CN110093373B - 一种afft2细胞的构建方法 - Google Patents

一种afft2细胞的构建方法 Download PDF

Info

Publication number
CN110093373B
CN110093373B CN201910439117.2A CN201910439117A CN110093373B CN 110093373 B CN110093373 B CN 110093373B CN 201910439117 A CN201910439117 A CN 201910439117A CN 110093373 B CN110093373 B CN 110093373B
Authority
CN
China
Prior art keywords
cells
tcr
polypeptide
afft2
aff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910439117.2A
Other languages
English (en)
Other versions
CN110093373A (zh
Inventor
焦顺昌
张嵘
周子珊
解佳森
陈小彬
彭刚
陈红利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Dingcheng Taiyuan Biotechnology Co ltd
Original Assignee
Beijing Dingcheng Taiyuan Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Dingcheng Taiyuan Biotechnology Co ltd filed Critical Beijing Dingcheng Taiyuan Biotechnology Co ltd
Publication of CN110093373A publication Critical patent/CN110093373A/zh
Application granted granted Critical
Publication of CN110093373B publication Critical patent/CN110093373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/51B7 molecules, e.g. CD80, CD86, CD28 (ligand), CD152 (ligand)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Abstract

本发明属于生物技术领域,具体涉及一种AFFT2细胞的构建方法。该方法将细胞用TCR-T技术进行了改造,改造后的T细胞采用抑制性信号分子抗体药物进行体外封闭,从而有效的提高T细胞抗肿瘤的能力,经过AFFT2方案改造的细胞,识别肿瘤抗原的特异性T细胞比例为70%以上。

Description

一种AFFT2细胞的构建方法
技术领域:
本发明属于生物技术领域,具体地说,涉及一种AFFT2细胞及其制备方法。
背景技术:
目前,在肿瘤的特异性免疫治疗方面,现有的LAK、DC、CIK、DC-CIK细胞和方法基本被证明是无效的,而NK、CAR-NK、TIL、等细胞技术还有待成熟,CAR-T细胞在安全性和实体瘤治疗中还有缺陷。
现有技术一般通过改造DC细胞,由DC递呈T细胞产生特异杀伤。有些实验室在尝试用病毒做为载体的方法进行转染递呈T细胞,诱导T细胞的特异性杀伤。我们也曾用突变混合多肽直接刺激PBMC,诱导T细胞。还有实验室利用TCR-T技术,靶向递呈MAGE A3抗原。
以上治疗方法并不成熟,尤其是体外诱导DC细胞及DC细胞负载肿瘤抗原技术理论上研究较多,但在具体实施过程中还有许多问题,缺乏明确的、肿瘤细胞发生发展关键的信号传导通路相关分子作为诱导抗原,因为肿瘤抗原不明及肿瘤微环境免疫抑制的障碍,使实现特异性细胞靶向免疫治疗难以顺利实施。另外,有的虽然进行了抗原体外冲击,但没有进行体外共培育和体外扩增,让较为单薄的特异性细胞直接面对复杂的肿瘤微环境,因此,很难起到预期的效果。也有的虽然也可以体外递呈和共培育,但靶点单一(MAGE-3),仅对非小细胞肺癌等个别癌种起效。虽然也有尝试慢毒为载体的方法进行转染递呈,但安全性、方便性不如多肽方式。而简单混合多肽的直接刺激,虽然简单方便,但效率较低。特异性精准多肽的二次刺激不如T细胞受体转导的肿瘤特异性抗原更直接。现有的TCR-T在治疗血液肿瘤和实体肿瘤的解决方案中,缺乏覆盖更多瘤种的精准的TCR。
上述方案均没有考虑T细胞的自我防护技术,使得数量不多的特异性T细胞直接面对强大的肿瘤微环境。
发明内容:
为了解决上述技术问题,本发明将提供一种AFFT2细胞的构建方法,该方法将细胞用TCR-T技术进行了改造,改造后的T细胞采用抑制性信号分子抗体药物进行体外封闭,从而有效的提高T细胞抗肿瘤的能力。
所述AFFT2细胞的构建方法,包括以下主要步骤:1)抽取患者外周血,进行ctDNA外显子测序,或者以肿瘤组织进行全外显子测序,筛选出突变位点,进行抗原表位预测并合成突变多肽;2)使用外周血制备永生化DC,并负载所述突变多肽,与PBMC共孵育,获得AFF细胞;3)用突变多肽作为抗原刺激AFF细胞,筛选获得精准多肽;4)以所述精准多肽负载永生化DC细胞并与PBMC共孵育,制备AFF’细胞;5)以所述精准多肽作为抗原刺激所述AFF’细胞,筛选获得能够识别所述精准多肽的特异性T细胞,通过测序得到特异性细胞的高频TCR序列;6)从PBMC中分离CD8+T细胞,敲除原有TCR并进行高频TCR的表达,构建TCR-T细胞;7)将上述TCR-T细胞采用抑制性信号分子的单抗药进行封闭处理,制备得到AFFT2细胞。
AFFT2细胞具体制备步骤如下:
1、全外显子测序
使用人源外周血进行ctDNA测序或者以肿瘤组织进行全外显子测序,将测序结果与正常细胞的基因组相比,筛选出突变位点;
所述外周血也可以是市售工程细胞系,如H1299、H226、H358、H1563、H2228、A549、Renca、LLC小鼠Lewis肺癌细胞、CRL-6323B16F1、CRL-2539 4T1、U14小鼠子宫颈癌细胞、BV-2小鼠小胶质瘤细胞、G422小鼠神经胶质瘤细胞等,对其进行全外显子测序;
2、抗原表位预测
(1)以突变的氨基酸位点为中心,向两侧延伸10个氨基酸,将这段21个氨基酸的多肽作为“潜在抗原表位”;
(2)使用预测软件分析潜在抗原表位的IC50,将IC50<1000nM的潜在抗原表位确定为“抗原表位”;
3、永生化DC负载突变多肽
(1)将外周血中的树突状细胞,采用TAX-GFP慢病毒进行感染,并选取理想的克隆作为永生DC;
(2)将“抗原表位”合成突变多肽,对上述永生DC进行负载;
4、负载突变多肽的DC与PBMC共孵育
将负载突变多肽的DC与PBMC共孵育,即可获得AFF细胞;
5、筛选精准多肽
收集AFF细胞,使用每条合成的突变多肽单独刺激AFF细胞,通过检查IFN-γ的分泌筛选精准多肽;
6、以筛选的精准多肽制备AFF’细胞
以精准多肽替代突变多肽重复步骤3-(2)和4制备精准多肽AFF’细胞;
7、特异性细胞高频TCR的确定及表达载体构建
(1)以精准多肽对AFF’细胞进行刺激,对刺激后的细胞进行CD8、CD137、IFN-γ的染色,选择CD8+CD137+、或者CD8+IFN-γ+T细胞;提取基因组并对TCR进行测序分析,根据TCR分布频率,确定高频的TCR序列;
(2)根据高频TCR的序列,设计引物,扩增得到TCR基因;构建TCR基因表达载体,并包装病毒;
8、构建敲除原有TCR的CRISPR载体,并进行病毒包装;
9、AFFT细胞的构建
以步骤8中获得到病毒,感染CD8+T细胞,进行原有TCR的敲除,再转入步骤7构建的TCR表达载体的慢病毒;
10、将步骤9获得的细胞采用抑制性信号分子的单抗药进行封闭处理,即制备得到AFFT2细胞;
所述抑制性信号分子可以是PD-1、Tim-3、LAG3、CTLA-4、BTLA、VISTA、TIGHT、CD160或2B4(CD244)。
有益效果:
1.本发明提供的AFFT2细胞,以肿瘤抗原为突变抗原,与其它组织不同,靶点专一性强,不易发生脱靶效应,安全性高;
2.本发明获得的特异性细胞比例高,通常能够识别肿瘤抗原的特异性细胞,在PBMC的分布为0.5%以下,经过AFFT2方案改造的细胞,识别肿瘤抗原的特异性T细胞(TCR+)比例为70%以上;
3.本发明获得的AFFT2细胞由于采用单抗药对PD1、CTLA4、TIM3、LAG3等免疫抑制性靶点进行封闭,因此,对肿瘤的杀伤能力不受限制,杀伤效率更高。
附图说明:
图1显微镜观察DC形态;
图2 DC负载多肽的效率;
图3精准多肽的筛选;
图4流式检测特异性T细胞比例;
图5 TCR分布频率;
图6原有TCR的敲除效率检测;
图7特异性TCR的表达效率;
图8流式检测AFFT细胞中识别多肽抗原的细胞比例;
图9单抗药的体外封闭效率;
图10效应细胞对靶细胞的杀伤作用;
图11 ELISA检测细胞因子IFN-γ的释放;
图12细胞对肿瘤荷瘤小鼠的生存改善情况。
具体实施方式:
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
对于专用名词AFFT2的解释,其中,A:永生化DC技术;FF:混合多肽刺激技术;T:TCR-T技术;2:抗体体外封闭保护技术。AFFT2细胞表示采用上述技术联合制备获得的细胞。
实施例1
本实施例将以肺癌患者为例,提供具有针对性的AFFT2细胞及其制备方法:
1.全外显子测序
1)取肺癌患者外周血,进行ctDNA的测序和HLA分型检测;
2)利用软件对测序信息进行分析:将ctDNA测序结果与正常细胞的基因组相比,筛选出突变位点;
2.抗原表位预测
1)以突变的氨基酸位点为中心,向两侧延伸10个氨基酸,将这段21个氨基酸的多肽作为“潜在抗原表位”;
2)使用预测软件分析潜在抗原表位的IC50(推荐软件:NetMHCpan 3.0、PickPocket、artificial neural networks(ANN)),如IC50<1000nM则认为此潜在抗原表位为“抗原表位”;
3.合成多肽
委托技术服务公司将“抗原表位”合成突变多肽;
4.永生化DC
1)抽取患者外周血100ml;
2)Ficol密度梯度离心分离PBMC;
3)采用美天旎树突状细胞分离试剂盒分离树突状细胞,重悬于培养基中;
4)TAX-GFP慢病毒感染所分离的树突状细胞,37℃孵箱静止培养,观察;
5)待细胞克隆化生长后,挑选克隆于96孔板分别培养;
6)单克隆表型分析;
7)选取理想的克隆作为永生DC;
5.永生DC负载突变多肽
1)配制多肽溶液:采用步骤3合成的突变多肽进行配制,每条多肽的终浓度为10~100μg/mL,优选50μg/mL,备用;
2)离心收集获得的永生DC,以配制的多肽溶液重悬,并置于细胞培养板中进行多肽负载;
3)37℃5%CO2,冲击1~4h,优选4h,备用;
6.负载突变多肽的DC与PBMC共孵育
1)刺激因子OKM-25预铺板,40μL OKM-25+4mL PBS,2mL/皿(4.5cm2)室温4h,4℃备用;
2)将负载突变多肽的DC与PBMC,以1:50~1:500的比例进行混合,优选1:100,并转移至预铺OMK25的细胞培养板或培养瓶中;
3)晃匀,37℃5%CO2培养,记为第0天;
4)观察共培养细胞情况,根据细胞密度,在第5天,将共培养细胞转移至大培养瓶中,补新鲜的培养液OKM-100+12%FBS,20mL于75cm2培养瓶中;
5)共培养第7天,再加入20mL新鲜OKM-100+12%FBS;
6)共培养第10天,培养液为OKM-200+5%FBS,将共培养细胞从75cm2瓶中那个转移至175cm2大瓶中;转移方法:25mL培养液OKM-200+5%FBS吹打,再转入大瓶,重复2次;以培养液OKM-200+5%FBS补足至200mL。
8)培养至14-21天时,即可获得AFF方案细胞。
7.多肽作为抗原直接刺激T细胞筛选精准多肽:
1)离心收集获得的AFF方案细胞,1500rpm离心5min收集T细胞,加入10mL PBS重悬细胞并计数,1500rpm离心5min,收集T细胞,以1640+10%FBS+200U/mL IL2重悬,计数调整至1×106cells/mL;
2)以排枪将T细胞分至96孔平底板中,200μL/孔,细胞数为2×105cells;再分别加入10μL 1mg/mL的步骤3中合成的突变多肽,终浓度为50μg/mL,每条多肽设置3复孔;
