CN110067136A - 一种高锆高耐碱型玻璃纤维网格布 - Google Patents

一种高锆高耐碱型玻璃纤维网格布 Download PDF

Info

Publication number
CN110067136A
CN110067136A CN201910344408.3A CN201910344408A CN110067136A CN 110067136 A CN110067136 A CN 110067136A CN 201910344408 A CN201910344408 A CN 201910344408A CN 110067136 A CN110067136 A CN 110067136A
Authority
CN
China
Prior art keywords
zirconium
alkali resistant
fiberglass gridding
gridding cloth
warp thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910344408.3A
Other languages
English (en)
Inventor
辛德国
王海祥
徐西刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taishan Fiberglass Inc
Original Assignee
Taishan Fiberglass Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taishan Fiberglass Inc filed Critical Taishan Fiberglass Inc
Priority to CN201910344408.3A priority Critical patent/CN110067136A/zh
Publication of CN110067136A publication Critical patent/CN110067136A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D19/00Gauze or leno-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0006Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0022Glass fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/121Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyesters, polycarbonates, alkyds
    • D06N3/123Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyesters, polycarbonates, alkyds with polyesters
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/06Building materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明提供了一种高锆高耐碱型玻璃纤维网格布,本发明所述高锆高耐碱型玻璃纤维网格布由82‑90wt%的高锆高耐碱型玻璃纤维及10‑18wt%的高分子涂覆材料组成,采用纱罗组织(leno),经纱和纬纱呈90°垂直相交,两根经纱与一根纬纱交织,两根经纱位于纬纱的两侧,在高锆高耐碱型玻璃纤维网格布上,两根经纱交叉后绞在一起,形成一股经纱,本发明所提供高锆高耐碱型玻璃纤维网格布产品主要指标均远高于相关标准及已公开数据,并有良好的应用效果。

