根据权利要求1所述的方法,其特征在于,氮化硼纳米管的溶液选用的溶剂为异丙醇、去离子水或乙醇中的任意一种。
3.根据权利要求1或2所述的方法,其特征在于,氮化硼纳米管溶液的浓度为0.1~0.5mg/mL。
4.根据权利要求1所述的方法,其特征在于,氮化硼纳米管的直径为30~60nm,长度为0.2~1.2um。
5.根据权利要求1所述的方法,其特征在于,硝酸银选用浓度为0.01~0.04mg/mL的硝酸银溶液。
6.根据权利要求1所述的方法,其特征在于,硼氢化钠选用浓度为0.01~0.05mg/mL的硼氢化钠溶液。
7.根据权利要求1所述的方法,其特征在于,搅拌速率为300~500rpm。
8.根据权利要求1所述的方法,其特征在于,干燥温度为50~80摄氏度。
9.根据权利要求1所述的方法,其特征在于,硼氢化钠与硝酸银的质量比为1.5:1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810117805.2A CN110116216B (zh) | 2018-02-06 | 2018-02-06 | 一种氮化硼纳米管-银杂化颗粒材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810117805.2A CN110116216B (zh) | 2018-02-06 | 2018-02-06 | 一种氮化硼纳米管-银杂化颗粒材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110116216A true CN110116216A (zh) | 2019-08-13 |
CN110116216B CN110116216B (zh) | 2022-08-12 |
Family
ID=67519365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810117805.2A Active CN110116216B (zh) | 2018-02-06 | 2018-02-06 | 一种氮化硼纳米管-银杂化颗粒材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110116216B (zh) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1493711A (zh) * | 2002-11-01 | 2004-05-05 | 中国科学院理化技术研究所 | 碳纳米管/银复合功能材料的制备方法 |
US20050220988A1 (en) * | 2004-03-31 | 2005-10-06 | Dodelet Jean P | Depositing metal particles on carbon nanotubes |
CN1854241A (zh) * | 2005-04-28 | 2006-11-01 | 鸿富锦精密工业(深圳)有限公司 | 热介面材料及其制备方法 |
US20100051879A1 (en) * | 2006-11-22 | 2010-03-04 | The Regents od the Univesity of California | Functionalized Boron Nitride Nanotubes |
US20100196659A1 (en) * | 2007-04-23 | 2010-08-05 | Razeeb Kafil M | Thermal interface material |
US20110174701A1 (en) * | 2010-01-16 | 2011-07-21 | Clayton Gallaway | Metallized nanotubes |
CN103203462A (zh) * | 2013-03-21 | 2013-07-17 | 上海大学 | 氮化硼纳米片-银纳米颗粒复合材料的制备方法 |
CN104774470A (zh) * | 2015-03-25 | 2015-07-15 | 清华大学深圳研究生院 | 一种用于大功率led的密封剂及大功率led |
CN104889382A (zh) * | 2015-04-27 | 2015-09-09 | 中国科学院深圳先进技术研究院 | 六方氮化硼纳米片沉积纳米银颗粒复合材料的制备方法 |
CN106977771A (zh) * | 2017-04-11 | 2017-07-25 | 深圳先进技术研究院 | 氮化硼‑银/纤维素复合材料及其制备方法 |
CN107029708A (zh) * | 2017-03-30 | 2017-08-11 | 辽宁大学 | 一种碳纳米管负载银纳米粒子复合材料及其制备方法和应用 |
-
2018
- 2018-02-06 CN CN201810117805.2A patent/CN110116216B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1493711A (zh) * | 2002-11-01 | 2004-05-05 | 中国科学院理化技术研究所 | 碳纳米管/银复合功能材料的制备方法 |
US20050220988A1 (en) * | 2004-03-31 | 2005-10-06 | Dodelet Jean P | Depositing metal particles on carbon nanotubes |
CN1854241A (zh) * | 2005-04-28 | 2006-11-01 | 鸿富锦精密工业(深圳)有限公司 | 热介面材料及其制备方法 |
US20100051879A1 (en) * | 2006-11-22 | 2010-03-04 | The Regents od the Univesity of California | Functionalized Boron Nitride Nanotubes |
US20100196659A1 (en) * | 2007-04-23 | 2010-08-05 | Razeeb Kafil M | Thermal interface material |
US20110174701A1 (en) * | 2010-01-16 | 2011-07-21 | Clayton Gallaway | Metallized nanotubes |
CN103203462A (zh) * | 2013-03-21 | 2013-07-17 | 上海大学 | 氮化硼纳米片-银纳米颗粒复合材料的制备方法 |
CN104774470A (zh) * | 2015-03-25 | 2015-07-15 | 清华大学深圳研究生院 | 一种用于大功率led的密封剂及大功率led |
CN104889382A (zh) * | 2015-04-27 | 2015-09-09 | 中国科学院深圳先进技术研究院 | 六方氮化硼纳米片沉积纳米银颗粒复合材料的制备方法 |
CN107029708A (zh) * | 2017-03-30 | 2017-08-11 | 辽宁大学 | 一种碳纳米管负载银纳米粒子复合材料及其制备方法和应用 |
CN106977771A (zh) * | 2017-04-11 | 2017-07-25 | 深圳先进技术研究院 | 氮化硼‑银/纤维素复合材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110116216B (zh) | 2022-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10145029B2 (en) | Graphene fiber and prepartion method thereof | |
Younes et al. | Nanofluids: Key parameters to enhance thermal conductivity and its applications | |
Cheng et al. | Strong and thermostable SiC nanowires/graphene aerogel with enhanced hydrophobicity and electromagnetic wave absorption property | |
Zhang et al. | Ligand-directed construction of CNTs-decorated metal carbide/carbon composites for ultra-strong and broad electromagnetic wave absorption | |
Bitter et al. | Synthesis of highly loaded highly dispersed nickel on carbon nanofibers by homogeneous deposition–precipitation | |
CN105271175B (zh) | 一种碳纳米管的分散方法 | |
Song et al. | Multifunctional SiC nanofiber aerogel with superior electromagnetic wave absorption | |
CN109437159B (zh) | 一种石墨烯-碳纳米管双组份悬浮液的制备方法 | |
Li et al. | Superelastic and responsive anisotropic silica nanofiber/polyvinylpyrrolidone/MXene hybrid aerogels for efficient thermal insulation and overheating alarm applications | |
Yan et al. | One-step eco-friendly fabrication of classically monolithic silica aerogels via water solvent system and ambient pressure drying | |
Abdullah et al. | Thermal conductivity and viscosity of deionized water and ethylene glycol-based nanofluids | |
Chen et al. | Large-scale and low-cost synthesis of in situ generated SiC/C nano-composites from rice husks for advanced electromagnetic wave absorption applications | |
CN109852835B (zh) | 一种石墨烯/铜纳米复合材料的制备方法 | |
An et al. | Multifunctional C/SiO 2/SiC-based aerogels and composites for thermal insulators and electromagnetic interference shielding | |
Jiang et al. | Composite fibers prepared from multi-walled carbon nanotubes/cellulose dispersed/dissolved in ammonium/dimethyl sulfoxide mixed solvent | |
Ahlatli et al. | Thermal performance of carbon nanotube nanofluids in solar microchannel collectors: an experimental study | |
Dou et al. | A green method for preparation of CNT/CS/AgNP composites and evaluation of their catalytic performance | |
CN114453000A (zh) | 一种氮掺杂介孔空心碳球负载金属基纳米催化剂及其制备方法 | |
CN110715005B (zh) | 一种具有取向结构的高导热铜基刹车片的制备方法 | |
Liu et al. | Electromagnetic interference shielding property of silver nanowires/polymer foams with low thermal conductivity | |
KR101836670B1 (ko) | 나노소재, 이의 제조방법, 및 이를 포함하는 나노유체 | |
CN110116216A (zh) | 一种氮化硼纳米管-银杂化颗粒材料的制备方法 | |
Luo et al. | High‐performance, multifunctional, and designable carbon fiber felt skeleton epoxy resin composites EP/CF‐(CNT/AgBNs) x for thermal conductivity and electromagnetic interference shielding | |
Surakasi et al. | Stability and Thermo-Physical Properties of Ethylene Glycol Based Nanofluids for Solar Thermal Applications. | |
Yuan et al. | Structure regulation and microwave absorption property of SiCN ceramic aerogels produced by catalytic pyrolysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |