CN110105593B - 表面褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶的制备方法 - Google Patents

表面褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶的制备方法 Download PDF

Info

Publication number
CN110105593B
CN110105593B CN201910388294.2A CN201910388294A CN110105593B CN 110105593 B CN110105593 B CN 110105593B CN 201910388294 A CN201910388294 A CN 201910388294A CN 110105593 B CN110105593 B CN 110105593B
Authority
CN
China
Prior art keywords
hydrogel
alginate
polyacrylamide
composite hydrogel
wrinkled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910388294.2A
Other languages
English (en)
Other versions
CN110105593A (zh
Inventor
张超
王煜烽
刘天西
李朝阳
刘颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201910388294.2A priority Critical patent/CN110105593B/zh
Publication of CN110105593A publication Critical patent/CN110105593A/zh
Application granted granted Critical
Publication of CN110105593B publication Critical patent/CN110105593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof

Abstract

本发明涉及一种表面褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶的制备方法,制备包括:将钙离子交联的海藻酸盐/聚丙烯酰胺水凝胶进行预拉伸,然后在氯化铁的水溶液中浸泡,取出水凝胶,洗涤,即得。本发明复合水凝胶表面的褶皱结构在受到压力时能发生巨大的面积变化,所以在较小的压力下表现出高的灵敏度。