Description

一种高锆高耐碱型玻璃纤维网格布
技术领域
本发明属于玻纤网格布领域,特别是涉及一种高锆高耐碱型玻璃纤维网格布。
背景技术
玻璃纤维网格布采用玻璃纤维机织物作为基材,经耐碱高分子乳液浸泡涂覆,得到耐碱玻璃纤维网格布。具有一定的耐酸碱腐蚀和耐水泥及其他化学腐蚀能力,具有强度高,模量高,重量轻,粘接性能好,尺寸稳定性好等优点。
在建筑领域,外墙保温、水泥类墙体、屋面防水、水泥路桥、水泥类仿制石材以及使用环境恶劣、碱侵蚀较重的其他建筑设施都有如下特点:
(1)、因自然环境的温湿度变化,基体存在收缩应力,在收缩应力、外力冲击影响下,基体表面容易出现裂缝,需要使用玻璃纤维网格布来增强基体系统。网格布起着提高基体面层的机械强度、抵抗面层的收缩压力和保温层应力、外力冲击的作用,避免应力集中,防止因温、湿度变化及外力冲击而引起墙面开裂;
(2)、基体主要材料为硅酸盐水泥,呈现弱碱性状态,pH值一般在11-12,对玻璃纤维网格布的耐碱性要求较高。公开研究表明,硅酸盐水泥水解生成Ca(OH)2结晶,结晶在其饱和溶液中呈弱碱性,Ca(OH)2与玻璃纤维中的SiO2发生不可逆的化学反应,生成硅钙比接近于1的水化硅酸钙,该反应会一直持续,消耗掉玻纤网格布中所有的SiO2,由此,中碱和无碱玻璃纤维中的SiO2骨架被破坏,玻璃纤维强度下降,增强效果基本消失。
常规玻璃纤维网格布一般采用中碱玻璃纤维(极少量的采用无碱玻璃纤维)为原料制成,经过涂塑后具有一定的耐碱能力,目前这类网格布的耐碱断裂强力保留率(氢氧化钠溶液中浸泡28天)为40-60%,用于建筑物中增强水泥,易受到水泥的碱性侵蚀,因此,增强效果差,使用寿命短,外墙容易出现裂缝、脱落等安全事故。
耐碱玻璃纤维含有ZrO2(氧化锆),ZrO2(氧化锆)在耐碱玻璃纤维中起着抵抗碱性物质侵蚀作用,在一定范围内,锆含量高,耐碱玻璃纤维的耐碱性好。纤维成分中的ZrO2(氧化锆)在碱液作用下,表面的ZrO2会转化成含Zr(OH)4的胶状物并经脱水聚合在玻璃表面上,形成了致密的膜层,从而阻止了碱性物质对玻璃纤维SiO2骨架的侵蚀。JC/T841-2007和JG/T158-2013规定了耐碱玻璃纤维网格布耐碱断裂强力保留率测试方法,详见表1。
表1耐碱玻璃纤维网格布耐碱断裂强力保留率
国家标准GB/T18374—2001《增强材料术语及定义》明确界定“AR玻璃纤维能耐碱性物质长期侵蚀,主要用于增强硅酸盐水泥的玻璃纤维”,“C玻璃纤维即中碱玻璃纤维,其碱金属氧化物含量在12%左右,主要用于石膏增强”。E玻璃纤维即无碱玻璃纤维,主要用于电绝缘材料的增强。根据JGJ144-2008《外墙保温工程技术规程》规定,外墙外保温工程的使用年限应不少于25年。要做到25年保温系统完好,除了施工工艺和其他材料符合规定外,外墙外保温系统必须使用长期耐碱侵蚀能力强的玻璃纤维网格布。用于外墙外保温系统的玻璃纤维网格布必须有确定的长期耐碱、防裂性能要求。
据国家统计局发布,2016年,全国房地产开发企业施工面积75.9亿平方米,住宅施工面积52亿平方米,仅外墙保温用网格布全年建筑市场用量预计20亿平方米。按照外墙外保温标准匡算,全国每年耐碱网格布用量应该能达到几亿平方米。目前基本上使用中碱网格布。这给外墙外保温系统带来许多安全隐患,有些项目竣工验收时间不长就出现墙面起鼓、裂缝甚至墙面脱落事故。据新浪地产2015/1/26披露,仅2014年全国外墙保温领域发生墙面开裂脱落事故53起,造成了巨大损失。
发明内容
本发明的目的是提供一种高锆高耐碱型玻璃纤维网格布,该玻璃纤维网格布满足环境恶劣、碱侵蚀较重的水泥基基体增强用途。
本发明提供了一种高锆高耐碱型玻璃纤维网格布,所述高锆高耐碱型玻璃纤维网格布配方为:经纱采用有捻纱,纬纱采用直接纱,采用纱罗组织(leno)织造,经涂覆高分子材料制得,高锆高耐碱型玻璃纤维82-90wt%;高分子涂覆材料10-18wt%。
进一步的,所述高锆高耐碱型玻璃纤维中成分按质量所占比例为:
SiO2:62%-62.5%;
ZrO2:16%-17.5%:
CaO:5.3%-6.2%;
Na2O:14.5%-15.5%;
Al2O3:0.25%-0.4%;
MgO:0.05%-0.1%;
氧化锆含量增加,带来相应的制作技术难度。需要提高高锆高耐碱玻璃纤维制作过程中窑炉的温度,增加纤维拉丝难度;同时纱线硬度较中碱和无碱玻璃纤维提高,织造网格布时,毛纱产生频次较其他玻璃纤维高,织造难度较大;常规涂覆材料涂覆的高锆高耐碱型玻璃纤维网格布,其硬度较其他玻璃纤维网格布大。本发明制得的高锆高耐碱型玻璃纤维网格布的断裂强力高,耐碱断裂强力保留率高,高于JC/T841-2007和JG/T158-2013规定值,耐碱断裂强力保留率高于目前已公开可以查到的数值。
进一步的,所述高锆高耐碱型玻璃纤维网格布呈平面结构,厚度为0.3-0.9mm,采用纱罗组织(leno),经纱和纬纱呈90°垂直相交,两根经纱与一根纬纱交织,两根经纱位于纬纱的两侧,在高锆高耐碱型玻璃纤维网格布上,两根经纱交叉后绞在一起,形成一股经纱。
进一步的,所述高锆高耐碱玻璃纤维组成高锆高耐碱型玻璃纤维直接纱,所述高锆高耐碱型玻璃纤维网格布纬纱采用高锆高耐碱型玻璃纤维直接纱,单纤维直径11-15μm,线密度66-1200tex,每根纬纱(直接纱)由200-2400根单纤维组成。
进一步的,所述高锆高耐碱型玻璃纤维网格布经纱采用有捻纱,单纤维直径11-15μm,线密度66-350tex,每根经纱有200-800根单纤维组成,经纱加捻,捻度20-50捻/米,经纱纱筒纱线卷装量净重2-8kg。
进一步的,所述高锆高耐碱型玻璃纤维网格布网格尺寸为:经纱间距4-15mm,纬纱间距4-15mm;经纬密度6.6~25根/10cm。本发明所述网格布可与水泥砂浆直接充分粘合,在使用过程中,水泥砂浆可透过网格布,形成以网格布为骨架的致密水泥基基体,网格布增强效果好。根据水泥砂浆砂石颗粒粒径大小,选用不同网格尺寸产品应用于不同的水泥基体增强用途。一般的,网格尺寸4-6mm的网格布用于水泥+沙子+其他胶凝剂的水泥基基体,网格尺寸7-15mm的网格布对应用于水泥+沙子+粒径4-10mm的石子混凝土基体。不同网格尺寸的高锆高耐碱型玻璃纤维网格布用于但不限于如下用途,网格尺寸在4-6mm的产品用于石材背贴、薄抹灰内外墙保温系统等水泥基基体增强用途;网格尺寸在7-15mm的产品用于外墙保温系统、混凝土类水泥基基体增强用途,比如墙体梁柱增强、罗马柱、核电墙体等。