3)设置阳性对照:T细胞+100ng/mL OKT3;阴性对照:1640+10%FBS+200U/mL IL2;两个T细胞对照作为本底释放检测,分别为第一次加T细胞,和最后一次加T细胞;以两个本底释放的差异作为系统误差;
4)37℃、5%CO2刺激24h后,1500rpm离心10min,转移140μL上清至新的96孔板中;
5)再将96孔板进行离心,1500rpm 10min,取样品进行ELISA检测(或将样品至于-80℃保存);
8.精准多肽评判标准:
1)阳性对照和阴性对照正常,则说明此数据可信;
2)多肽作为抗原的以T细胞作为基线;
3)每组实验为两个基线,高基线和低基线,检测值高的为高基线,低的为低基线,两个基线的差异为系统误差,数据分析时,对检测值>低基线、>高基线以及>高基线+系统误差的,分别进行标注;检测值>高基线+系统误差即为有效的精准多肽;
9.以筛选的精准多肽制备AFF’细胞
1)以方法4、5、6进行精准多肽AFF’细胞的制备;
10.突变抗原特异性杀伤T细胞的培养及分离:
1)以筛选出的精准多肽直接作为抗原刺激,对步骤9获得的AFF’细胞进行刺激,刺激12~72h后,备用;
2)对刺激后的T细胞进行CD8、CD137、IFN-γ的染色,并以流式细胞仪进行分选,选择CD8+CD137+、或者CD8+IFN-γ+T细胞;
11.CD8+T细胞TCR频率检测及高频TCR的克隆:
1)分选得到细胞,立即进行基因组的提取;
2)基因组进行TCR测序分析,根据TCR分布频率,确定高频的TCR序列;
3)提取PBMC的mRNA,反转录成cDNA,根据高频TCR的序列,设计引物,扩增得到TCR基因;
4)构建高频TCR基因表达载体,包装病毒;
12.构建敲除原有TCR的CRISPR载体
1)在pubmed上找到TCR基因的mRNA的CDS区,并分析TCR的保守区,将保守区进行敲除靶点的预测;
2)通过以下步骤完成TCR敲除载体的构建及病毒包装;
①设计合成sgRNA所需的正向引物和反向引物,将正向引物和反向引物1:1混合后,95℃处理5~60min,再进行缓慢降温,形成sgRNA的DNA序列;
②将CRISPR慢病毒表达载体进行双酶切,并与sgRNA对应的双链DNA进行连接,转入克隆感受态细胞,12h后,挑取单克隆进行测序,保留测序正确的克隆;
③提取携带sgRNA对应DNA序列的CRISPR慢病毒载体质粒,进行病毒包装。
13.AFFT细胞构建:
1)复苏PBMC,以磁珠分选CD8+T细胞;
2)以方法12中获得到病毒,感染CD8+T细胞,进行原有TCR的敲除;
3)感染后,CD8+T细胞在培养基中培养0-5天后,优选3天,再转入步骤11构建的TCR表达载体的慢病毒;
4)以OKM100+12%FBS将感染后的CD8+T细胞重悬,并置于刺激因子OKM-25的预铺板上,记为第0天;
5)观察细胞情况和细胞密度,在第5天,将共培养细胞转移至大培养瓶中,补新鲜的培养液OKM-100+12%FBS;
6)将细胞从75cm2瓶中转移至175cm2大瓶后培养液为OKM-200+5%FBS;
7)培养至14-21天时,即可收获TCR-T,获得AFFT细胞;
14.免疫抑制性信号的封闭
1)免疫抑制性信号分子为PD-1;
2)1000rpm离心5min,收集培养好的TCR-T细胞;
3)以PBS洗一次,1000rpm离心5min,以OKM-200+5%FBS重悬TCR-T,并调整至1×107/mL;
4)加入抑制性信号分子的单抗药Keytruda,终浓度为50~500μg/mL,优选150μg/mL,0~37℃封闭1~4h,优选37℃1h;即可获得AFFT2细胞。
15.构建特异性抗原表达靶细胞及肿瘤模型生存实验
1)构建可以表达筛选的精准多肽(特异性抗原)的慢病毒载体;
2)将特异性抗原表达慢病毒载体包装成慢病毒颗粒,感染HLA配型合适的肿瘤细胞,稳定过表达特异性抗原,流式检测表达水平及表达强度;
3)稳定过表达特异性抗原肽的肿瘤细胞系接种NGS小鼠,做异位荷瘤动物模型;将5×105表达特异性抗原的肿瘤细胞悬于100μl生理盐水中,分别皮下注射至30只NSG小鼠的右侧胁肋部皮下,同时对小鼠进行编号;
4)在肿瘤生长至100-120mm3左右时分组回输细胞,根据肿瘤体积大小,将动物模型随机分成三组,每组5-6只小鼠,一组给予安慰剂生理盐水,一组给予没有进行任何遗传操作的T细胞(对照组)1×107,一组给予AFFT2细胞1×107,首次注射细胞7天后进行第二次注射,7天之后第三次注射细胞,连续观察60天,统计存活数据,绘制生存曲线。
实验结果:
1.突变位点及抗原表位预测
表1为测序检测到的突变位点及抗原表位预测结果,下划线标出的为突变的氨基酸;
表1抗原表位预测
Figure BDA0002071489010000081
2.永生DC形态观察
诱导DC成熟后,显微镜先观察形态,看可以观察到明显的树突状细胞(图1);
3.DC抗原负载效率检测