Description

表面褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶的制备方法
技术领域
本发明属于复合水凝胶材料的制备领域,特别涉及一种表面褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶的制备方法。
背景技术
水凝胶是一种以水作为分散介质的凝胶。因为良好的生物相容性、柔性、可伸缩性和透明性被广泛的应用于生物医用材料,电子传感等领域。
如今移动医疗和机器人不断的融入我们的生活,为了进一步的对其进行发展,提高柔性传感器技术就至关重要。水凝胶作为一种理想的柔性传感器材料而被广大的科研工作者研究。电容式传感作为传感器中的一种,因为高的灵敏性和稳定性被受关注。电容式传感提高灵敏性的关键是增大在受力过程中面积的变化,从而产生大的电容变化。但是,使用水凝胶作为电容式传感的电极材料时往往因为受力过程中面积变化小而灵敏度不高。并且,水凝胶往往力学性能较差,这也在一定程度上限制了它的应用。因此,提高水凝胶的力学表现和增加水凝胶在受力过程中的面积的变化是进一步促进水凝胶在电容式传感中应用的关键。
CN 108276522A中可3D打印的铁离子双交联海藻酸盐-聚丙烯酰胺丙烯酸高性能水凝胶缺点如下:1.需要3D打印首先需要具有一定的流动性,这会使3D打印的结构在长时间的聚合过程中形状发生改变;2.3D打印设备复杂,制备成本高昂,打印时间长而且不适合大规模的制备。
发明内容
本发明所要解决的技术问题是提供一种表面褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶的制备方法,弥补了现有技术表面褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶的空缺,本发明方法通过三价铁离子交联预拉伸的海藻酸盐/聚丙烯酰胺凝胶表面,使凝胶的表面比凝胶内部具有更强的交联作用,因此在拉力收回以后内外回复程度不同而产生表面褶皱。
本发明的一种表面褶皱的复合水凝胶,其特征在于,所述水凝胶为表面具有褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶,通过三价铁离子交联预拉伸的海藻酸盐/聚丙烯酰胺水凝胶表面,然后释放拉力,得到。
本发明的一种表面褶皱的复合水凝胶的制备方法,包括:
(1)自由基聚合反应制备得到钙离子交联的海藻酸盐/聚丙烯酰胺水凝胶;
(2)将上述钙离子交联的海藻酸盐/聚丙烯酰胺水凝胶进行预拉伸,然后在氯化铁的水溶液中浸泡,取出水凝胶,释放拉力,洗涤,得到表面褶皱的复合水凝胶。
所述步骤(1)中自由基聚合反应具体为:
将海藻酸盐、丙烯酰胺、N,N-亚甲基双丙烯酰胺和二水合硫酸钙溶于水中搅拌和除气泡,待均匀后加入过硫酸铵的水溶液再搅拌混合并通入氮气除去溶解氧,得到混合溶液;然后,将混合溶液进行注模密封,放置到烘箱进行反应,得到水凝胶;
其中,海藻酸盐、丙烯酰胺、N,N-亚甲基双丙烯酰胺、二水合硫酸钙和过硫酸铵的质量比为600-800:5000-7000:3-5:70-90:200-300,混合溶液中海藻酸盐的浓度为0.017-0.019g/mL。
所述烘箱中进行反应温度为60-80℃,反应时间为4-8h。
所述步骤(2)中预拉伸0-350%;浸泡时间为0.1-250min。
所述步骤(2)中预拉伸为40%-60%,90%-110%,190%-210%或290%-310%;浸泡时间为0.2-0.8min,2-4min,20-40min或150-200min。
所述步骤(2)中氯化铁水溶液的浓度为2-5mg/mL。
所述步骤(2)中洗涤为去离子水洗去多余的离子。
本发明的一种所述方法制备的表面褶皱的复合水凝胶。
本发明还提供一种电容式传感器,所述电容器传感器的电极材料为所述的表面褶皱的复合水凝胶。
本发明提供一种所述表面褶皱的复合水凝胶在电子皮肤、应力传感器中的应用。
有益效果
(1)本发明中利用了三价铁离子代替钙离子交联预拉伸的水凝胶网络,因为三价铁离子与海藻酸盐具有更强的络合作用,被三价铁交联的凝胶表层被交联固定,因此,在凝胶释放拉力后,凝胶内外因为不对等的交联作用而产生表面的褶皱结构;通过用该凝胶组装电容式传感器,因为这种表面的褶皱结构在受到压力时能发生巨大的面积变化,所以在较小的压力下表现出高的灵敏度;
(2)本发明通过铁离子交联预拉伸下的海藻酸盐/聚丙烯酰胺水凝胶,使凝胶网络在拉伸方向上进行了取向固定,从而极大的提高了水凝胶在拉伸方向上的力学强度和模量;
(2)本发明通过控制预拉伸的海藻酸盐/聚丙烯酰胺水凝胶在氯化铁水溶液中的浸泡时间,实现了内外不一的交联网络,从而实现了表面富含褶皱的水凝胶,相比于以往在预拉伸的弹性体上附着非弹性体的方法,这种构筑褶皱的方法具有褶皱不易脱落且稳定的优点;
(3)本发明制备的富含褶皱的海藻酸盐/聚丙烯酰胺水凝胶是一种优良的电容式传感的电极材料,这种表面褶皱结构能够大大的提高凝胶在受力过程中面积的变化,从而提高了其电容式传感的灵敏度。
附图说明
图1为实施例1(a、b、c、d)不同预拉伸海藻酸盐/聚丙烯酰胺水凝胶在氯化铁水溶液中浸泡0.5min后的SEM图;其中a、b、c、d预拉伸分别依次为50%,100%,200%和300%;
图2为对比例1(a)未预拉伸和实施例1(b、c、d)预拉伸50%,100%,200%海藻酸盐/聚丙烯酰胺水凝胶冻干的SEM图,(e、f)预拉伸300%不同放大倍数的海藻酸盐/聚丙烯酰胺水凝胶冻干的SEM图;
图3为对比例1和实施例1拉伸方向(a)和垂直于拉伸方向(b)不同预拉伸海藻酸盐/聚丙烯酰胺水凝胶的拉伸应力-应变曲线;
图4为实施例1中预拉伸300%的水凝胶组装的电容式传感的性能表征,(a)不同压缩程度下电容的变化;(b)电容式传感在不同压力下的灵敏度;(c)在1kPa压力下用不同压缩频率工作时电容变化;(d,e)传感器循环500个循环的稳定性;
图5为实施例1中预拉伸300%的水凝胶组装的电容式传感检测肢体运动的响应,(a)人体手指弯曲30°,60°,90°;(b)人体正常呼吸与急促呼吸;(c,d)说话;
图6为对比例1的水凝胶组装的电容式传感的性能表征,其中(a)在不同压缩程度下电容的变化;(b)电容式传感在不同压力下的灵敏度。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
使用扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)、万能拉伸机和LCR测量仪表征了制取的凝胶的微观结构、组成、力学性能和电容传感器性能。
实施例1
(1)将0.75g海藻酸盐、6g丙烯酰胺、4mgN,N-亚甲基双丙烯酰胺和0.078g二水合硫酸钙溶于35ml水中搅拌和除气泡,待均匀后加入50mg/mL的过硫酸铵的水溶液5ml再搅拌混合并通入氮气除去溶解氧。然后,将混合物进行注模密封,放置到70℃烘箱进行反应。最后从模具中取出制得的水凝胶。
(2)取(1)中制备的水凝胶切成20*5*2mm的长方体,并对其进行不同程度的,其预拉伸的量分别为50%,100%,200%和300%;
(3)将不同预拉伸的水凝胶浸泡在2.7mg/mL的六水合氯化铁水溶液中0.5min、3min、30min和180min。浸泡完成后释放拉力,最后用去离子水洗去多余的离子。
(4)在两片水凝胶中间夹一片聚乙烯的介电层,取两根导线与凝胶相连,最后对凝胶进行封装得到用于测试的电容式传感器。
对比例1
(1)将0.75g海藻酸盐、6g丙烯酰胺、4mgN,N-亚甲基双丙烯酰胺和0.078g二水合硫酸钙溶于35ml水中搅拌和除气泡,待均匀后加入50mg/mL的过硫酸铵的水溶液5ml再搅拌混合并通入氮气除去溶解氧。然后,将混合物进行注模密封,放置到70℃烘箱进行反应。最后从模具中取出制得的水凝胶。
(2)取(1)中制备的水凝胶切成20*5*2mm的长方体,然后浸泡在2.7mg/mL的六水合氯化铁水溶液中0.5min、3min、30min和180min。浸泡完成后释放拉力,最后用去离子水洗去多余的离子。
(3)在两片水凝胶中间夹一片聚乙烯的介电层,取两根导线与凝胶相连,最后对凝胶进行封装得到用于测试的电容式传感器。
实施例1不同预拉伸海藻酸盐/聚丙烯酰胺水凝胶在氯化铁水溶液中浸泡0.5min后的SEM图如图1所示,表明:随着预拉伸的增加,水凝胶的表面褶皱变得愈发的明显。
对比例1(a)未预拉伸和实施例1预拉伸的海藻酸盐/聚丙烯酰胺水凝胶冻干的SEM图如图2所示,图2表明:随着预拉伸的增加,水凝胶内部的网络沿着拉伸的方向发生了取向的排列。
对比例1和实施例1拉伸方向(a)和垂直于拉伸方向(b)不同预拉伸海藻酸盐/聚丙烯酰胺水凝胶的拉伸应力-应变曲线如图3所示,表明:随着预拉伸的增加,水凝胶在拉伸反向上的力学强度和模量发生了显著的提升,而在垂直于拉伸方向上的力学强度没有什么变化,并且拉伸方向上的力学强度远远高于垂直于拉伸方向上的力学强度,说明凝胶在拉伸方向上发生了取向。
实施例1中预拉伸300%的水凝胶组装的电容式传感的性能表征如图4所示,图4表明:该传感器具有三段式的灵敏度,在1kPa以下表现出3.19kPa-1的灵敏度,在1-3kPa时表现出0.81kPa-1的灵敏度,在3-5kPa时表现出0.15kPa-1的灵敏度。传感器在不同的频率下都能有非常好的反应稳定性,并且在500圈的循环以后,传感器工作仍旧十分的稳定。
该传感器能够准确的感知肢体的运动并做出不同的响应,如图5所示。
对比例1的水凝胶组装的电容式传感的性能表征如图6所示,图6表明:使用普通无褶皱的水凝胶组装的传感器灵敏度较低。在所测试的0-2kPa的范围内表现出0.13kPa-1的灵敏度,低于使用褶皱水凝胶组装的传感器。说明褶皱结构能够提高传感器的灵敏度。

Claims (8)

1.一种表面褶皱的复合水凝胶的制备方法,包括:
(1)自由基聚合反应制备得到钙离子交联的海藻酸盐/聚丙烯酰胺水凝胶;
其中自由基聚合反应具体为:将海藻酸盐、丙烯酰胺、N,N-亚甲基双丙烯酰胺和二水合硫酸钙溶于水中搅拌和除气泡,待均匀后加入过硫酸铵的水溶液再搅拌混合并通入氮气除去溶解氧,得到混合溶液;然后,将混合溶液进行注模密封,放置到烘箱进行反应,得到水凝胶;
(2)将上述钙离子交联的海藻酸盐/聚丙烯酰胺水凝胶进行预拉伸,然后在氯化铁的水溶液中浸泡,取出水凝胶,释放拉力,洗涤,得到表面褶皱的复合水凝胶;其中浸泡时间为0.1-250min;其中预拉伸为40%-60%,90%-110%,190%-210%或290%-310%。
2.根据权利要求1所述制备方法,其特征在于,所述步骤(1)中海藻酸盐、丙烯酰胺、N,N-亚甲基双丙烯酰胺、二水合硫酸钙和过硫酸铵的质量比为600-800:5000-7000:3-5:70-90:200-300,混合溶液中海藻酸盐的浓度为0.017-0.019g/mL。
3.根据权利要求1所述制备方法,其特征在于,所述步骤(1)中烘箱中进行反应温度为60-80℃,反应时间为4-8h。
4.根据权利要求1所述制备方法,其特征在于,所述步骤(2)中浸泡时间为0.2-0.8min,2-4min,20-40min或150-200min。
5.根据权利要求1所述制备方法,其特征在于,所述步骤(2)中氯化铁水溶液的浓度为2-5mg/mL。
6.一种权利要求1所述方法制备的表面褶皱的复合水凝胶,其特征在于,所述水凝胶为表面具有褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶。
7.一种电容式传感器,其特征在于,所述电容器传感器的电极材料为权利要求6所述的表面褶皱的复合水凝胶。
8.一种权利要求6所述表面褶皱的复合水凝胶在电子皮肤、应力传感器中的应用。
CN201910388294.2A 2019-05-10 2019-05-10 表面褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶的制备方法 Active CN110105593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910388294.2A CN110105593B (zh) 2019-05-10 2019-05-10 表面褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910388294.2A CN110105593B (zh) 2019-05-10 2019-05-10 表面褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN110105593A CN110105593A (zh) 2019-08-09
CN110105593B true CN110105593B (zh) 2021-11-09

Family

ID=67489259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910388294.2A Active CN110105593B (zh) 2019-05-10 2019-05-10 表面褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN110105593B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111269438A (zh) * 2019-12-20 2020-06-12 广东工业大学 一种取向型微纤维水凝胶及其制备方法
CN111423539B (zh) * 2020-04-29 2021-04-30 浙江大学 一种GO@DA/海藻酸钠/P(AAc-co-AAm)多功能水凝胶及其制备方法
US20230282833A1 (en) * 2020-07-14 2023-09-07 Agency For Science, Technology And Research A hydrogel binder and a free-standing electrode
CN112254851B (zh) * 2020-10-16 2022-04-22 重庆大学 Alk-Ti3C2/PDMS柔性压阻传感器的制备方法
CN113188711A (zh) * 2021-04-29 2021-07-30 苏州凝智新材料发展有限公司 一种压力传感器及其制备方法和应用
CN114199419B (zh) * 2021-11-09 2023-05-12 华中科技大学 一种屏蔽拉伸和弯曲干扰的柔性压力传感器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107357053A (zh) * 2017-07-20 2017-11-17 浙江大学 一种透明度可调的膜及其用途
US10154951B2 (en) * 2013-04-22 2018-12-18 Allergan, Inc. Cross linked silk-hyaluronic acid composition
CN109273287A (zh) * 2018-08-17 2019-01-25 同济大学 一种自愈合水凝胶聚电解质及其制备与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10154951B2 (en) * 2013-04-22 2018-12-18 Allergan, Inc. Cross linked silk-hyaluronic acid composition
CN107357053A (zh) * 2017-07-20 2017-11-17 浙江大学 一种透明度可调的膜及其用途
CN109273287A (zh) * 2018-08-17 2019-01-25 同济大学 一种自愈合水凝胶聚电解质及其制备与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Freezing Molecular Orientation under Stretch for High Mechanical Strength but Anisotropic Hydrogels;Lin Peng et al.;《SMALL》;20160824;第12卷(第32期);第4386-4392页 *
Highly stretchable and tough hydrogels;Sun Jeong-Yun et al.;《NATURE》;20120906;第489卷(第7414期);第133-136页 *
预引入结构调控水凝胶溶胀起皱图案的研究;杜青;《万方硕士学位论文》;20160623;第1-2页 *

