CN110106572B - 一种周期性发光复合材料的制备方法 - Google Patents

一种周期性发光复合材料的制备方法 Download PDF

Info

Publication number
CN110106572B
CN110106572B CN201910339376.8A CN201910339376A CN110106572B CN 110106572 B CN110106572 B CN 110106572B CN 201910339376 A CN201910339376 A CN 201910339376A CN 110106572 B CN110106572 B CN 110106572B
Authority
CN
China
Prior art keywords
composite material
pvdf
hfp
pbbr
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910339376.8A
Other languages
English (en)
Other versions
CN110106572A (zh
Inventor
崔小强
郭子旺
王峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201910339376.8A priority Critical patent/CN110106572B/zh
Publication of CN110106572A publication Critical patent/CN110106572A/zh
Application granted granted Critical
Publication of CN110106572B publication Critical patent/CN110106572B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/48Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons

Abstract

本发明涉及一种新型周期性发光复合材料的制备,属于发光材料制备技术领域。所述的复合材料通过静电纺丝技术原位合成CH3NH3PbBr3纳米晶有序的排布在聚合物偏二氟乙烯‑聚六氟丙烯(PVDF‑HFP)纳米纤维上,从而形成周期性发光的复合材料。本发明所制备的复合材料不仅工艺简单而且稳定性好。本发明所获得的周期性发光的复合材料,在发光二极管、传感器、激光器以及高性能光电器件等领域有着广阔的应用前景。

Description

一种周期性发光复合材料的制备方法
技术领域
本发明涉及一种新型周期性发光的复合材料的制备方法,属于发光材料制备技术领域。
背景技术
有机-无机杂化钙钛矿材料从分子尺度上结合了有机材料和无机材料的优点,其独特的无机层和有机层交替堆积形成的量子阱结构使其在量子约束效应和介电约束效应双重作用下,具有独特的光电性能。研究发现CH3NH3PbBr3钙钛矿具有高吸收系数及大的载流子迁移率,使其在光伏领域有着很大的应用潜力。另外CH3NH3PbBr3钙钛矿由于其高色纯度、可调控带隙、半峰宽窄等特点,并且可以通过对有机组分和无机组分进行调控从而实现发光特性的调控,在发光二极管、光电探测器以及激光器等领域有着巨大的应用前景。然而,由于钙钛矿材料的不稳定性以及其制成的发光器件的稳定性差,发光效率低,甚至,发光之间的干扰等等都制约着其在光电领域的发展。因此提升钙钛矿纳米晶分散性和稳定性成为目前研究的重要方向。
发明内容
本发明的目的是提出一种周期性发光的复合材料的制备方法,实现了CH3NH3PbBr3纳米晶在聚合物PVDF-HFP纳米纤维上的原位合成,并有序的分布在聚合物纳米纤维上。
本发明采用如下技术方案:一种周期性发光的复合材料的制备方法,该方法为:将聚合物PVDF-HFP加入到钙钛矿前驱体溶液中,得到纺丝液前驱体;将纺丝液前驱体置于注射器中,然后放入静电纺丝设备中进行静电纺丝,通过锡箔接收,得到周期性发光的复合材料;其中静电纺丝中金属针头作阳极,锡箔作阴极,电压为16KV,纺丝距离为15cm,注射速度为0.1~2mL/h。
进一步地,所述钙钛矿前驱体溶液为:将73.4mg PbBr2和67.2mg CH3NH3Br混合于N,N-二甲基甲酰胺中。
进一步地,纺丝液前驱体中,PVDF-HFP的质量分数为16%-20%。
进一步地,CH3NH3PbBr3纳米晶有序的分布在聚合物PVDF-HFP纳米纤维上。
本发明实现了通过静电纺丝原位合成CH3NH3PbBr3纳米晶并有序的排布在聚合物PVDF-HFP纳米纤维上,从而形成一种周期性发光的复合材料。本发明所制备的周期性发光的复合材料与传统发光材料相比有着较长的荧光寿命,较高的稳定性,更重要的,如此的分散性提升了光学分辨率。
附图说明
图1为本发明所制得的复合材料CH3NH3PbBr3/PVDF-HFP聚合物纳米纤维的X射线衍射(XRD)图;
图2为本发明所制得的复合材料CH3NH3PbBr3/PVDF-HFP聚合物纳米纤维的扫描电镜(SEM)图;
图3为本发明所制得的复合材料CH3NH3PbBr3/PVDF-HFP聚合物纳米纤维的共聚焦暗场和明场像;
图4为本发明所制得的复合材料CH3NH3PbBr3/PVDF-HFP聚合物纳米纤维的荧光光谱图(左)与荧光寿命图(右)。
具体实施方式
以下是本发明的具体实施例,并结合附图说明对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1
(1)将73.4mg PbBr2和67.2mg CH3NH3Br放入10mL样品瓶中,加入5mLN,N-二甲基甲酰胺(DMF),60℃恒温搅拌半小时,得到钙钛矿前驱体。
(2)再向上述前驱体中加入0.948g聚合物PVDF-HFP,60℃恒温搅拌2小时,得到纺丝液前驱体。
(3)取1mL上述纺丝液前驱体置于1mL的注射器中,然后放入静电纺丝设备中,设置电压为16KV,纺丝距离为15cm,注射速度为0.1mL/h,进行静电纺丝,在锡箔上收集到复合的CH3NH3PbBr3/PVDF-HFP聚合物纳米纤维。
本实施例所制备得到的CH3NH3PbBr3/PVDF-HFP聚合物纳米纤维进行X射线衍射(XRD),结果如图1所示。除了20°附近宽峰(来自PVDF-HFP),复合物的其它XRD峰位置和模拟的CH3NH3PbBr3一致性的,表明静电纺丝成功的合成了钙钛矿结构。
图2为本实施例制得的CH3NH3PbBr3/PVDF-HFP聚合物纳米纤维的扫描电镜(SEM)图。边缘纳米颗粒修饰的纳米级纤维被看到。图3为本实施例制得的CH3NH3PbBr3/PVDF-HFP聚合物纳米纤维的共聚焦暗场和明场像。通过从图3中可以看出,周期性发光能够在纤维上被实现,表明通过静电纺丝,已原位合成CH3NH3PbBr3纳米晶并有序的排列在聚合物纳米纤维上,得到了周期性发光的效果。图4为本实施例制得的CH3NH3PbBr3/PVDF-HFP聚合物纳米纤维的荧光光谱图与荧光寿命图。绿色发光光谱进一步证实了,我们所合的材料是周期性发光的聚合物复合材料。而且,此材料展现了较长的荧光寿命,可能得益于PVDF-HFP通过F-N偶极介导的钝化所致。这不仅提升了钙钛矿的分散性,克服光干扰,也将可能提升钙钛矿的稳定性,进而,提升光学应用潜力。也为分辨和研究单颗粒与界面的相互作用提供的可能。
在实施例1的基础上,作如下进一步研究,并发现:
1.固定纺丝距离,设置为15cm;固定注射速度,设置为0.1mL/h;通过改变两极电压得到的聚合物纳米纤维上钙钛矿纳米晶的间距不同。
当电压过大时钙钛矿纳米晶的分布过于密集;当电压过小时钙钛矿纳米晶的分布过于稀疏。
2.固定电场电压,设置为16KV;固定注射速度,设置为0.1mL/h;通过改变纺丝距离得到的聚合物纳米纤维上钙钛矿纳米晶的间距不同。
当纺丝距离过大时,钙钛矿纳米晶的分布过于稀疏;当纺丝距离过小时,钙钛矿纳米晶的分布过于密集。
3.固定电场电压,设置为16KV;固定纺丝距离,设置为15cm;在0.1~2mL/h范围内改变注射速度得到的聚合物纳米纤维上钙钛矿纳米晶的间距大致相同。

Claims (2)

1.一种周期性发光的复合材料的制备方法,其特征在于,该方法为:将聚合物PVDF-HFP加入到钙钛矿前驱体溶液中,得到纺丝液前驱体;将纺丝液前驱体置于注射器中,然后放入静电纺丝设备中进行静电纺丝,通过锡箔接收,得到周期性发光的复合材料;其中静电纺丝中金属针头作阳极,锡箔作阴极,电压为16 KV,纺丝距离为15 cm,注射速度为0.1~2 mL/h;
所述钙钛矿前驱体溶液为:将73.4 mg PbBr2和67.2 mg CH3NH3Br混合于N,N-二甲基甲酰胺中;
纺丝液前驱体中,PVDF-HFP的质量分数为16%-20%。
2.如权利要求1所述方法制备得到的周期性发光的复合材料,其特征在于,CH3NH3PbBr3纳米晶有序的分布在聚合物PVDF-HFP纳米纤维上。
CN201910339376.8A 2019-04-25 2019-04-25 一种周期性发光复合材料的制备方法 Active CN110106572B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910339376.8A CN110106572B (zh) 2019-04-25 2019-04-25 一种周期性发光复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910339376.8A CN110106572B (zh) 2019-04-25 2019-04-25 一种周期性发光复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN110106572A CN110106572A (zh) 2019-08-09
CN110106572B true CN110106572B (zh) 2021-08-31