进一步的,所述高锆高耐碱型玻璃纤维网格布单位面积质量为70-330g/m2。根据使用用途,不同单重产品应用于不同的水泥基体增强用途。一般的,不同单重的高锆高耐碱型玻璃纤维网格布用于但不限于如下用途,产品单重在70-120g/m2的产品用于石材背贴、内墙保温系统等水泥基基体增强用途;单重在130-330g/m2的产品用于外墙保温系统水泥基基体、核电设施墙体等增强用途。
进一步的,所述高锆高耐碱型玻璃纤维网格布坯布需要涂覆高分子材料,所述高分子涂覆材料成分按质量比包含:聚丙烯酸酯类高分子材料:65%-75%;苯乙烯:25-35%。
高分子涂覆材料的作用一是为网格布定型,网格定位,方便施工使用,二是可以通过涂覆工艺,在高锆高耐碱型玻璃纤维表面形成一层致密膜层,对玻璃纤维起到一定的保护作用,该保护作用包含耐碱作用,在高锆高耐碱型玻璃纤维耐碱性能基础上增加网格布的耐碱性能。
与现有技术相比,本发明具有以下有益效果:
1、高锆高耐碱型玻璃纤维网格布产品主要指标均远高于相关标准,尤其是断裂强力和耐碱断裂强力保留率均高于JC/T841-2007和JG/T158-2013规定值。
2、耐碱断裂强力保留率高于目前已公开可以查到的数值。目前已公开可以查到160克的耐碱网格布依照JG/T158-2013检测的耐碱断裂强力保留率经向93.7%,纬向95.6%;本发明与其对应规格ARNP160(5*5)经国家玻璃纤维产品质量监督检验中心检测,耐碱断裂强力保留率经向95%,纬向97.9%,远远高于已公开数据。
3、产品用于增强水泥基基体,相较其他网格布,增强效果提升30-50%,使用寿命是其他网格布的2-5倍,可确保建筑质量,建筑安全使用期限提高50%以上。
4、高锆高耐碱型玻璃纤维网格布应用范围广泛。可以用于非高锆高耐碱型网格布的应用领域,比如石膏增强,更可以用于各类水泥基体增强。
附图说明
下面结合附图对本发明进一步说明。
图1是本发明的高锆高耐碱型玻璃纤维网格布结构示意图。
具体实施方式
结合具体实施方式,对本发明作进一步说明,但本发明的保护范围并不限于所述内容。
下述实施案例中所述生产方法适用于相应品种的高锆高耐碱型玻璃纤维网格布,本发明并不局限于以下所述内容。
所述实施例产品结构为:采用纱罗组织(leno),经和纬呈90°角度垂直相交,两根经纱交叉后与一根纬纱交织,纬纱在两根经纱中间,在成品布面上,这两根经纱交叉后绞在一起,形成1股经纱。
实施例1高锆高耐碱玻璃纤维网格布ARNP130(12*12)
1、用纱配方:经纱单纤维直径(13-14)μm,线密度(165±5)tex,每根经纱有(400±10)根单纤维组成,经纱加捻,捻度(28±3)捻/米,经纱纱筒纱线卷装量净重(4±0.2)kg;纬纱采用高锆高耐碱型玻璃纤维直接纱,单纤维直径(13-14)μm,线密度(640±50)tex,每根纬纱有(1600±50)根单纤维组成;
2、ZrO2(氧化锆)含量:(16.3-17.3)%;
3、产品参数:厚度:(0.55±0.05)mm;网格尺寸:经(12±0.5)mm,纬(12±0.5)mm;经纬密度(8.3±0.3)根/10cm;单重(130±10)克/平米;坯布单重(108±8)克/平米,
4、高分子涂覆材料,占成品重量比(16-18)%;高分子涂覆材料成分占比:聚丙烯酸酯类:(70-73)%,其中丙烯酸丁酯占35-40%,丙烯酸甲酯占15-20%,丙烯酸甲甲酯占15-20%;苯乙烯:(27-30)%。
实施例2高锆高耐碱玻璃纤维网格布ARNP145(5*5)
1、用纱配方:经纱单纤维直径(13-14)μm,线密度(165±5)tex,每根经纱有(400±10)根单纤维组成,经纱加捻,捻度(28±3)捻/米,经纱纱筒纱线卷装量净重(4±0.2)kg;纬纱采用高锆高耐碱型玻璃纤维直接纱,单纤维直径(13-14)μm,线密度(320±18)tex,每根纬纱有(800±20)根单纤维组成;
2、ZrO2(氧化锆)含量:(16.3-17.3)%;
3、产品参数:厚度:(0.48±0.05)mm;网格尺寸:经(5±0.4)mm,纬(5±0.4)mm;经纬密度(20±1.6)根/10cm;单重(145±11)克/平米;坯布单重(127±10)克/平米,
4、高分子涂覆材料,占成品重量比(10-14)%;高分子涂覆材料成分占比:聚丙烯酸酯类:(67-70)%,其中丙烯酸丁酯占35-38%,丙烯酸甲酯占15-20%,丙烯酸甲甲酯占15-20%;苯乙烯:(30-33)%。
实施例3高锆高耐碱玻璃纤维网格布ARNP160(5*5)
1、用纱配方:经纱单纤维直径(13-14)μm,线密度(165±5)tex,每根经纱有(400±10)根单纤维组成,经纱加捻,捻度(28±3)捻/米,经纱纱筒纱线卷装量净重(4±0.2)kg;纬纱采用高锆高耐碱型玻璃纤维直接纱,单纤维直径(13-14)μm,线密度(350±20)tex,每根纬纱有(800±20)根单纤维组成;
2、ZrO2(氧化锆)含量:(16.3-17.3)%;
3、产品参数:厚度:(0.5±0.05)mm;网格尺寸:经(5±0.4)mm,纬(5±0.4)mm;经纬密度(20±1.6)根/10cm;单重(160±12)克/平米;坯布单重(139±10)克/平米,
4、高分子涂覆材料,占成品重量比(10-14)%;高分子涂覆材料成分占比:聚丙烯酸酯类:(67-70)%,其中丙烯酸丁酯占35-38%,丙烯酸甲酯占15-20%,丙烯酸甲甲酯占15-20%;苯乙烯:(30-33)%。
对上述实施例1-3所得玻纤网格布进行检测,所得结果见表2、3、4。对相关数据做了对比分析,详见表5和表6。
表2、高锆耐碱玻璃纤维网格布氧化锆含量
表3、依据JC/T841-2007检测高锆耐碱玻璃纤维网格布耐碱性能(常温氢氧化钠溶液浸泡28天)
*委托国家玻璃纤维产品质量监督检验中心检测
**委托山东省建筑工程质量监督检验测试中心检测
表4、依据JG/T158-2013高锆耐碱玻璃纤维网格布耐碱性能(常温水泥浆液28天浸泡法)
*委托国家玻璃纤维产品质量监督检验中心检测
表5高锆耐碱玻璃纤维网格布拉伸断裂强力与标准值对比
*委托国家玻璃纤维产品质量监督检验中心检测
**委托山东省建筑工程质量监督检验测试中心检测
表6高锆耐碱玻璃纤维网格布耐碱断裂强力保留率与标准值对比
由上述结果可知,高锆高耐碱玻璃纤维网格布ZrO2(氧化锆)含量高,主要技术指标优势明显。拉伸断裂强力高,是标准值的(144-187)%;断裂伸长率≤4%;耐碱断裂强力保留率高,比标准值高6-18.7个百分点。
上面所述实施案例及对本发明的具体实施方式做了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (8)

1.一种高锆高耐碱型玻璃纤维网格布,其特征在于:所述高锆高耐碱型玻璃纤维网格布配方为:高锆高耐碱型玻璃纤维82-90wt%,高分子涂覆材料10-18wt%。
2.根据权利要求1所述的一种高锆高耐碱型玻璃纤维网格布,其特征在于:所述高锆高耐碱型玻璃纤维中成分按质量所占比例为:
SiO2:62%-62.5%;
ZrO2:16%-17.5%:
CaO:5.3%-6.2%;
Na2O:14.5%-15.5%;
Al2O3:0.25%-0.4%;
MgO:0.05%-0.1%。
3.根据权利要求1所述的一种高锆高耐碱型玻璃纤维网格布,其特征在于:所述高分子涂覆材料成分按质量比包含:聚丙烯酸酯类高分子材料:65%-75%;苯乙烯:25-35%。
4.根据权利要求1所述的一种高锆高耐碱型玻璃纤维网格布,其特征在于:所述高锆高耐碱型玻璃纤维网格布呈平面结构,厚度为0.3-0.9mm,采用纱罗组织(leno),经纱和纬纱呈90°垂直相交,两根经纱与一根纬纱交织,两根经纱位于纬纱的两侧,在高锆高耐碱型玻璃纤维网格布上,两根经纱交叉后绞在一起,形成一股经纱。
5.根据权利要求1所述的一种高锆高耐碱型玻璃纤维网格布,其特征在于:所述高锆高耐碱玻璃纤维组成高锆高耐碱型玻璃纤维直接纱,所述高锆高耐碱型玻璃纤维网格布纬纱采用高锆高耐碱型玻璃纤维直接纱,单纤维直径11-15μm,线密度66-1200tex,每根纬纱(直接纱)由200-2400根单纤维组成。
6.根据权利要求1所述的一种高锆高耐碱型玻璃纤维网格布,其特征在于:所述高锆高耐碱型玻璃纤维网格布经纱采用有捻纱,单纤维直径11-15μm,线密度66-350tex,每根经纱有200-800根单纤维组成,经纱加捻,捻度20-50捻/米,经纱纱筒纱线卷装量净重2-8kg。
7.根据权利要求1所述的一种高锆高耐碱型玻璃纤维网格布,其特征在于:所述高锆高耐碱型玻璃纤维网格布网格尺寸为:经纱间距4-15mm,纬纱间距4-15mm;经纬密度6.6~25根/10cm。
8.根据权利要求1所述的一种高锆高耐碱型玻璃纤维网格布,其特征在于:所述高锆高耐碱型玻璃纤维网格布单位面积质量为70-330g/m2
CN201910344408.3A 2019-04-26 2019-04-26 一种高锆高耐碱型玻璃纤维网格布 Pending CN110067136A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910344408.3A CN110067136A (zh) 2019-04-26 2019-04-26 一种高锆高耐碱型玻璃纤维网格布

