CN110078976B - 一种压电传感材料的制备方法及制备的材料 - Google Patents

一种压电传感材料的制备方法及制备的材料 Download PDF

Info

Publication number
CN110078976B
CN110078976B CN201910378733.1A CN201910378733A CN110078976B CN 110078976 B CN110078976 B CN 110078976B CN 201910378733 A CN201910378733 A CN 201910378733A CN 110078976 B CN110078976 B CN 110078976B
Authority
CN
China
Prior art keywords
cellulose
pvdf
sensing material
conductive particles
piezoelectric sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910378733.1A
Other languages
English (en)
Other versions
CN110078976A (zh
Inventor
李国栋
刘温霞
宋兆萍
王慧丽
于得海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Pilot Micro System Integration Co ltd
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN201910378733.1A priority Critical patent/CN110078976B/zh
Publication of CN110078976A publication Critical patent/CN110078976A/zh
Application granted granted Critical
Publication of CN110078976B publication Critical patent/CN110078976B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • C08J2201/0444Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • C08J2201/0444Salts
    • C08J2201/0446Elimination of NaCl only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • C08J2401/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明涉及一种利用聚偏氟乙烯(PVDF)/纤维素/纳米导电颗粒制备压电传感材料的制备方法,属于功能材料及压电传感器制备技术领域。本发明的方法是将PVDF、纤维素、纳米导电颗粒和成孔剂等原料经高温熔接、置换造孔和干燥固化等工艺,制备一种新型压电传感材料。该技术成本较为低廉、生产工艺简单,产品强度大、柔韧性好、灵敏度高,在电子皮肤、虚拟现实、健康监测等智能可穿戴设备方面具有极大的应用潜能。

Description

一种压电传感材料的制备方法及制备的材料
技术领域
本发明涉及压电传感材料的制备方法及制备的材料,属于功能材料及压电传感器制备技术领域。
背景技术
随着信息社会的发展,物联网与智能终端等技术得到了迅速发展,人们对周边环境信息的采集深度与广度不断提升,传感器作为一类十分重要的信息采集器件,正逐渐被广泛应用在机器人、可穿戴电子设备、医疗器械、人机交互和智能蒙皮等领域。柔性压电传感器具有轻薄便携、电学性能优异和集成度高等特点,逐渐成为近年来的研究热点。
专利CN106370290B公开了一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法,该技术利用表面包覆石墨烯的化学纤维与PVDF通过静电纺丝技术制备一种压电传感器。专利CN105527014A公开了一种基于PVDF纳米纤维的柔性振动传感器的制造方法,该技术首先利用磁控溅射将叉指电极溅射在PVDF纳米纤维,再对其进行PDMS封装,得到一种自供电振动传感器。专利CN106805954A披露了一种穿戴式柔性压力传感器及其制备方法,该传感器由上支撑基体、超柔软Ecoflex压力探测头、PVDF压电薄膜、阵列化微凸台支撑结构和下支撑基体五个部分组成,能够灵敏感知测量人体微弱的脉搏跳动力。
然而,上述发明或利用静电纺丝、磁控溅射等技术,制备工艺相对较为复杂,需要特殊制造设备,耗费大量能源,且成本相对较高,大规模工业生产较难实现;或制备的产品结构组成较为复杂、体积相对较大,且柔韧性较差、适应性不强,无法大规模应用于可穿戴电子设备。
发明内容
针对现阶段压电传感材料的制备工艺复杂,且性能不好的问题,本发明提供了一种压电传感材料的制备方法及制备的材料。
一种压电传感材料的制备方法,包括如下步骤:
(1)将PVDF、纤维素、纳米导电颗粒和成孔剂充分混合;
(2)将步骤(1)得到的混合物进行高温处理,利用熔融的PVDF将纤维素、纳米导电颗粒和成孔剂熔接在一起;
(3)将步骤(2)得到的产物进行溶剂置换;
(4)将步骤(3)得到的产物进行干燥脱水得压电传感材料。
所述步骤(1)的成孔剂为:氯化锂、氯化钠、碘化钠、硫酸钠、氯化钾以及硫酸钾中的一种或多种。
所述步骤(1)的原料中PVDF含量为0.1~15%,纤维素含量为0.1~15%,纳米导电颗粒含量为0.1~5%,成孔剂含量为70~85%。
所述步骤(1)的原料需经研磨处理后过200目筛子。
所述步骤(2)的高温处理的温度为150 ℃~300 ℃,优选的温度为180 ℃~250℃。
所述步骤(3)的置换所用溶剂为去离子水或乙醇。
所述步骤(3)的溶剂置换的条件为:置换次数为6~15次,置换间隔时间为1~5小时。
所述步骤(4)的干燥温度为-80 ℃~80 ℃,干燥方式包括:冷冻干燥、烘箱干燥、真空干燥以及超临界干燥中的一种。
所述步骤(1)的纤维素为改性纤维素粉末,包括:甲基纤维素、羧甲基纤维素、羟甲基纤维素、羟乙基纤维素、羟丙基甲基纤维素、微纤化纤维素、纤维素纳米晶以及纳米纤维素中的至少一种。
上述任一方法制备的纤维素基柔性压力传感材料。
所用的纳米导电颗粒为具备导电性能的纳米颗粒,包括:石墨烯、碳纳米管、银纳米线、纳米银粉、纳米铜粉、纳米镍粉、纳米金粉以及MXene中的至少一种。
本发明的有益效果:
1、工艺简单
本发明是将PVDF、纤维素、纳米导电颗粒和成孔剂等原料混合后,经高温熔接、置换造孔和干燥固化等工艺,制备一种新型压电传感材料。本发明以PVDF、纤维素和纳米导电颗粒为原料,通过高温熔接、置换造孔和干燥固化等工艺,制备一种新型压电传感器材。该技术成本较为低廉、生产工艺简单,产品强度大、柔韧性好、灵敏度高,在电子皮肤、虚拟现实、健康监测等智能可穿戴设备方面具有极大的应用潜能。
2、成本较低
本发明的制备工艺简单、原料来源广泛,所制备的压电传感材料环保无毒,密度低、灵敏度高、柔韧性好。
3、应用潜能大
该产品密度较低、灵敏度较高、柔韧性较大、适应性较强等优点,在电子皮肤、虚拟现实、健康监测等智能可穿戴设备方面具有极大的应用潜能。
附图说明
图1为实施例1所制备的PVDF/纤维素/纳米导电颗粒压电传感材料;
图2为实施例1所制备的PVDF/纤维素/纳米导电颗粒压电传感器材扫描电镜图。
具体实施方式
下面结合具体实施例对本发明作进一步说明;除另有指明,实施例中的所述份数均以质量计。
实施例1
一种基于PVDF/纤维素/纳米导电颗粒的压电传感材料的制备方法,包括如下步骤:将0.1份PVDF、85份氯化锂、15份纳米纤维素、0.1份MXene加入到球磨机中进行研磨;将充分研磨后的产品装入模具置于200 ℃的马弗炉中处理30分钟;将上述产品浸没在80 ℃的去离子水中溶剂置换12次(每次置换时间为1小时);最后将上述产品置于50℃真空干燥箱中干燥6小时得到基于PVDF/纤维素/纳米导电颗粒的压电传感材料成品。
实施例2
一种基于PVDF/纤维素/纳米导电颗粒的压电传感材料的制备方法,包括如下步骤:将12份PVDF、80份碘化钠、0.1份纳米纤维素、1份纳米镍粉加入到球磨机中进行研磨;将充分研磨后的产品装入模具置于200 ℃的马弗炉中处理30分钟;将上述产品浸没在80 ℃的去离子水中溶剂置换15次(每次置换时间为5小时);最后将上述产品置于50℃真空干燥箱中干燥10小时得到基于PVDF/纤维素/纳米导电颗粒的压电传感材料成品。
实施例3
一种基于PVDF/纤维素/纳米导电颗粒的压电传感材料的制备方法,包括如下步骤:将15份PVDF、70份氯化钾、14份纳米纤维素、1份银纳米线加入到球磨机中进行研磨;将充分研磨后的产品装入模具置于200 ℃的马弗炉中处理30分钟;将上述产品浸没在80 ℃的去离子水中溶剂置换8次(每次置换时间为2小时);最后将上述产品置于50℃真空干燥箱中干燥12小时得到基于PVDF/纤维素/纳米导电颗粒的压电传感材料成品。
实施例4
一种基于PVDF/纤维素/纳米导电颗粒的压电传感材料的制备方法,包括如下步骤:将15份PVDF、70份氯化钠、12份纳米纤维素、3份碳纳米管加入到球磨机中进行研磨;将充分研磨后的产品装入模具置于200 ℃的马弗炉中处理30分钟;将上述产品浸没在80 ℃的去离子水中溶剂置换8次(每次置换时间为2小时);最后将上述产品置于50℃真空干燥箱中干燥12小时得到基于PVDF/纤维素/纳米导电颗粒的压电传感材料成品。
实施例5
一种基于PVDF/纤维素/纳米导电颗粒的压电传感材料的制备方法,包括如下步骤:将15份PVDF、82份氯化钠、1份纳米纤维素、5份石墨烯加入到球磨机中进行研磨;将充分研磨后的产品装入模具置于200 ℃的马弗炉中处理30分钟;将上述产品浸没在80 ℃的去离子水中溶剂置换10次(每次置换时间为2小时);最后将上述产品置于50℃真空干燥箱中干燥10小时得到基于PVDF/纤维素/纳米导电颗粒的压电传感材料成品。
实施例6
一种基于PVDF/纤维素/纳米导电颗粒的压电传感材料的制备方法,包括如下步骤:将15份PVDF、82份氯化钠、1份纳米纤维素、5份石墨烯加入到球磨机中进行研磨;将充分研磨后的产品装入模具置于200 ℃的马弗炉中处理30分钟;将上述产品浸没在无水乙醇中溶剂置换10次(每次置换时间为2小时);最后将上述产品置于-80℃冷冻干燥箱中干燥30小时得到基于PVDF/纤维素/纳米导电颗粒的压电传感材料成品。
对比例1
一种基于PVDF/纤维素/纳米导电颗粒的压电传感材料的制备方法,包括如下步骤:将15份PVDF、1份纳米纤维素、3份石墨烯加入到球磨机中进行研磨;将充分研磨后的产品装入模具置于200 ℃的马弗炉中处理30分钟;将上述产品浸没在80 ℃的去离子水中溶剂置换10次(每次置换时间为2小时);最后将上述产品置于50℃真空干燥箱中干燥10小时得到基于PVDF/纤维素/纳米导电颗粒的压电传感材料成品。
对比例2
一种基于PVDF/纤维素/纳米导电颗粒的压电传感材料的制备方法,包括如下步骤:将15份PVDF、40份氯化钠、1份纳米纤维素、5份石墨烯加入到球磨机中进行研磨;将充分研磨后的产品装入模具置于200 ℃的马弗炉中处理30分钟;将上述产品浸没在80 ℃的去离子水中溶剂置换10次(每次置换时间为2小时);最后将上述产品置于50℃真空干燥箱中干燥10小时得到基于PVDF/纤维素/纳米导电颗粒的压电传感材料成品。
实施效果例
将实施例1-6及对比例1、2制备的材料的性质比较如下:
Figure DEST_PATH_IMAGE001
因此,本发明制备的复合导电材料,密度较低、回弹率高,制备成压电传感器,在较小压力条件下,灵敏度较高、柔韧性较大等优点,在电子皮肤、虚拟现实、健康监测等智能可穿戴设备方面具有极大的应用潜能。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。

Claims (9)

1.一种压电传感材料的制备方法,其特征在于,包括如下步骤:
(1)将PVDF、纤维素、纳米导电颗粒和成孔剂充分混合;
(2)将步骤(1)得到的混合物进行高温处理,利用熔融的PVDF将纤维素、纳米导电颗粒和成孔剂熔接在一起;
(3)将步骤(2)得到的产物进行溶剂置换;
(4)将步骤(3)得到的产物进行干燥脱水得压电传感材料;
所述步骤(1)的原料中PVDF含量为0.1~15%,纤维素含量为0.1~15%,纳米导电颗粒含量为0.1~5%,成孔剂含量为70~85%。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)的成孔剂为:氯化锂、氯化钠、碘化钠、硫酸钠、氯化钾以及硫酸钾中的一种或多种。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)的原料需经研磨处理后过200目筛子。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)的高温处理的温度为150℃~300 ℃。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)的置换所用溶剂为去离子水或乙醇。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)的溶剂置换的条件为:置换次数为6~15次,置换间隔时间为1~5小时。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤(4)的干燥温度为-80 ℃~80 ℃。
8.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)的纤维素为改性纤维素粉末。
9.一种权利要求1-8任一方法制备的纤维素基柔性压力传感材料。
CN201910378733.1A 2019-05-08 2019-05-08 一种压电传感材料的制备方法及制备的材料 Expired - Fee Related CN110078976B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910378733.1A CN110078976B (zh) 2019-05-08 2019-05-08 一种压电传感材料的制备方法及制备的材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910378733.1A CN110078976B (zh) 2019-05-08 2019-05-08 一种压电传感材料的制备方法及制备的材料

Publications (2)

Publication Number Publication Date
CN110078976A CN110078976A (zh) 2019-08-02
CN110078976B true CN110078976B (zh) 2021-06-01

Family

ID=67419188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910378733.1A Expired - Fee Related CN110078976B (zh) 2019-05-08 2019-05-08 一种压电传感材料的制备方法及制备的材料

Country Status (1)

Country Link
CN (1) CN110078976B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455444B (zh) * 2019-08-23 2021-10-29 中国工程物理研究院化工材料研究所 一种柔性薄膜应力传感器及其制备方法
CN110828654B (zh) * 2019-11-25 2023-09-22 齐鲁工业大学 一种复合压电薄膜及其制备方法
CN111363277B (zh) * 2020-04-27 2021-05-25 南京航空航天大学 一种聚合物基压电薄膜及其制备方法和应用
CN111446885A (zh) * 2020-05-28 2020-07-24 深圳技术大学 柔性混合发电机及制备方法与应用、柔性自充电装置
CN112161695B (zh) * 2020-09-21 2022-04-29 清华大学深圳国际研究生院 一种柔性振动传感器及其制作方法
CN112362202A (zh) * 2020-11-26 2021-02-12 广东彩乐智能包装科技有限公司 纸基压力传感器、制备方法及纳米纤维素纸和压敏传感件
CN113285015B (zh) * 2021-06-04 2023-02-03 齐鲁工业大学 一种复合压电传感材料的制备方法及制备的压电传感材料
CN114276634B (zh) * 2022-01-07 2023-01-03 深圳市多合盈新材料有限公司 一种环保易降解气膜材料及其生产方法
CN116023705B (zh) * 2023-03-22 2023-07-18 之江实验室 透明压电薄膜、超声换能器及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100468837C (zh) * 2003-09-08 2009-03-11 中国科学院大连化学物理研究所 多硫化钠/溴储能电池的多孔碳基电极制备方法
CN103102623A (zh) * 2013-01-23 2013-05-15 杭州师范大学 一种透明抗静电的聚偏氟乙烯压电材料及其制备方法

Also Published As

Publication number Publication date
CN110078976A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
CN110078976B (zh) 一种压电传感材料的制备方法及制备的材料
Xia et al. Laser-induced graphene (LIG)-based pressure sensor and triboelectric nanogenerator towards high-performance self-powered measurement-control combined system
Wei et al. Highly sensitive, flexible, green synthesized graphene/biomass aerogels for pressure sensing application
Huang et al. Three-dimensional light-weight piezoresistive sensors based on conductive polyurethane sponges coated with hybrid CNT/CB nanoparticles
Zhang et al. A review of electronic skin: Soft electronics and sensors for human health
Yue et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor
Sun et al. A wearable, waterproof, and highly sensitive strain sensor based on three-dimensional graphene/carbon black/Ni sponge for wirelessly monitoring human motions
Kamran et al. Functionalized carbon materials for electronic devices: a review
Lai et al. Anisotropic carbon aerogel from cellulose nanofibers featuring highly effective compression stress transfer and pressure sensing
Hu et al. Recent progress in flexible micro-pressure sensors for wearable health monitoring
Xiao et al. Highly sensitive printed crack-enhanced strain sensor as dual-directional bending detector
CN110491989A (zh) 一种高灵敏度柔性电子皮肤及其制备方法
CN112697033A (zh) 一种高灵敏度、宽响应范围柔性应力/应变传感器及其制备方法
CN113218296B (zh) 一种弹性应变传感器及其制备方法
Chen et al. Fiber/yarn-based triboelectric nanogenerators (TENGs): fabrication strategy, structure, and application
Hou et al. Flexible piezoresistive sensor based on surface modified dishcloth fibers for wearable electronics device
Han et al. Recent progress of biomaterials-based epidermal electronics for healthcare monitoring and human–machine interaction
Yuan et al. A wearable and sensitive carbon black-porous polydimethylsiloxane based pressure sensor for human physiological signals monitoring
Lin et al. Carbon Nanofibrous Aerogels Derived from Electrospun Polyimide for Multifunctional Piezoresistive Sensors
Zhao et al. Flexible strain sensor based on CNTs/CB/TPU conductive fibrous film with wide sensing range and high sensitivity for human biological signal acquisition
Yuan et al. A piezoresistive sensor with high sensitivity and flexibility based on porous sponge
Zhao et al. Fish Scale for Wearable, Self-Powered TENG
Zhang et al. High-efficient flexible pressure sensor based on nanofibers and carbon nanotubes for artificial electronic skin and human motion monitoring
CN113425864A (zh) 一种柔性透气的MXene基生物质表皮电极及其制备方法和应用
CN110551308B (zh) 一种利用生物质材料制备柔性应变传感器的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220928

Address after: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd.

Address before: 250399 No. 3501 University Road, Changqing District, Jinan City, Shandong Province

Patentee before: Qilu University of Technology

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221027

Address after: 230000 China (Anhui) Pilot Free Trade Zone, Hefei, Anhui Province 2899 Kongquetai Road, High tech Zone, Hefei, Liandong U Valley, Hefei High tech International Enterprise Port 18-101

Patentee after: Hefei Pilot Micro System Integration Co.,Ltd.

Address before: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210601

CF01 Termination of patent right due to non-payment of annual fee