Family

ID=67486731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910339376.8A Active CN110106572B (zh) 2019-04-25 2019-04-25 一种周期性发光复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN110106572B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069821A (zh) * 2007-03-06 2007-11-14 天津大学 交联改性的pvdf-hfp超细纤维膜及其制备方法
CN107698907A (zh) * 2017-10-25 2018-02-16 中国地质大学(北京) 一种ZnS/PVDF‑HFP压电复合材料薄膜及其制备方法
CN107938175A (zh) * 2017-11-28 2018-04-20 北京理工大学 一种高取向柔性发光偏振复合纤维薄膜的制备方法及其用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101265093B1 (ko) * 2008-12-26 2013-05-16 한국과학기술연구원 나노 분말, 나노 잉크 및 마이크로 로드와 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069821A (zh) * 2007-03-06 2007-11-14 天津大学 交联改性的pvdf-hfp超细纤维膜及其制备方法
CN107698907A (zh) * 2017-10-25 2018-02-16 中国地质大学(北京) 一种ZnS/PVDF‑HFP压电复合材料薄膜及其制备方法
CN107938175A (zh) * 2017-11-28 2018-04-20 北京理工大学 一种高取向柔性发光偏振复合纤维薄膜的制备方法及其用途

Also Published As

Publication number Publication date
CN110106572A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
Li et al. Electrospinning derived one‐dimensional LaOCl: Ln3+ (Ln= Eu/Sm, Tb, Tm) nanofibers, nanotubes and microbelts with multicolor‐tunable emission properties
CN108360081B (zh) 一种原位合成CsPbX3纳米晶并封装于聚合物纤维中的方法
US11401627B2 (en) Method for preparing quantum rod/polymer fiber membrane by using electrospinning technique
CN110205118B (zh) 表面缺陷钝化的金属卤化物钙钛矿纳米晶、其制备和应用
Peng et al. Synthesis and luminescent properties of CaTiO 3: Pr 3+ microfibers prepared by electrospinning method
Alam et al. Preparation and characterization of optically transparent and photoluminescent electrospun nanofiber composed of carbon quantum dots and polyacrylonitrile blend with polyacrylic acid
CN110943178B (zh) 一种自组装多维量子阱CsPbX3钙钛矿纳米晶电致发光二极管
CN109054806B (zh) Fax修饰的金属卤素钙钛矿量子点及其制备方法和应用
CN108675341B (zh) 一种一维发光超细CsPbBr3钙钛矿纳米线的制备方法
CN110106633A (zh) 无机钙钛矿/聚合物复合纳米纤维膜及其制备方法和应用
CN112574738B (zh) 提高钙钛矿量子点稳定性的制备方法
Yu et al. Surface ligand engineering of CsPbBr3 perovskite nanowires for high-performance photodetectors
Zhang et al. In situ growth of aligned CsPbBr3 nanorods in polymer fibers with tailored aspect ratios
Li et al. Preparation and luminescence properties of Lu2O3: Eu3+ nanofibers by sol–gel/electrospinning process
CN114591739A (zh) 一种掺杂金属钠离子的钙钛矿量子点的制备方法及其产品和应用
Pan et al. Progress in the preparation and application of CsPbX 3 perovskites
Yu et al. Energy transfer processes in electrospun LaOCl: Ce/Tb nanofibres
CN110106572B (zh) 一种周期性发光复合材料的制备方法
CN108547009B (zh) 一种纳米荧光纤维材料及其制备方法
CN111384302A (zh) 纤维状无机钙钛矿量子点发光二极管的全溶液制备方法
CN111270348B (zh) 一种SrVO3纳米纤维制备方法及其相关产品
CN111849477A (zh) 一种超疏水荧光纤维的制备方法及应用
Bi et al. Electrospinning preparation and photoluminescence properties of Y3Al5O12: Tb3+ nanostructures
US20240076197A1 (en) Composite electron transport material and preparation method therefor, and light-emitting diode
JP2012144587A (ja) 化合物半導体粒子の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant