CN110066992A - 一种Ni-P-Si3N4-TiN多元纳米复合镀层及其制备方法 - Google Patents

一种Ni-P-Si3N4-TiN多元纳米复合镀层及其制备方法 Download PDF

Info

Publication number
CN110066992A
CN110066992A CN201910364678.0A CN201910364678A CN110066992A CN 110066992 A CN110066992 A CN 110066992A CN 201910364678 A CN201910364678 A CN 201910364678A CN 110066992 A CN110066992 A CN 110066992A
Authority
CN
China
Prior art keywords
tin
preparation
nano
solution
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910364678.0A
Other languages
English (en)
Inventor
黄维刚
倪铭
黄雪飞
黄志寅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201910364678.0A priority Critical patent/CN110066992A/zh
Publication of CN110066992A publication Critical patent/CN110066992A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1806Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites

Abstract

本发明公开了一种Ni‑P‑Si3N4‑TiN多元纳米复合镀层及其制备方法,所述的多元纳米复合镀层为TiN纳米颗粒和Si3N4纳米线共沉积在Ni‑P镀层内,所述的Ni‑P镀层沉积于镁合金基体上。通过Ni‑P化学镀共沉积技术,采用TiN纳米颗粒和Si3N4纳米线制备高硬度和高耐磨性的多元纳米复合Ni‑P镀层。该多元复合镀层的胞状结构的平均尺寸仅为约3μm,最大显微硬度可达到964.7HV,具有低的摩擦系数和优异的耐磨性。