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910344408.3A CN110067136A (zh) 2019-04-26 2019-04-26 一种高锆高耐碱型玻璃纤维网格布

Publications (1)

Publication Number Publication Date
CN110067136A true CN110067136A (zh) 2019-07-30

Family

ID=67369184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910344408.3A Pending CN110067136A (zh) 2019-04-26 2019-04-26 一种高锆高耐碱型玻璃纤维网格布

Country Status (1)

Country Link
CN (1) CN110067136A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110714258A (zh) * 2019-11-25 2020-01-21 浩珂科技有限公司 一种应急抢险用履带织物及其应用
CN112342665A (zh) * 2020-11-12 2021-02-09 山东铭泰新型材料有限公司 高强度高耐碱玻璃纤维网格布制造方法及设备
CN114934338A (zh) * 2022-06-28 2022-08-23 泰山玻璃纤维有限公司 超大网孔玻璃纤维网格布

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87103912A (zh) * 1986-05-28 1988-02-03 美国辉瑞有限公司 耐碱玻璃纤维
CN1046147A (zh) * 1989-04-04 1990-10-17 中国建筑材料科学研究院 抗碱玻璃纤维新组成
CN1149031A (zh) * 1996-09-05 1997-05-07 沈阳东电特种玻璃纤维有限公司 耐碱玻璃纤维的生产工艺方法
CN201460031U (zh) * 2009-06-01 2010-05-12 成都顺美国际贸易有限公司 加强型耐碱玻璃纤维网格布
CN103409887A (zh) * 2013-08-21 2013-11-27 南通汇能环保建材有限公司 一种高强度高耐碱玻璃纤维网格布

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87103912A (zh) * 1986-05-28 1988-02-03 美国辉瑞有限公司 耐碱玻璃纤维
CN1046147A (zh) * 1989-04-04 1990-10-17 中国建筑材料科学研究院 抗碱玻璃纤维新组成
CN1149031A (zh) * 1996-09-05 1997-05-07 沈阳东电特种玻璃纤维有限公司 耐碱玻璃纤维的生产工艺方法
CN201460031U (zh) * 2009-06-01 2010-05-12 成都顺美国际贸易有限公司 加强型耐碱玻璃纤维网格布
CN103409887A (zh) * 2013-08-21 2013-11-27 南通汇能环保建材有限公司 一种高强度高耐碱玻璃纤维网格布

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
赵子豪等: "玻璃纤维网格布用中碱直接无捻粗纱浸润剂的开发 ", 《玻璃纤维》 *
辛德国等: "池窑拉丝高锆耐碱玻璃纤维网格布性能研究", 《玻璃纤维》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110714258A (zh) * 2019-11-25 2020-01-21 浩珂科技有限公司 一种应急抢险用履带织物及其应用
CN110714258B (zh) * 2019-11-25 2024-06-11 浩珂科技有限公司 一种应急抢险用履带织物及其应用
CN112342665A (zh) * 2020-11-12 2021-02-09 山东铭泰新型材料有限公司 高强度高耐碱玻璃纤维网格布制造方法及设备
CN114934338A (zh) * 2022-06-28 2022-08-23 泰山玻璃纤维有限公司 超大网孔玻璃纤维网格布

Similar Documents

Publication Publication Date Title
CN110067136A (zh) 一种高锆高耐碱型玻璃纤维网格布
Zhu et al. Durability evaluation of three generations of 100% repeatedly recycled coarse aggregate concrete
Alghamri et al. Impregnation and encapsulation of lightweight aggregates for self-healing concrete
Suryavanshi et al. Mechanism of Friedel's salt formation in cements rich in tri-calcium aluminate
Park et al. Quantitative evaluation of crack self-healing in cement-based materials by absorption test
Alghamri et al. Self-healing of cracks in mortars using novel PVA-coated pellets of different expansive agents
CN103850353B (zh) 一种玄武纤维网格布包覆岩棉复合保温板及其制作方法
Cai et al. Application of sulphoaluminate cement to repair deteriorated concrete members in chloride ion rich environment-A basic experimental investigation of durability properties
Kwan et al. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment
CN110642558B (zh) 一种纤维增强复合凝胶水泥材料及其制备方法
Zhang et al. Effect of polymer coatings on the freezing–thawing and carbonation resistances of nano-SiO2 and polyvinyl alcohol fiber-reinforced cementitious composites
Dong et al. Chloride-ion-triggered microcapsule for self-suppression of capillary suction in cement paste
Sun et al. Study on durability against dry-wet cycles and chloride ion erosion of concrete revetment materials at the water-level-fluctuations zone in yellow river delta wetlands
Ji et al. A review on FRP bars and supplementary cementitious materials for the next generation of sustainable and durable construction materials
Li et al. Characterization of bending performance of reinforced cementitious composites beams with hybrid fibers after exposure to high temperatures
Bakhbergen et al. Optimization of mixture parameter for physical and mechanical properties of reactive powder concrete under external sulfate attack using Taguchi method
ES2478253T3 (es) Mortero de cemento y procedimiento para el refuerzo mejorado de estructuras de construcción
Li et al. Performance degradation of fiber-reinforced concrete under freeze–thaw cycles and its resistance to chloride ion penetration
Arce et al. Self-healing of SMA and steel-reinforced mortar with microcapsules
Wang et al. Research status of self-healing concrete
Wang et al. Effect of ultraviolet aging on the bonding and tensile properties of polymer-cement composite
Dong et al. Effect of chloride ion migration behaviour on the microstructure and mechanical properties of ultra-high performance concrete: A review
Jiang et al. Shear performance degradation of basalt fiber‐reinforced polymer bars in seawater environments: Coupled effects of seawater sea‐sand geopolymer mortar coatings and sustained loading
CN108947295A (zh) 低碱混凝土膨胀剂及其制备方法与应用
Hemalatha et al. An experimental study on Glass fiber reinforced concrete

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190730

RJ01 Rejection of invention patent application after publication