根据表1合成预测的突变抗原,并进行生物素的标记,抗原负载DC后,以PE标记的亲和链霉素检测生物素在细胞表面的分布情况,以检测DC提呈多肽抗原的效率;结果如图2所示:深色(左侧)为没有负载标记多肽的检测结果,浅色(右侧)为负载生物素多肽的检测结果,结果表明:DC的负载效率为99.4%;
4.以AFF细胞筛选精准多肽
以10条多肽分别刺激培养的T细胞,通过检测IFN-γ的分泌,检测有效的多肽,结果如图3所示:6号多肽引起的IFN-γ的释放量>高基线+系统误差,属于有效精准多肽;
5.对精准多肽特异性的T细胞的鉴定及分选
以筛选的6号多肽,刺激AFF’方案细胞,以流式检测对精准多肽特异性的T细胞比例,结果如图4所示,黑色框内(P5)为特异性T细胞:AFF’方案细胞,6号多肽引起的释放IFN-γ的细胞比例明显高于没有刺激的细胞(对照),说明AFF’方案可以获得对精准多肽的特异性T细胞;同时以流式细胞仪进行CD8+IFN-γ+T细胞(黑色框内)的分选;
6.高频TCR的鉴定及克隆
将分选得到细胞进行基因组的提取,及TCR的测序,TCR的分布情况如图5所示(高频分布的前20),TCR3分布频率较高,说明,此TCR与突变抗原密切相关,根据TCR序列,对TCR进行扩增,构建慢病毒表达载体;
表2 TCRβ链CDR3的序列情况
Figure BDA0002071489010000082
Figure BDA0002071489010000091
已知的TCR-α:
氨基酸序列:
MMKSLRVLLV ILWLQLSWVW SQQKEVEQNS GPLSVPEGAI ASLNCTYSDR GSQSFFWYRQYSGKSPELIM FIYSNGDKED GRFTAQLNKA SQYVSLLIRD SQPSDSATYL CAVNFGGGKL IFGQGTELSVKPN
碱基序列:
Figure BDA0002071489010000092
ATCTTCGGAC AGGGAACGGA GTTATCTGTG AAACCCAAT
已知TCR-β:
氨基酸:
MRIRLLCCVA FSLLWAGPVI AGITQAPTSQ ILAAGRRMTL RCTQDMRHNA MYWYRQDLGLGLRLIHYSNT AGTTGKGEVP DGYSVSRANT DDFPLTLASA VPSQTSVYFC ASSLSFGTEAFFGQGTRLTV V(横线为CDR3序列,需要被替换的序列)
替换后的TCR-β:
Figure BDA0002071489010000093
ATSRDWLSNGNTEAFFGQGTRLTVV(横线为替换的CDR3序列)
7.原有TCR敲除效率的检测
利用CRISPR技术,将CD8+T细胞上的原有的TCR进行敲除,结果如图6所示:可有效的减少原有TCR的表达,此时,可进行表达特异性TCR慢病毒的转染;
8.特异性TCR表达情况的检测
以包装特异性TCR的的慢病毒转染上述细胞,在第7天时,以流式检测TCR的表达效率,结果如图7所示:构建的TCR可以正常表达,TCR+的细胞比例为76.5%。识别多肽抗原的特异性细胞比例为71.1%(图8);
9.AFFT2细胞抑制性信号封闭效果
在PBS缓冲体系中加入500μg/mL的荧光标记的单抗药Keytruda,结合情况如图9所示,79.1%的细胞可以有效封闭;
11.AFFT2细胞对靶细胞的杀伤作用
分别以AFF’细胞、AFFT细胞和AFFT2细胞对突变抗原表位来源的靶细胞进行杀伤效率的检测,以无处理的细胞作为对照(Mock),结果如图10所示,与对照组相比,AFF’细胞、AFFT细胞和AFFT2细胞对靶细胞均有一定杀伤效果,且在10:1、20:1和40:1(效应细胞:靶细胞)时,与Mock组差异明显;且抑制性信号分子封闭后,对肿瘤的杀伤效率AFFT2>AFFT细胞>AFF’细胞;说明表达特异性TCR的T细胞,加上抑制性靶点的封闭可以有效的提高对肿瘤细胞的杀伤效率。
12.AFFT2细胞释放细胞因子的检测
肿瘤细胞与效应细胞共培养时,由于效应细胞,可以识别肿瘤细胞上突变抗原,因此,会产生一系列的细胞因子,IFN-γ是抗肿瘤作用中最主要的细胞因子之一,图11为不同培养方式细胞,与肿瘤细胞共培养时,释放的IFN-γ的检测,结果表明:与效应细胞自身产生的IFN-γ相比,与肿瘤细胞共培养后,AFF’方案细胞、AFFT方案细胞和AFFT2细胞均可产生大量的IFN-γ,特别是AFFT和AFFT2细胞,由于表达了特异性TCR(AFFT),同时抑制性信号已被封闭(AFFT2),效应细胞可释放更多的IFN-γ,此结果与杀伤实验结果一致说明:表达特异性TCR的T细胞,结合抑制性靶点的封闭可以更有效的提高抗肿瘤能力;
13.构建特异性抗原表达靶细胞及肿瘤模型生存实验
成功构建了特异性抗原表达肿瘤靶细胞系,建立荷瘤动物模型,结果显示(图12),AFFT2细胞对肿瘤荷瘤小鼠的生存改善具有显著影响作用。