Description

一种Ni-P-Si3N4-TiN多元纳米复合镀层及其制备方法
技术领域
本发明属于金属表面工程技术领域,具体涉及一种Ni-P-Si3N4-TiN多元纳米复合镀层及其制备方法。
背景技术
Ni-P化学镀层有高硬度,优异的耐蚀性,良好的可焊性和低的内应力等特点。Ni-P化学镀可在较复杂形状的零件上获得均匀的镀层。所以,Ni-P化学镀被认为是一种先进的金属表面处理技术,在化学、机械和电子工业等领域具有广泛的应用。
为了满足更高的机械性能要求,可以通过在Ni-P基体中共沉积微米颗粒或纳米颗粒来制备Ni-P化学镀复合镀层。目前含有Al2O3,SiC,SiO2,石墨,MoS2,聚四氟乙烯等微米颗粒或纳米颗粒的Ni-P复合镀层已可成功制备,这些Ni-P复合镀层表现出高的硬度,耐磨性,并具有良好的耐腐蚀性。共沉积具有润滑特性的颗粒制备出的复合镀层表现出低的摩擦系数和自润滑性。
授权专利CN102618855B公布的Ni-P-Al2O3纳米复合镀层,氧化铝纳米颗粒能够提高镀层的硬度和耐磨性能。授权专利CN101021013A公布的一种在金属基体表面制备耐磨纳米复合涂层的方法,在纳米复合涂层中将氧化硅、氮化硅、碳化硅、氧化铝、碳化钛、氧化钛等纳米粉体单独或者组合添加作为强化体,最后经过激光热处理,获得了耐磨纳米复合涂层。
TiN纳米颗粒是一种优秀的硬质颗粒,具有密度低,熔点高,硬度高,与金属润湿小,化学稳定性好等特点。Si3N4纳米线是一种优秀的一维材料,具有很多优越的性能,如低密度,极高的硬度和强度,优异的化学稳定性,良好的抗热冲击性等。
本发明提出了在Ni-P基体中同时引入TiN纳米颗粒和Si3N4纳米线两种高硬度纳米材料,利用这两种纳米材料的弥散强化作用和组织细化作用,获得了具有更高硬度水平和耐磨性的双纳米组元的Ni-P化学复合镀层。
发明内容
本发明利用在Ni-P基体中同时共沉积TiN纳米颗粒和Si3N4纳米线,通过两种纳米的弥散强化和组织细化作用,提出了一种Ni-P-Si3N4-TiN纳米化学复合镀层及其制备方法。该复合镀层在结构均匀,孔隙率低的同时,具有更高的硬度和耐磨性。
为了实现上述技术目的,本发明具体通过以下技术方案实现:
一种Ni-P-Si3N4-TiN多元纳米复合镀层,所述的复合镀层为TiN纳米颗粒和Si3N4纳米线共沉积在Ni-P镀层内,所述的Ni-P镀层沉积于镁合金基体上。
所述的TiN纳米颗粒含量为0.3~3g/L。
所述的Si3N4纳米线的含量为0.3~5g/L。
在本发明的另一方面,提供了所述的Ni-P-Si3N4-TiN多元纳米复合镀层的制备方法,包括以下步骤:
1)将镁合金基体表面打磨平整,分别进行超声碱洗和酸洗,去离子水冲洗干净,镁合金基体置于活化液中进行表面活化,室温下活化10~20min;
2)将活化后的基体置于Ni-P纳米复合镀液中进行施镀,调整复合镀液的pH值为5.5~7.0,镀液温度75-85℃,施镀过程中需持续进行搅拌,保持纳米微粒的均匀性。
进一步的,所述的碱洗溶液为磷酸钠和氢氧化钠组成的水溶液,所述的磷酸钠的浓度为5~15g/L,所述的氢氧化钠的浓度为40~60g/L。
优选的,所述的碱洗温度为50~70℃。
进一步的,所述的酸洗溶液为铬酐和硝酸组成的水溶液,所述的铬酐的浓度为100~150g/L,所述的硝酸的浓度为90~130ml/L。
优选的,所述的酸洗在室温条件下进行。
进一步的,所述的活化液为含300~450ml/L的40%氢氟酸水溶液。
进一步的,所述的Ni-P纳米复合镀液为:5~25g/L的硫酸镍、10~20g/L的乙酸钠、5~15ml/L的40%氢氟酸、15~25g/L的次亚磷酸钠、5~15g/L的氟化氢铵、0.5~1.5mg/L的硫脲、10~20ml/L的25%氨水、300~450mg/L表面活性剂、0.3~3g/L的TiN纳米颗粒和0.3~5g/L Si3N4纳米线。
所述的表面活性剂由阴离子表面活性剂十二烷基硫酸钠(SDS)和非离子表面活性剂聚乙二醇(PEG)组成,其中聚乙二醇的质量占20%~40%,十二烷基硫酸钠的质量占80-60%。
先将两种表面活性剂分别配置成溶液,浓度为12~18g/L,然后按照镀液中两种活性剂的质量比例,取相应体积的两种活性剂溶液,先向镀液中加入PEG搅拌均匀,然后再加入SDS搅拌均匀后才可施镀。
本发明的有益效果为:
对于使用本发明的制备方法制备得到的Ni-P-Si3N4-TiN纳米复合镀层进行形貌观察、成份分析及性能测试,结果发现:纳米复合镀层的胞状结构最小可以达到约3μm,Si3N4纳米线和TiN纳米颗粒能够均匀的分散在纳米复合镀层中,最高硬度可以达到964.7HV,纳米复合镀层表现出低的摩擦系数和高的耐磨性。
附图说明
图1是Ni-P-Si3N4-TiN纳米化学复合镀层的电镜图。
具体实施方式
下面将结合本发明具体的实施例,对本发明技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例具体提供了一种Ni-P-Si3N4-TiN多元纳米复合镀层的制备方法,包括以下步骤:
用600~1500#碳化硅砂纸将镁合金试样表面打磨平整,然后用无水乙醇清洗,再用5g/L磷酸钠和40g/L氢氧化钠合成的水溶液中碱洗,碱洗溶液的温度为50℃,然后再经铬酐100g/L和硝酸90ml/L的水溶液酸洗,在室温下进行,时间为30s,前序清洗完成后用去离子水清洗干净才能进行后序清洗,所有清洗均超声波清洗机中完成。清洗完成后的试样再进行表面活化,活化液为含300ml/L的40%氢氟酸水溶液,室温下活化10min。
将完成清洗和活化后的试样及时放入Ni-P纳米复合镀液中进行施镀,复合镀液的组分为5g/L的硫酸镍、10g/L的乙酸钠、5ml/L的40%氢氟酸、15g/L的次亚磷酸钠、5g/L的氟化氢铵、0.5mg/L的硫脲、10ml/L的25%氨水、300mg/L表面活性剂、0.3g/L的TiN纳米颗粒和0.3g/L Si3N4纳米线,使用浓度为25%的氨水调整复合镀液的pH值为5.5,镀液温度75℃,施镀过程中需持续进行搅拌,保持纳米微粒的均匀性。
其中,表面活性剂由阴离子表面活性剂十二烷基硫酸钠(SDS)和非离子表面活性剂聚乙二醇(PEG)组成,其中聚乙二醇的质量占20%%,十二烷基硫酸钠的质量占80%。
先将两种表面活性剂分别配置成溶液,浓度为12g/L,然后按照镀液中两种活性剂的质量比例,取相应体积的两种活性剂溶液,先向镀液中加入PEG搅拌均匀,然后再加入SDS搅拌均匀后才可施镀。
经试验检验,所制备的Ni-P-Si3N4-TiN纳米化学复合镀层,胞状结构均匀,镀层平整孔隙率低,硬度值可以达到894.3HV。
实施例2
本实施例具体提供了一种Ni-P-Si3N4-TiN多元纳米复合镀层的制备方法,包括以下步骤:
用600~1500#碳化硅砂纸将镁合金试样表面打磨平整,然后用无水乙醇清洗,再用15g/L磷酸钠和60g/L氢氧化钠合成的水溶液中碱洗,碱洗溶液的温度为70℃,然后再经铬酐150g/L和硝酸130ml/L的水溶液酸洗,在室温下进行,时间为50s,前序清洗完成后用去离子水清洗干净才能进行后序清洗,所有清洗均超声波清洗机中完成。清洗完成后的试样再进行表面活化,活化液为含400ml/L的40%氢氟酸水溶液,室温下活化20min。
将完成清洗和活化后的试样及时放入Ni-P纳米复合镀液中进行施镀,复合镀液的组分为25g/L的硫酸镍、20g/L的乙酸钠、15ml/L的40%氢氟酸、25g/L的次亚磷酸钠、15g/L的氟化氢铵、1.5mg/L的硫脲、20ml/L的25%氨水、450mg/L表面活性剂、3g/L的TiN纳米颗粒和5g/L Si3N4纳米线,使用浓度为25%的氨水调整复合镀液的pH值为7.0,镀液温度85℃,施镀过程中需持续进行搅拌,保持纳米微粒的均匀性。
其中,表面活性剂由阴离子表面活性剂十二烷基硫酸钠(SDS)和非离子表面活性剂聚乙二醇(PEG)组成,其中聚乙二醇的质量占40%,十二烷基硫酸钠的质量占60%。
先将两种表面活性剂分别配置成溶液,浓度为18g/L,然后按照镀液中两种活性剂的质量比例,取相应体积的两种活性剂溶液,先向镀液中加入PEG搅拌均匀,然后再加入SDS搅拌均匀后才可施镀。
经试验检验,所制备的Ni-P-Si3N4-TiN纳米化学复合镀层,胞状结构均匀,镀层平整孔隙率低,硬度值可以达到921.4HV。
实施例3
本实施例具体提供了一种Ni-P-Si3N4-TiN多元纳米复合镀层的制备方法,包括以下步骤:
用600~1500#碳化硅砂纸将镁合金试样表面打磨平整,然后用无水乙醇清洗,再用10g/L磷酸钠和50g/L氢氧化钠合成的水溶液中碱洗,碱洗溶液的温度为60℃,然后再经铬酐125g/L和硝酸110ml/L的水溶液酸洗,在室温下进行,时间为40s,前序清洗完成后用去离子水清洗干净才能进行后序清洗,所有清洗均超声波清洗机中完成。清洗完成后的试样再进行表面活化,活化液为含350ml/L的40%氢氟酸水溶液,室温下活化15min。
将完成清洗和活化后的试样及时放入Ni-P纳米复合镀液中进行施镀,复合镀液的组分为15g/L的硫酸镍、15g/L的乙酸钠、10ml/L的40%氢氟酸、20g/L的次亚磷酸钠、10g/L的氟化氢铵、1mg/L的硫脲、15l/L的25%氨水、375mg/L表面活性剂1.6g/L的TiN纳米颗粒和2.6g/L Si3N4纳米线,使用浓度为25%的氨水调整复合镀液的pH值为6,镀液温度80℃,施镀过程中需持续进行搅拌,保持纳米微粒的均匀性。
其中,表面活性剂由阴离子表面活性剂十二烷基硫酸钠(SDS)和非离子表面活性剂聚乙二醇(PEG)组成,其中聚乙二醇的质量占30%,十二烷基硫酸钠的质量占70%。
先将两种表面活性剂分别配置成溶液,浓度为15g/L,然后按照镀液中两种活性剂的质量比例,取相应体积的两种活性剂溶液,先向镀液中加入PEG搅拌均匀,然后再加入SDS搅拌均匀后才可施镀。
经试验检验,所制备的Ni-P-Si3N4-TiN纳米化学复合镀层,胞状结构均匀,镀层平整孔隙率低,硬度值可以达到964.7HV。
本发明制备得到Ni-P-Si3N4-TiN纳米化学复合镀层如图1所示。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

1.一种Ni-P-Si3N4-TiN多元纳米复合镀层,其特征在于,所述的复合镀层为TiN纳米颗粒和Si3N4纳米线共沉积在Ni-P镀层内,所述的Ni-P镀层沉积于镁合金基体上。
2.根据权利要求1所述的一种Ni-P-Si3N4-TiN多元纳米复合镀层,其特征在于,述的TiN纳米颗粒含量为0.3~3g/L;所述的Si3N4纳米线的含量为0.3~5g/L。
3.权利要求1所述的Ni-P-Si3N4-TiN多元纳米复合镀层的制备方法,其特征在于,包括以下步骤:
1)将镁合金基体表面打磨平整,分别进行超声碱洗和酸洗,去离子水冲洗干净,镁合金基体置于活化液中进行表面活化,室温下活化10~20min;
2)将活化后的基体置于Ni-P纳米复合镀液中进行施镀,调整复合镀液的pH值为5.5~7.0,镀液温度75-85℃,施镀过程中需持续进行搅拌,保持纳米微粒的均匀性。
4.根据权利要求3所述的制备方法,其特征在于,所述的碱洗溶液为磷酸钠和氢氧化钠组成的水溶液,所述的磷酸钠的浓度为5~15g/L,所述的氢氧化钠的浓度为40~60g/L,碱洗溶液的温度为50~70℃。
5.根据权利要求3所述的制备方法,其特征在于,所述的酸洗溶液为铬酐和硝酸组成的水溶液,所述的铬酐的浓度为100~150g/L,所述的硝酸的浓度为90~130ml/L,酸洗在室温条件下进行。
6.根据权利要求3所述的制备方法,其特征在于,所述的活化液为含300~450ml/L的40%氢氟酸水溶液。
7.根据权利要求3所述的制备方法,其特征在于,所述的Ni-P纳米复合镀液为:5~25g/L的硫酸镍、10~20g/L的乙酸钠、5~15ml/L的40%氢氟酸、15~25g/L的次亚磷酸钠、5~15g/L的氟化氢铵、0.5~1.5mg/L的硫脲、10~20ml/L的25%氨水、300~450mg/L表面活性剂、0.3~3g/L的TiN纳米颗粒和0.3~5g/L Si3N4纳米线。
8.根据权利要求3所述的制备方法,其特征在于,所述的表面活性剂由阴离子表面活性剂十二烷基硫酸钠和非离子表面活性剂聚乙二醇组成,其中聚乙二醇的质量占20%~40%,十二烷基硫酸钠的质量占80-60%。
CN201910364678.0A 2019-04-30 2019-04-30 一种Ni-P-Si3N4-TiN多元纳米复合镀层及其制备方法 Pending CN110066992A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910364678.0A CN110066992A (zh) 2019-04-30 2019-04-30 一种Ni-P-Si3N4-TiN多元纳米复合镀层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910364678.0A CN110066992A (zh) 2019-04-30 2019-04-30 一种Ni-P-Si3N4-TiN多元纳米复合镀层及其制备方法

Publications (1)

Publication Number Publication Date
CN110066992A true CN110066992A (zh) 2019-07-30

Family

ID=67369924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910364678.0A Pending CN110066992A (zh) 2019-04-30 2019-04-30 一种Ni-P-Si3N4-TiN多元纳米复合镀层及其制备方法

Country Status (1)

Country Link
CN (1) CN110066992A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114850729A (zh) * 2022-03-25 2022-08-05 郑州机械研究所有限公司 一种无镉银钎焊材料
CN115000231A (zh) * 2022-06-14 2022-09-02 太原理工大学 一种PS纳米球辅助的4H-SiC基热载流子型光电探测器及制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114850729A (zh) * 2022-03-25 2022-08-05 郑州机械研究所有限公司 一种无镉银钎焊材料
CN114850729B (zh) * 2022-03-25 2023-09-26 郑州机械研究所有限公司 一种无镉银钎焊材料
CN115000231A (zh) * 2022-06-14 2022-09-02 太原理工大学 一种PS纳米球辅助的4H-SiC基热载流子型光电探测器及制备方法

Similar Documents

Publication Publication Date Title
Qu et al. Pulse co-electrodeposition of nano Al2O3 whiskers nickel composite coating
Sadeghzadeh-Attar et al. Improvement in tribological behavior of novel sol-enhanced electroless Ni-P-SiO2 nanocomposite coatings
Luo et al. Synthesis of a duplex Ni-P-YSZ/Ni-P nanocomposite coating and investigation of its performance
Czagány et al. Effect of surfactants on the behavior of the Ni-P bath and on the formation of electroless Ni-P-TiC composite coatings
JP2021179015A (ja) 金属コーティング及びその製造方法
CN110066992A (zh) 一种Ni-P-Si3N4-TiN多元纳米复合镀层及其制备方法
CN105603399A (zh) 低碳钢表面化学镀Ni-Zn-P/纳米SiO2复合镀层的制备工艺
CN1676674A (zh) 含有纳米微粒的镍-磷合金基复合镀层的制备方法
Shakoor et al. Corrosion behavior of electrodeposited Ni-B coatings modified with SiO2 particles
CN113061945A (zh) 一种脉冲电沉积Ni-B/B4C纳米复合镀层的制备方法
Kaya et al. Study on the electroless Ni‐B nano‐composite coatings
Zhou et al. Effect of Ni2+ concentration on microstructure and bonding capacity of electroless copper plating on carbon fibers
Yongfeng et al. Ni-P TiO2 nanoparticle composite formed by chemical plating: deposition rate and corrosion resistance
Hu et al. Preparation and properties of Ni–Co–P/nano‐sized Si3N4 electroless composite coatings
CN109183132B (zh) 一种Sn-Ni-石墨烯/氟化石墨烯复合镀层的制备工艺
Zhang et al. A superhydrophobic coating on titanium alloys by simple chemical etching
Singh et al. Comparative study on electroless composite coatings of textured and untextured Al-substrates
Gul et al. Effect of Alumina Concentration on morphology, wear, and corrosion: Electroless Ni-WP/Al2O3 composite coatings on aluminum surfaces
Allahkaram et al. Studying the influence of nano-Al2O3 particles on morphology and corrosion improvement of Ni–9% P electroless coatings
CN105803510A (zh) 一种镁锂合金表面耐磨导电镀镍层的沉积方法
CN113005498A (zh) 一种自润滑锆基非晶合金及其制备方法和应用
CN114016009B (zh) 一种Ni-P-PFA-SiO2纳米复合镀层及其制备方法
Henuset et al. Effect of Ceramic Particle Pretreatment & Surface Chemistry on Electrocomposite Coatings
Odiwo et al. Properties of aluminium/electroless Ni-coated SiC composites-a review
JPH01290776A (ja) 複合めっき法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190730