CN110111561A - 一种基于som-pam聚类算法的路网动态划分方法 - Google Patents

一种基于som-pam聚类算法的路网动态划分方法 Download PDF

Info

Publication number
CN110111561A
CN110111561A CN201910238795.2A CN201910238795A CN110111561A CN 110111561 A CN110111561 A CN 110111561A CN 201910238795 A CN201910238795 A CN 201910238795A CN 110111561 A CN110111561 A CN 110111561A
Authority
CN
China
Prior art keywords
intersection
sub
district
traffic
road network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910238795.2A
Other languages
English (en)
Inventor
郭海锋
黄纪勇
乔洪帅
王奇
刘玉新
杨宪赞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910238795.2A priority Critical patent/CN110111561A/zh
Publication of CN110111561A publication Critical patent/CN110111561A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Traffic Control Systems (AREA)

Abstract

基于SOM‑PAM聚类算法的交通子区动态划分方法,首先对交叉口数据进行预处理并将其用于交叉口交通流状态矩阵数据集的构建;然后利用SOM神经网络对交叉口进行路网子区的初划分;接着根据路网的拓扑结构和交通流特性识别初划分子区的关键交叉口;最后构建相邻交叉口关联度模型,将关键交叉口的关键关联度作为PAM算法的中心点,利用初划分的子区数目完成对路网的二次划分。本发明解决了现有部分方法无法充分挖掘交叉口交通流特性和阈值设置无法界定的缺点,充分利用了交通流状态中的静态特性和动态特性,通过SOM神经网络和PAM算法的二次聚类有效提高了交通流预测的精度和效率。

Description

一种基于SOM-PAM聚类算法的路网动态划分方法
技术领域
本发明涉及一种基于SOM-PAM聚类算法的交通子区动态划分方法。
技术背景
在当前社会经济高速发展的背景下,随着国民经济生活水平的提高,汽车保有量以及其夸张的速度增长,加剧了不完善的城市道路设施体系与不断增长的城市交通需求之间的矛盾,导致城市交通拥堵问题越来越严重,不再表现在路网的部分道路,而是扩散成为了一个区域性的交通难题。区域之间的协调控制是缓解交通拥堵问题的重要方式,其中控制子区的划分是协调控制的基础,对城市路网的全局控制具有重要意义。
现有的控制子区的划分方法主要分为静态和动态两种方式。静态划分主要依据周期原则、距离原则、流量原则等进行划分,并且在控制期间子区内的交叉口是固定不变的。静态划分没有考虑到交通流动态变化,而且主要依据一些定性的标准属性,主观因素对划分结果有较大影响。动态划分是不仅考虑到交叉口的固有标准属性而且还考虑到交通流在时空上的特性,强调子区划分的实时性。
中国发明专利申请号201610171594.1公开了一种城市交通流过饱和状态下的交通控制子区划分方法,该方法利用路网中各个交叉口和路段的检测器实时数据,自动识别路口和路段拥堵等级,在以交叉口、路段的拥堵等级动态划分过饱和子区。这种方法是通过交叉口中各相位的主要流向饱和度和主要流向上游路段的排队比判断交叉口和路段的拥堵等级。虽然这种方法能够对路网进行动态划分子区,但是拥堵等级的阈值还是依靠人工经验来设定,无法科学确定划分指标阈值,无法避免人为因素对划分结果的干扰。
中国发明专利申请号201310478215.X公开了一种基于C-均值模糊聚类分析的控制子区动态划分方法,该方法对路网进行两层划分,通过交叉口类型、流量、相交道路等级确定核心交叉口,以核心交叉口为中心根据周期和距离两个指标形成多个子区,完成初步划分。以核心交叉口基于C-均值模糊聚类方法和计算隶属度矩阵进行聚类中心的更新迭代,最后判断收敛性完成二次划分。C-均值模糊聚类方法设计简单,解决问题范围广,但是自身仍存在诸多问题,强烈依赖初始化数据的好坏,无法自主确定聚类数目和容易陷入局部鞍点等,仍然需要进一步的研究。
中国发明专利申请号201810294784.1公开了一种基于谱聚类的城市道路交通子区划分方法,该方法通过建立路网无向图,计算路网密度拉普拉斯矩阵提取特征值,获得子区数目,再通过谱聚类算法原理构建相似度矩阵,经过多重约束条件和相似度的迭代评估,最终完成控制子区的划分。尽管谱聚类算法对处理稀疏数据和高维数据复杂度有很好的效果,但是聚类效果过于依赖相似矩阵,不同的相似矩阵得到的最终聚类效果不同,仍需要进一步研究。
综上所述,路网交通子区的划分目前尚存在着如下若干问题:1)如何减少人工因素对子区划分结果的影响;2)如何尽可能科学合理的确定聚类数目和聚类中心;3)如何避免数据输入顺序对最终聚类效果的影响。
发明内容
本发明为克服现有技术的上述不足之处,提供一种基于SOM-PAM(自组织映射神经网络与基于中心点划分)聚类算法的交通子区动态划分方法。该方法通过自组织映射神经网络对交叉口交通流的静态特性和动态特性进行初次聚类划分,再通过识别关键交叉口确定聚类中心,最后通过相邻交叉口关联度模型利用PAM算法基于已经得到的聚类中心和聚类数目进行再次优化划分子区,充分挖掘交叉口的交通流特性,克服现有方法人为因素的干扰,从而提高子区划分的速度和精度。
本发明解决其技术问题所采用的技术方案是:
一种基于SOM-PAM聚类算法的交通子区动态划分方法,含有以下步骤:
1)在多种工况下,通过传感器设备,采集路网内交叉口同一天的某个时刻下的交通流数据,包括流量、饱和度和周期数据。
2)在步骤1)基础上,使用SOM神经网络聚类算法,对该算法的相关参数进行初始化,并将步骤1)中的检测器数据作为输入量进行聚类,得到路网初次划分子区的结果。
3)在步骤2)基础上,通过路网拓扑结构和交通流特性对交叉口进行等级排序,识别路网初次划分子区中的关键交叉口。
4)在步骤1)和3)的基础上,选取相邻交叉口关联度模型与关键交叉口的关键关联度。
5)在步骤2)和3)的基础上,使用PAM聚类算法,将步骤2)的初划分子区数目当作聚类数目,步骤3)中的关联度模型和关键关联度当作数据集和聚类中心,得到最终的子区划分结果。
在步骤1)中,不限于多个地区、多个季节、多种天气以及一天中的多个时间段;所述的传感器设备包括但不限于地磁传感器、微波传感器、线圈传感器以及此类的相关设备。
在步骤2)中,SOM神经网络聚类迭代过程包括以下步骤:
(2.1)神经网络初始化,初始化权向量,领域函数和学习率,对输入向量和权向量进行归一化处理:
M(t)=a-a*t/m (1)
η(t)=e-M*(0.3/(t+1)) (2)
式中:M(t)代表领域函数,t代表迭代次数,a和m分别代表初始的领域距离和总迭代次数,η(t)代表学习率函数,x′i和w′j分别代表输入向量和权向量的归一化的值,||xi||和||wj||分别代表输入向量和权向量的欧式范数;
(2.2)计算映射层的权向量和输入向量的欧式距离;
(2.3)通过距离最小原则确定获胜神经元c,并调整权值;
w'j(t+1)=w'j(t)+η(t)M(t)(xi-w'j(t)) (4)
(2.4)更新学习率和领域函数并对更新过后的权值归一化,返回步骤(2.2)直到获胜神经元不变或学习率为零。
在步骤3)中,通过计算交叉口的关键度进行排序得到关键交叉口,交叉口i的关键度εi的计算公式为:
式中:a1代表交叉口i的拓扑值所占权重,表示交叉口i拓扑值排序等级,a2代表交叉口流量所占权重(a1+a2=1),代表交叉口i的流量排序等级。
在步骤4)中,相邻交叉口i和j有关流量,周期和密度的关联度Iq(i,j),Ic(i,j)和Id(i,j),其方程式如(6)(7)(8)所示:
式中:T代表交叉口间的行程时间,qmax代表上游交叉口最大交通量,代表下游交叉口进口道车道组交通流量,n代表交叉口进口道上游关联流向数,Ci和Cj分别代表交叉口i和j的周期时长,Qij代表交叉口间的路段流量,Lij代表交叉口间的间距。
在步骤5)中,PAM聚类算法的聚类迭代过程包括以下步骤:
(5.1)将步骤2)得到子区数目k作为聚类数目,步骤3)的关键关联度作为初始聚类中心;
(5.2)计算除去类中心的样本点与这k个类中心的距离d(X,C);
(5.3)更换聚类中心后,计算前后d(X,C)的差值,若差值不再发生变化,则算法结束,否则返回步骤(5.2),继续进行计算,直到差值不再发生变化。
本发明的有益效果:
(1)本方法通过SOM算法和PAM算法的无监督学习,实现城市交通控制系统自动地动态划分控制子区;(2)通过识别关键交叉口对路网子区动态划分提高效率;(3)通过SOM算法和PAM算法进行两步聚类划分,减少主观因素对聚类结果的影响,提高子区动态划分的精度。
附图说明
图1是本发明的方法流程图;
图2是本发明的路网示意图;
图3是本发明的各个交叉口流量分布图;
图4是本发明的各个交叉口周期分布图;
图5是本发明的各个交叉口饱和度分布图;
图6是本发明的相邻交叉口流量关联度情况图;
图7是本发明的相邻交叉口周期关联度情况图;
图8是本发明的相邻交叉口密度关联度情况图;
图9是本发明的路网划分子区结果示意图;
图10是本发明的划分子区前后各个交叉口的平均延误对比图。
具体实施方式
为说明本发明的技术特点,下面结合附图对本发明的具体实施步骤进一步的描述。此处所描述的具体实施案例仅仅用于解释本发明,而不是限定本发明。
对于本案例,基于SOM-PAM聚类算法的交通子区动态划分方法含有以下步骤,如附图1所示:
1)在多种工况下,通过传感器设备,采集路网内交叉口同一天的某个时刻下的交通流数据,包括流量、饱和度和周期数据。
2)在步骤1)基础上,使用SOM神经网络聚类算法,对该算法的相关参数进行初始化,并将步骤1)中的检测器数据作为输入量进行聚类,得到路网初次划分子区的结果。
3)在步骤2)基础上,通过路网拓扑结构和交通流特性对交叉口进行等级排序,识别路网初次划分子区中的关键交叉口。
4)在步骤1)和3)的基础上,选取相邻交叉口关联度模型与关键交叉口的关键关联度。
5)在步骤2)和3)的基础上,使用PAM聚类算法,将步骤2)的初划分子区数目当作聚类数目,步骤3)中的关联度模型和关键关联度当作数据集和聚类中心,得到最终的子区划分结果。
步骤1)中,数据采集点的是杭州市西湖区某个路网20个交叉口如附图2所示,时间为2018年11月某一天的检测器的某个周期;所述传感器设备包括线圈传感器和地磁传感器。
步骤1)中所述的各个交叉口流量分布图如附图3所示,周期分布图如附图4所示,饱和度分布图如附图5所示。
步骤2)中,SOM神经网络聚类迭代过程包括以下步骤:
(2.1)神经网络初始化,初始化权向量,领域函数和学习率,对输入向量和权向量进行归一化处理:
M(t)=a-a*t/m (1)
η(t)=e-M(t)*(0.3/(t+1)) (2)
式中:wj代表神经元对应的权向量,t代表迭代次数,M(t)代表领域函数,a可取0.3和m可以取1000,η(t)代表学习率函数,x′i和w′j分别代表输入向量和权向量的归一化的值,||xi||和||wj||分别代表输入向量和权向量的欧式范数。
(2.2)计算映射层的权向量和输入向量的欧式距离:
(2.3)通过距离最小原则确定获胜神经元c,并调整权值
w'j(t+1)=w'j(t)+η(t)M(t)(xi-w'j(t)) (4)
(2.4)更新学习率和领域函数并对更新过后的权值归一化,返回步骤(2.2)直到获胜神经元不变或学习率为零。
步骤2)中,输入样本的数据类别包含:流量,周期,饱和度。
步骤2)中,所述的SOM神经网络聚类算法完成聚类后,在该案例情况下,计算所得到的聚类数目k=3.聚类中心矩阵V1=[3,4,16]
步骤3)中,交叉口i的关键度εi的计算公式为:
式中:a1代表交叉口i的拓扑值所占权重,表示交叉口i拓扑值排序等级,a2代表交叉口流量所占权重(a1+a2=1),代表交叉口i的流量排序等级。
步骤3)中,依据关键度排序得到关键交叉口集为A=[4,14,20]。
步骤4)中,相邻交叉口i和j有关流量,周期和密度的关联度Iq(i,j),Ic(i,j)和Id(i,j),其方程式如(6)(7)(8)所示:
式中:T代表交叉口间的行程时间,qmax代表上游交叉口最大交通量,代表下游交叉口进口道车道组交通流量,n代表交叉口进口道上游关联流向数,Ci和Cj分别代表交叉口i和j的周期时长,Qij代表交叉口间的路段流量,Lij代表交叉口间的间距。
步骤4)中相邻交叉口流量关联度分布图如附图6所示,周期分布图如附图7所示,密度分布图如附图8所示。
步骤5)中,PAM聚类算法的聚类迭代过程包括一下步骤:
(5.1)将步骤2)得到子区数目作为聚类数目,步骤4)的关键关联度作为初始聚类中心;
(5.2)计算除去类中心的样本点与这k个类中心的距离d(X,C);
(5.3)更换聚类中心后,计算前后d(X,C)的差值,若差值不再发生变化,则算法结束,否则返回步骤(5.2),继续进行计算,直到差值不再发生变化。
步骤5)中,所述的PAM聚类算法完成聚类后,在该案例情况下,计算所得到的聚类中心矩阵V2=[[0.63,0.54,2.85],[0.75,0.54,9.47],[0.65,0.75,20.2]]。
对于本案例,在完成划分方法的建立之后,对指定的路网进行动态划分子区时包括以下步骤:
1)通过上述建立的划分方法流程中步骤1)所述方法,采集当前时间下指定路网交叉口的流量、饱和度和周期数据。
2)通过上述建立的划分方法流程中步骤2)所述SOM神经网络聚类算法,计算出聚类数目和聚类中心。
3)通过上述建立的划分方法流程中步骤3)所述方法,识别初次聚类划分中的关键交叉口。
4)通过上述建立的划分方法流程中步骤4)所述方法,计算出相邻交叉口基于流量、周期和密度的关联度值和关键交叉口的关键关联度值。
5)通过上述建立的划分方法流程中步骤5)所述PAM聚类算法,计算出聚类中心并依据聚类中心得到对应的类即为路网划分子区的最终结果。
根据上述所述的步骤,对杭州市西湖区选取路网的某一次实验进行分类,其划分结果如附图9所示,划分子区前后各个交叉口平均延误对比图如附图10所示。
本案例的实验结果表明,通过SOM-PAM聚类算法对路网进行聚类划分,从而得到的子区划分结果,不但改善了以往划分方法的不足,同时也对路网运行状况得到了改善。因此,本发明能够准确的对路网子区进行动态划分,缓解城市路网的交通压力。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (2)

1.一种基于SOM-PAM聚类算法的交通子区动态划分方法,包括以下步骤:
1)通过传感器设备,采集交叉口交通流数据,获得交叉口交通流数据样本集;
2)结合实际情况对SOM神经网络进行初始化,并将所述采集的交叉口交通流数据样本集带入SOM神经网络模型进行计算,获得路网的初次划分结果;SOM神经网络聚类迭代过程包括以下步骤:
(2.1)神经网络初始化,初始化权向量,领域函数和学习率,对输入向量和权向量进行归一化处理;
M(t)=a-a*t/m (1)
η(t)=e-M(t)*(0.3/(t+1)) (2)
式中:M(t)代表领域函数,t代表迭代次数,a和m分别代表初始的领域距离和总迭代次数,η(t)代表学习率函数,x′i和w′j分别代表输入向量和权向量的归一化的值,||xi||和||wj||分别代表输入向量和权向量的欧式范数;
(2.2)计算映射层的权向量和输入向量的欧式距离;
(2.3)通过距离最小原则确定获胜神经元,并调整权值;
w'j(t+1)=w'j(t)+η(t)M(t)(xi-w'j(t)) (4)
(2.4)更新学习率和领域函数并对更新过后的权值归一化,返回步骤(2.2)直到获胜神经元不变或学习率为零。
3)在步骤2)基础上,通过路网拓扑结构和交通流特性对交叉口进行等级排序,识别路网初次划分子区中的关键交叉口;通过计算交叉口的关键度进行排序得到关键交叉口,交叉口i的关键度εi的计算公式为:
式中:a1代表交叉口i的拓扑值所占权重,表示交叉口i拓扑值排序等级,a2代表交叉口流量所占权重(a1+a2=1),代表交叉口i的流量排序等级。
4)通过采集的交叉口交通流数据建立相邻交叉口关联度样本集,再通过步骤3)的关键交叉口得到关键关联度;相邻交叉口i和j有关流量,周期和密度的关联度Iq(i,j),Ic(i,j)和Id(i,j),其方程式如(6)(7)(8)所示:
式中:T代表交叉口间的行程时间,qmax代表上游交叉口最大交通量,代表下游交叉口进口道车道组交通流量,n代表交叉口进口道上游关联流向数,Ci和Cj分别代表交叉口i和j的周期时长,Qij代表交叉口间的路段流量,Lij代表交叉口间的间距。
5)将步骤1)和步骤4)中的子区数目和关键关联度作为输入聚类数目和聚类中心点,并将步骤4)的相邻交叉口关联度样本集带入PAM模型进行计算,聚类中心对应的类即为当前路网动态划分的子区;PAM聚类算法的聚类迭代过程包括以下步骤:
(5.1)将步骤2)得到子区数目k作为聚类数目,步骤3)的关键关联度作为初始聚类中心;
(5.2)计算除去类中心的样本点与这k个类中心的距离d(X,C);
(5.3)更换聚类中心后,计算前后d(X,C)的差值,若差值不再发生变化,则算法结束,否则返回步骤(5.2),继续进行计算,直到差值不再发生变化。
2.如权利要求1所述,其特征在于:在步骤1)中,实验环境不限于多个地区、多个季节、多种天气以及一天中的多个时间段;所述的传感器设备包括但不限于地磁传感器、微波传感器、线圈传感器以及此类的相关设备。
CN201910238795.2A 2019-03-27 2019-03-27 一种基于som-pam聚类算法的路网动态划分方法 Pending CN110111561A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910238795.2A CN110111561A (zh) 2019-03-27 2019-03-27 一种基于som-pam聚类算法的路网动态划分方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910238795.2A CN110111561A (zh) 2019-03-27 2019-03-27 一种基于som-pam聚类算法的路网动态划分方法

Publications (1)

Publication Number Publication Date
CN110111561A true CN110111561A (zh) 2019-08-09

Family

ID=67484615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910238795.2A Pending CN110111561A (zh) 2019-03-27 2019-03-27 一种基于som-pam聚类算法的路网动态划分方法

Country Status (1)

Country Link
CN (1) CN110111561A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110942627A (zh) * 2019-11-27 2020-03-31 北京建筑大学 一种动态交通的路网协调信号控制方法及装置
CN110992698A (zh) * 2019-12-26 2020-04-10 北京工业大学 基于Apriori支持度与行驶距离加权计算交叉口间关联程度的方法
CN113553350A (zh) * 2021-05-27 2021-10-26 四川大学 一种相似演化模式聚类及动态时区划分的交通流分区模型

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138486A (ja) * 2009-12-28 2011-07-14 Nec (China) Co Ltd 交差点とセクションに基づくトラフィック情報の処理方法と装置
CN102592447B (zh) * 2011-12-20 2014-01-29 浙江工业大学 一种基于fcm的区域路网的道路交通状态判别方法
CN102722986B (zh) * 2012-06-28 2014-04-30 吉林大学 城市路网交通控制子区动态划分方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138486A (ja) * 2009-12-28 2011-07-14 Nec (China) Co Ltd 交差点とセクションに基づくトラフィック情報の処理方法と装置
CN102592447B (zh) * 2011-12-20 2014-01-29 浙江工业大学 一种基于fcm的区域路网的道路交通状态判别方法
CN102722986B (zh) * 2012-06-28 2014-04-30 吉林大学 城市路网交通控制子区动态划分方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
张钊,王锁柱,张雨: "张钊,王锁柱,张雨", 《计算机应用》 *
苏新宁: "《数据挖掘理论与技术》", 30 June 2003, 科学技术文献出版社 *
钟茹: "路网中关键节点和重要路段的分析研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
陈珊珊: "城市道路区域交通信号控制的动态子区划分", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110942627A (zh) * 2019-11-27 2020-03-31 北京建筑大学 一种动态交通的路网协调信号控制方法及装置
CN110942627B (zh) * 2019-11-27 2020-11-03 北京建筑大学 一种动态交通的路网协调信号控制方法及装置
CN110992698A (zh) * 2019-12-26 2020-04-10 北京工业大学 基于Apriori支持度与行驶距离加权计算交叉口间关联程度的方法
CN113553350A (zh) * 2021-05-27 2021-10-26 四川大学 一种相似演化模式聚类及动态时区划分的交通流分区模型
CN113553350B (zh) * 2021-05-27 2023-07-18 四川大学 一种相似演化模式聚类及动态时区划分的交通流分区模型

Similar Documents

Publication Publication Date Title
CN112561146B (zh) 一种基于模糊逻辑和深度lstm的大规模实时交通流预测方法
CN108710875B (zh) 一种基于深度学习的航拍公路车辆计数方法及装置
CN110458048A (zh) 顾及城镇格局特征的人口分布时空演变与认知
CN109816984B (zh) 一种交通路网区域划分及动态调整方法
CN109410577B (zh) 基于空间数据挖掘的自适应交通控制子区划分方法
CN106251625B (zh) 大数据环境下立体城市交通路网全局状态预测方法
CN106373397B (zh) 基于模糊神经网络的遥感图像道路通行情况分析方法
CN109977812A (zh) 一种基于深度学习的车载视频目标检测方法
CN107247938A (zh) 一种高分辨率遥感影像城市建筑物功能分类的方法
CN110097755A (zh) 基于深度神经网络的高速公路交通流量状态识别方法
CN110111561A (zh) 一种基于som-pam聚类算法的路网动态划分方法
CN109711640A (zh) 一种基于模糊c均值交通流量聚类以及误差反馈卷积神经网络的短时交通流预测方法
CN105513370B (zh) 基于稀疏车牌识别数据挖掘的交通小区划分方法
CN108427965A (zh) 一种基于路网聚类的热点区域挖掘方法
CN107437339A (zh) 一种信息引导下的可变信息情报板协调控制方法及系统
CN110288202A (zh) 一种城市公园绿地设施状态评估优化方法
CN108537383A (zh) 一种基于模型融合的室内空气预测方法
CN103500344A (zh) 一种遥感影像信息提取与解译方法及其模块
CN105427309A (zh) 面向对象高空间分辨率遥感信息提取的多尺度分层处理方法
CN106503829A (zh) 一种基于多源数据的城市公共开放空间的拥挤度预测方法
CN109785618A (zh) 一种基于组合逻辑的短时交通流预测方法
CN109657616A (zh) 一种遥感影像土地覆盖自动分类方法
CN103824450B (zh) 基于交通状态规则的大型活动专用行车线路规划方法
CN109740289A (zh) 一种集成线、面模式的道路网选取方法
CN109191849A (zh) 一种基于多源数据特征提取的交通拥堵持续时间预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190809

RJ01 Rejection of invention patent application after publication