Also Published As

Publication number Publication date
CN110105593A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
CN110105593B (zh) 表面褶皱的海藻酸盐/聚丙烯酰胺复合水凝胶的制备方法
Wang et al. Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection
Zheng et al. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion
Pei et al. Self-healing and toughness cellulose nanocrystals nanocomposite hydrogels for strain-sensitive wearable flexible sensor
Yan et al. Catechol-based all-wood hydrogels with anisotropic, tough, and flexible properties for highly sensitive pressure sensing
Zhou et al. Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors
Li et al. Self-healing flexible sensor based on metal-ligand coordination
Bianchi et al. Novel generation of auxetic open cell foams for curved and arbitrary shapes
Hu et al. Tough and stretchable Fe3O4/MoS2/PAni composite hydrogels with conductive and magnetic properties
Ghaffarkhah et al. High-resolution extrusion printing of Ti3C2-based inks for wearable human motion monitoring and electromagnetic interference shielding
Zhao et al. Percolation threshold-inspired design of hierarchical multiscale hybrid architectures based on carbon nanotubes and silver nanoparticles for stretchable and printable electronics
CN112146798B (zh) 一种多维度微结构的柔性应力传感器的制备方法
Shekh et al. Dynamically bonded, tough, and conductive MXene@ oxidized sodium alginate: Chitosan based multi-networked elastomeric hydrogels for physical motion detection
Li et al. Functionalization-directed stabilization of hydrogen-bonded polymer complex fibers: elasticity and conductivity
CN108610591A (zh) 一种石墨烯/聚乙烯醇复合弹性薄膜及其制备方法
Yan et al. An ultrasensitive and highly compressive piezoresistive sensor based on a biopolyol-reinforced polyurethane sponge coated with silver nanoparticles and carbon nanotubes/cellulose nanocrystals
Zhao et al. Robust and ultra-fast self-healing elastomers with hierarchically anisotropic structures and used for wearable sensors
Wan et al. Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels
Zaidi et al. Tannic acid modified antifreezing gelatin organohydrogel for low modulus, high toughness, and sensitive flexible strain sensor
Ding et al. Tough and conductive polymer hydrogel based on double network for photo-curing 3D printing
Xu et al. Strengthened, conductivity-tunable, and low solvent-sensitive flexible conductive rubber films with a Zn2+-crosslinked one-body segregated network
Dandegaonkar et al. Cellulose based flexible and wearable sensors for health monitoring
Xie et al. A conductive polyacrylamide/double bond chitosan/polyaniline hydrogel for flexible sensing
Lu et al. Stretchable, tough and elastic nanofibrous hydrogels with dermis-mimicking network structure
Zhang et al. Conductive hydrogel-based flexible strain sensors with superior chemical stability and stretchability for mechanical sensing in corrosive solvents

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zhang Chao

Inventor after: Wang Yufeng

Inventor after: Fanxiaoshan

Inventor after: Liu Tianxi

Inventor after: Li Chaoyang

Inventor after: Liu Ying

Inventor before: Zhang Chao

Inventor before: Wang Yufeng

Inventor before: Liu Tianxi

Inventor before: Li Chaoyang

Inventor before: Liu Ying