Claims (4)

1.一种AFFT2细胞的构建方法,其特征在于,构建方法包括以下步骤:
1)对患者外周血进行ctDNA外显子测序,或者以患者肿瘤组织进行全外显子测序,筛选出突变位点,进行抗原表位预测并合成突变多肽;所述抗原表位的预测是以突变的氨基酸位点为中心,向两侧延伸10个氨基酸,作为潜在抗原表位;分析潜在抗原表位的IC50,将IC50<1000nM的潜在抗原表位确定为抗原表位;
2)将外周血中的树突状细胞,采用TAX-GFP慢病毒进行感染,并选取理想的克隆作为永生DC,并负载所述突变多肽,与PBMC共孵育,获得AFF细胞;
3)用突变多肽作为抗原刺激AFF细胞,通过检查IFN-γ的分泌筛选获得精准多肽;
4)以精准多肽负载永生化DC细胞并与PBMC共孵育,制备AFF’细胞;
5)以所述精准多肽作为抗原刺激所述AFF’细胞,筛选获得能够识别所述精准多肽的特异性T细胞,通过测序得到特异性T细胞的高频TCR序列;
6)从PBMC中分离CD8+T细胞,敲除原有TCR并进行高频TCR的表达,构建TCR-T细胞;
7)将上述TCR-T细胞采用表面抑制性信号分子的单抗药进行封闭处理,制备得到AFFT2细胞;
所述精准多肽的筛选方法为:收集AFF细胞,使用每条合成的突变多肽单独刺激AFF细胞,通过检测IFN-γ的分泌筛选精准多肽;
精准多肽的评判标准:设置阳性对照:T细胞+100ng/mL OKT3;阴性对照:1640+10%FBS+200U/mL IL2;阳性对照和阴性对照正常,则说明此数据可信;多肽作为抗原的以T细胞作为基线;每组实验为两个基线,高基线和低基线,两个基线的差异为系统误差;检测值>高基线+系统误差即为有效的精准多肽;
高频TCR的确定方法如下:以精准多肽对AFF’细胞进行刺激,对刺激后的细胞进行CD8、CD137、IFN-γ的染色,选择CD8+CD137+、或者CD8+IFN-γ+T细胞;提取基因组并对TCR进行测序分析,根据TCR分布频率,确定高频的TCR序列;
所述表面抑制性信号分子包括:PD-1、Tim-3、LAG3、CTLA-4、BTLA、VISTA、CD160、2B4(CD244)、TIGIT。
2.如权利要求1所述AFFT2细胞的构建方法,其特征在于,所述患者外周血也可以是市售工程细胞系。
3.如权利要求2所述的AFFT2细胞的构建方法,其特征在于,所述工程细胞系为H1299、H226、H358、H1563、H2228、A549、Renca、LLC 小鼠Lewis肺癌细胞、CRL-6323 B16F1、CRL-2539 4T1、U14 小鼠子宫颈癌细胞、BV-2小鼠小胶质瘤细胞或G422 小鼠神经胶质瘤细胞。
4.权利要求1所述AFFT2细胞的构建方法,其特征在于,敲除原有TCR基因的方法为CRISPR技术。
CN201910439117.2A 2018-09-30 2019-05-24 一种afft2细胞的构建方法 Active CN110093373B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2018111532645 2018-09-30
CN201811153264 2018-09-30

Publications (2)

Publication Number Publication Date
CN110093373A CN110093373A (zh) 2019-08-06
CN110093373B true CN110093373B (zh) 2021-05-07

Family

ID=67449167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910439117.2A Active CN110093373B (zh) 2018-09-30 2019-05-24 一种afft2细胞的构建方法

Country Status (1)

Country Link
CN (1) CN110093373B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242448A (zh) * 2013-05-27 2013-08-14 郑州大学 一种全人源化抗pd-1单克隆抗体及其制备方法和应用
CN104662171A (zh) * 2012-07-12 2015-05-27 普瑟姆尼股份有限公司 个性化癌症疫苗和过继免疫细胞治疗
CN107074932A (zh) * 2014-10-02 2017-08-18 美国卫生和人力服务部 分离对癌症特异性突变具有抗原特异性的t细胞受体的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662171A (zh) * 2012-07-12 2015-05-27 普瑟姆尼股份有限公司 个性化癌症疫苗和过继免疫细胞治疗
CN103242448A (zh) * 2013-05-27 2013-08-14 郑州大学 一种全人源化抗pd-1单克隆抗体及其制备方法和应用
CN107074932A (zh) * 2014-10-02 2017-08-18 美国卫生和人力服务部 分离对癌症特异性突变具有抗原特异性的t细胞受体的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EBV-LMP2A重组腺病毒体外转染树突状细胞激发特异性CTL的研究;姚堃等;《中国免疫学杂志》;20041231;第20卷(第12期);摘要、第818页左栏第2.2节、右栏图3 *
Efficient transfer of HTLV-1 tax gene in various primary and immortalized cells using a flap lentiviral vector.;Christelle Royer-Leveau et al.;《Journal of Virological Methods》;20021231;摘要 *

Also Published As

Publication number Publication date
CN110093373A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
JP7193886B2 (ja) キメラ抗原受容体で修飾されたγδ T細胞を生産する方法
Ptáčková et al. A new approach to CAR T-cell gene engineering and cultivation using piggyBac transposon in the presence of IL-4, IL-7 and IL-21
US11932872B2 (en) Dual chimeric antigen receptor-t cell which can be regulated, construction method therefor and use thereof
US20210371823A1 (en) Method for expanding human dc cell and human dc cell resource library
CN109136284B (zh) 一种afft2细胞
CN110551198A (zh) 一种肺癌抗原组合及其应用、细胞毒性t淋巴细胞
CN110093376B (zh) 一种lrfft1细胞的构建方法
CN110157745B (zh) 一种hafft1细胞的构建方法
CN110093373B (zh) 一种afft2细胞的构建方法
CN109294997B (zh) 一种lrfft1细胞
CN109136278B (zh) 一种mrfft1细胞
US11718827B2 (en) LRFFT2 cell
CN109294998B (zh) 一种rff1细胞
CN110408657B (zh) 一种afft1细胞的构建方法
CN109337930B (zh) 一种afft1细胞
CN109294982B (zh) 一种rff2细胞
CN110129372B (zh) 一种rfft1细胞的构建方法
CN109295106B (zh) 一种hafft1细胞
CN113913386A (zh) 一种滋养层细胞及其在扩增人nk细胞中的应用
CN110129371B (zh) 一种rfft2细胞的构建方法
CN110093374B (zh) 一种mrfft1细胞的构建方法
CN110093375B (zh) 一种mrfft2细胞的构建方法
CN109294995B (zh) 一种rfft1细胞
CN109295097B (zh) 一种mrfft2细胞
CN109294996B (zh) 一种rfft2细胞

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant