CN110066978A - 一种铁酸铋薄膜的制备方法及其用途 - Google Patents

一种铁酸铋薄膜的制备方法及其用途 Download PDF

Info

Publication number
CN110066978A
CN110066978A CN201910509351.8A CN201910509351A CN110066978A CN 110066978 A CN110066978 A CN 110066978A CN 201910509351 A CN201910509351 A CN 201910509351A CN 110066978 A CN110066978 A CN 110066978A
Authority
CN
China
Prior art keywords
bismuth ferrite
thin film
sputtering
titanium
ferrite thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910509351.8A
Other languages
English (en)
Inventor
赵勇
朱守辉
孙柏
付国强
李冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201910509351.8A priority Critical patent/CN110066978A/zh
Publication of CN110066978A publication Critical patent/CN110066978A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种铁酸铋薄膜的制备方法,涉及功能薄膜器件制备技术领域。包括步骤一、选取大小为10mm×10mm二氧化硅材料为基底;步骤二、将步骤一选取的基底材料依次用去离子水,乙醇,丙酮,乙醇,去离子水清洗干净,备用;步骤三、在清洗干净的基底材料上直流溅射沉积金属钛作为下电极;步骤四、使用模具掩盖20%的下电极并用高温胶带固定,备用;步骤五、将经过步骤四处理的样品采用FLJ450型多靶多功能溅射系统,在真空度为10‑5Pa,工作气压为0.6Pa,采用射频溅射Bi2O3和直流溅射Fe各30分钟,制备得到铁酸铋薄膜介电层的样品;得到的样品用圆形掩膜板掩盖,用同样的工艺沉积金属钛作为器件的上电极,得到具有钛/铁酸铋/钛/二氧化硅结构的电子器件。

Description

一种铁酸铋薄膜的制备方法及其用途
技术领域
本发明涉及功能薄膜器件制备技术领域。
背景技术
近年来,随着设备制造技术的不断改进和半导体技术的不断革新,功能器件的制备更加的多元化。同时,信息技术的更新换代引起了电子产品的迅速发展。然而,存储设备是大多数电子产品的主要组成部分之一。为此,存储设备需要更高的存储空间密度,超快读写速度,小型化存储单位才能满足当今社会的发展进程。考虑到上述问题,具有可靠的电气性能的存储器件已成为研究的焦点。
目前使用的存储器可以分为两类,即易失性的随机存储器和非易失性存储器。前者主要产品有动态随机存取存储器和静态随机存储器,数据存储速度快,但当结束供电后,所存储的信息将会很快消失,因此易失性存储器存储的信息需要不断刷新。后者主要有ROM(只读存储器)、PROM(可编程存储器)、EEPROM(电可擦除存储器)、Flash(闪存)等,它们的存储速度相对较慢,但是具有断电后仍然能够继续保持存储数据的特性,已经广泛应用于许多小型电子设备中,其中Flash已经成为目前最为成熟的非易失性存储器。
自提出忆阻存储器的概念以来,忆阻随机存储器已经成为电子技术学,物理学,材料学,物理化学与信息技术领域的研究热点。忆阻器具有上下电极和介电层的三明治结构。介电层薄膜中的导电机制主要包括了肖特基发射、空间电荷限制传导、欧姆传导、Poole-Frenkele发射、热场发射、Fowler-Nordheim隧穿、直接隧穿、跳跃传导和离子传导等模型。这些传导模型对于我们研究忆阻器中的电荷传导具有很好的理论依据。制备忆阻器的介电层材料主要是半导体,如ZnO,TiO2,ZrO2,NiO,SrTiO3,Fe2O3,BiFeO3等,BiFeO3是一种重要的p型半导体材料,属于多铁材料的一种,具有铁电性和反铁磁性,并伴随弱的铁磁性,是当前多铁材料研究的热点之一。其铁电居里点在820℃,反铁磁奈尔点位370℃,因此在室温下具有多铁性,其具有广阔的应用前景。铁电性是指铁电体在特定的温度下发生自发极化的现象,且在极化过程中,极化方向会随着外电场方向的改变而改变。由于BiFeO3有合适的禁带宽度,光响应范围较宽等优点成为继TiO2后最具有应用前景的光催化材料之一。室温多铁性的材料拥有许多潜在的性质,体现出基于BiFeO3材料具有潜在的应用性能,特别提供了具有制备多功能器件的潜在可能。
磁控溅射沉积镀膜技术是利用辉光放电过程产生等离子体,让荷能粒子(如氩离子)对靶材表面进行轰击,将原子、分子等反应粒子从靶材的表面打出,最终沉积在基底的表面形成薄膜层,此过程中,由于在靶材的表面存在与电场方向正交的磁场,使等离子体的离化率和阴极溅射率得到有效提高。作为一种重要的沉积技术,磁控溅射镀膜技术与其他制备方法相比,具有以下优势:(1)装置性能稳定,操作方便;(2)工艺容易控制,重复性好,清洁污染性小;(3)可实现低温快速沉积,薄膜厚度均匀可控,与基体附着力较好;(4)选材灵活广泛,可溅射金属靶材、陶瓷靶材等多种靶材。研究制备BiFeO3薄膜的新方法具有重大的意义,有望发展成为以后功能器件的候选材料,为实现更优异的性能的电子器件提供新的途径。
发明内容
本发明的目的是提供一种铁酸铋薄膜的制备方法及其用途,它能有效地解决磁控溅射沉积技术制备铁酸铋薄膜的技术问题。
本发明的目的是通过以下技术方案来实现的:一种铁酸铋薄膜的制备方法,具体包括如下步骤:
步骤一、选取大小为10mm×10mm二氧化硅材料为基底材料;
步骤二、将步骤一选取的基底材料依次用去离子水,乙醇,丙酮,乙醇,去离子水清洗干净,备用;
步骤三、在清洗干净的基底材料上通过直流溅射沉积金属钛作为下电极;
步骤四、使用模具掩盖所述下电极20%的面积并用高温胶带固定,备用;
步骤五、将经过步骤四处理的下电极样品采用FLJ450型多靶多功能溅射系统,在真空度为10-5Pa,工作气压为0.6Pa,通过射频溅射Bi2O3和直流溅射Fe两种方法,同时溅射30分钟,制备得到具有铁酸铋薄膜介电层的下电极样品;
步骤六、将步骤五中得到的铁酸铋薄膜介电层的下电极样品用圆形掩膜板掩盖,再用步骤三的工艺沉积金属钛作为器件的上电极,得到具有钛/铁酸铋/钛/二氧化硅结构的电子器件。
所述基底材料采用具有硬质的载玻片、导电玻璃、Ti片均可。
所述射频溅射Bi2O3和直流溅射Fe的工艺步骤为两者同时进行;所述射频溅射工艺的功率为80瓦,直流溅射工艺的电流为0.2安培。
一种使用上述权利要求1至3所述的方法得到的铁酸铋薄膜的用途,所述铁酸铋薄膜制备得到的具有钛/铁酸铋/钛/二氧化硅结构的电子器件,通过测试所述电子器件的电学性能,展现了明显的忆阻特性,因此,所述铁酸铋薄膜在制造记忆存储设备领域具有实用效果。
本发明中选择磁控溅射沉积技术制备BiFeO3薄膜,针对BiFeO3中Bi的易挥发性难以制备纯相的问题,选择Bi2O3和Fe的靶材以及调控溅射工艺参数进行共溅射沉积制备BiFeO3薄膜。在这项工作中,通过磁控溅射的方法成功制备了BiFeO3薄膜,制备出具有简单的三明治结构的器件并在不同的测试条件下均能展现良好的忆阻行为。
本发明的有益效果是:
1、本发明利用磁控溅射的方法制备出的铁酸铋薄膜有望发展成为以后功能器件的候选材料,为实现更优异的性能的电子器件提供新的应用途径;
2、本发明对钛/铁酸铋/钛/二氧化硅结构的电子器件在不同的条件下测试电学性能均展现忆阻行为,说明铁酸铋材料存在的应用价值。
附图说明
图1为本发明的流程图;
图2为本发明铁酸铋薄膜X射线衍射(XRD)图谱;
图3为本发明利用铁酸铋薄膜制备的功能器件的电流—电压曲线(I-V曲线)。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图进一步说明本发明的技术方案。
如图1所示,一种铁酸铋(BiFeo3)薄膜的制备方法,结构为钛/铁酸铋/钛/二氧化硅的电子器件的制备方法,包括以下步骤:步骤一、选取大小为10mm×10mm二氧化硅材料为基底材料;
步骤二、将步骤一选取的基底材料依次用去离子水,乙醇,丙酮,乙醇,去离子水清洗干净,备用;
步骤三、在清洗干净的基底材料上通过直流溅射沉积金属钛作为下电极;
步骤四、使用模具掩盖所述下电极20%的面积并用高温胶带固定,备用;
步骤五、将经过步骤四处理的下电极样品采用FLJ450型多靶多功能溅射系统,在真空度为10-5Pa,工作气压为0.6Pa,通过射频溅射Bi2O3和直流溅射Fe两种方法,同时溅射30分钟,制备得到具有铁酸铋薄膜介电层的下电极样品;
步骤六、将步骤五中得到的铁酸铋薄膜介电层的下电极样品用圆形掩膜板掩盖,用步骤三相同的工艺沉积金属钛作为器件的上电极,得到具有钛/铁酸铋/钛/二氧化硅结构的电子器件。
所述基底材料采用具有硬质的载玻片、导电玻璃、Ti片均可。
所述射频溅射Bi2O3和直流溅射Fe的工艺步骤为两者同时进行;所述射频溅射工艺的功率为80瓦,直流溅射工艺的电流为0.2安培。
一种铁酸铋薄膜的用途,所述铁酸铋薄膜制备成具有钛/铁酸铋/钛/二氧化硅的三明治结构的电子器件,测试所述电子器件的电学性能,展现了明显的忆阻特性,所述铁酸铋薄膜在制造记忆存储设备领域得到应用。
图2为铁酸铋薄膜X射线衍射(XRD)图谱,由图谱可以看出制备薄膜的主要成分为铁酸铋。XRD图谱显示铁酸铋在(012)、(110)、(200)和(211)晶面。
图3为利用铁酸铋薄膜制备的器件的电流—电压曲线(I-V曲线)。当上电极加正电压下电极接地时,并且测试电路的电压扫描范围为-6.0V到6.0V。从图3(a)电流—电压曲线中可以看出当扫描速率为0.1V/s时在3.3V的电压处出现了Forming的过程;当扫描速率增加到0.2V/s时,器件的Forming过程出现在4.8V的电压处如图3(b);当扫描速率是0.5V/s和1.0V/s器件的Forming过程消失,是因为扫描速率增大时电压的施加时间减小,在器件内部还没有来得及发生Forming过程如图3(c)和(d)。
本发明中,基底不限于SiO2材料,其他硬质的载玻片、导电玻璃、Ti片均可用于本发明。
最后说明的是,以上实例仅用以说明本发明的技术方案而非限制,尽管通过参照本发明的优选实验已经对本发明进行了描述,可以在形式上和细节上对其做出各种各样的改变,而不偏离所附权利要求书所限定的本发明的范围。

Claims (4)

1.一种铁酸铋薄膜的制备方法,具体包括如下步骤:
步骤一、选取大小为10mm×10mm二氧化硅材料为基底材料;
步骤二、将步骤一选取的基底材料依次用去离子水,乙醇,丙酮,乙醇,去离子水清洗干净,备用;
步骤三、在清洗干净的基底材料上通过直流溅射沉积金属钛作为下电极;
步骤四、使用模具掩盖所述下电极20%的面积并用高温胶带固定,备用;
步骤五、将经过步骤四处理的下电极样品采用FLJ450型多靶多功能溅射系统,在真空度为10-5Pa,工作气压为0.6Pa,通过射频溅射Bi2O3和直流溅射Fe两种方法,同时溅射30分钟,制备得到具有铁酸铋薄膜介电层的下电极样品;
步骤六、将步骤五中得到的铁酸铋薄膜介电层的下电极样品用圆形掩膜板掩盖,再用步骤三的工艺沉积金属钛作为器件的上电极,得到具有钛/铁酸铋/钛/二氧化硅结构的电子器件。
2.根据权利要求书1中所述的一种铁酸铋薄膜的制备方法,其特征在于:所述基底材料采用具有硬质的载玻片、导电玻璃、Ti片均可。
3.根据权利要求书1中所述的一种铁酸铋薄膜的制备方法,其特征在于:所述射频溅射Bi2O3和直流溅射Fe的工艺步骤为两者同时进行;所述射频溅射工艺的功率为80瓦,直流溅射工艺的电流为0.2安培。
4.一种使用上述权利要求1至3所述的方法得到的铁酸铋薄膜的用途,其特征在于:所述铁酸铋薄膜制备得到的具有钛/铁酸铋/钛/二氧化硅结构的电子器件,通过测试所述电子器件的电学性能,展现了明显的忆阻特性,因此,所述铁酸铋薄膜在制造记忆存储设备领域具有实用效果。
CN201910509351.8A 2019-06-13 2019-06-13 一种铁酸铋薄膜的制备方法及其用途 Pending CN110066978A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910509351.8A CN110066978A (zh) 2019-06-13 2019-06-13 一种铁酸铋薄膜的制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910509351.8A CN110066978A (zh) 2019-06-13 2019-06-13 一种铁酸铋薄膜的制备方法及其用途

Publications (1)

Publication Number Publication Date
CN110066978A true CN110066978A (zh) 2019-07-30

Family

ID=67372780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910509351.8A Pending CN110066978A (zh) 2019-06-13 2019-06-13 一种铁酸铋薄膜的制备方法及其用途

Country Status (1)

Country Link
CN (1) CN110066978A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408491A (zh) * 2020-11-18 2021-02-26 南京工程学院 一种基于微波水热法快速制备超薄外延铁酸铋薄膜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429642A (zh) * 2008-12-05 2009-05-13 华中科技大学 BiFeO3靶材及薄膜的制备方法
CN101587936A (zh) * 2009-06-10 2009-11-25 中国科学院宁波材料技术与工程研究所 基于铁酸铋薄膜体系的电阻式随机存储器及其制备方法
CN103668060A (zh) * 2013-12-04 2014-03-26 华东师范大学 多层同质生长铁酸铋薄膜材料及其制备方法
CN103839928A (zh) * 2014-03-05 2014-06-04 欧阳俊 一种高耐压、低漏电、高极化强度铁酸铋薄膜及其制备方法
CN105336845A (zh) * 2015-09-28 2016-02-17 欧阳俊 一种高极化强度铁酸铋厚膜材料体系及中低温制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429642A (zh) * 2008-12-05 2009-05-13 华中科技大学 BiFeO3靶材及薄膜的制备方法
CN101587936A (zh) * 2009-06-10 2009-11-25 中国科学院宁波材料技术与工程研究所 基于铁酸铋薄膜体系的电阻式随机存储器及其制备方法
CN103668060A (zh) * 2013-12-04 2014-03-26 华东师范大学 多层同质生长铁酸铋薄膜材料及其制备方法
CN103839928A (zh) * 2014-03-05 2014-06-04 欧阳俊 一种高耐压、低漏电、高极化强度铁酸铋薄膜及其制备方法
CN105336845A (zh) * 2015-09-28 2016-02-17 欧阳俊 一种高极化强度铁酸铋厚膜材料体系及中低温制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408491A (zh) * 2020-11-18 2021-02-26 南京工程学院 一种基于微波水热法快速制备超薄外延铁酸铋薄膜的方法
CN112408491B (zh) * 2020-11-18 2022-05-24 南京工程学院 一种基于微波水热法快速制备超薄外延铁酸铋薄膜的方法

Similar Documents

Publication Publication Date Title
Kim et al. Ultrafast resistive-switching phenomena observed in NiN-based ReRAM cells
CN108470827A (zh) 一种柔性透明过渡金属氧化物阻变存储器及其制备方法
CN108831992A (zh) 一种铪掺杂氧化锌阻变层的阻变存储器及其制备方法
CN105185909A (zh) 一种有机材料阻变存储元件及其制备方法
Hu et al. Forming-free resistive switching characteristics in tantalum oxide and manganese oxide based crossbar array structure
CN103474571B (zh) 一种阻变存储元件及其制备方法
Chen et al. Highly stable ITO/Zn 2 TiO 4/Pt resistive random access memory and its application in two-bit-per-cell
Yang et al. Nanoscale multilevel switching in Ge2Sb2Te5 thin film with conductive atomic force microscopy
Chen et al. The resistive switching characteristics in TaON films for nonvolatile memory applications
Ge et al. Solution-processed inorganic δ-phase CsPbI 3 electronic synapses with short-and long-term plasticity in a crossbar array structure
Kim et al. Enhanced switching ratio of sol–gel-processed Y2O3 RRAM device by suppressing oxygen vacancy formation at high annealing temperatures
Jian et al. Resistive switching mechanism of ZnO/ZrO2-stacked resistive random access memory device annealed at 300° C by sol–gel method with forming-free operation
CN110066978A (zh) 一种铁酸铋薄膜的制备方法及其用途
CN104362250A (zh) 具有交换偏置效应和电致阻变效应的异质结及其制备方法
Liu et al. Memristive properties of transparent $({\rm La},\,{\rm Sr}){\rm MnO} _ {3} $ thin films deposited on ITO glass at room temperature
Sahu et al. Bipolar resistive switching in HoCrO3 thin films
Tulu et al. Forming-free resistive switching characteristics of 15 nm-thick multicomponent oxide
Kim et al. Thickness dependence of resistive switching characteristics of the sol–gel processed Y2O3 RRAM devices
Kumari et al. Analog resistive switching behavior in BiCoO3 thin film
Guo et al. Tuning oxygen vacancies and resistive switching behaviors in amorphous Y2O3 film-based memories
Zhang et al. Modeling of conducting bridge evolution in bipolar vanadium oxide-based resistive switching memory
Liu et al. Two resistive switching behaviors in Ag/SiO 2/Pt memristors
Peng et al. Stable and reliable IGZO resistive switching device with HfAlO x interfacial layer
CN113299823A (zh) 一种电场可调磁电信息存储器件及其制备方法
CN101599531B (zh) 一种电阻型随机存储器的存储单元及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190730

WD01 Invention patent application deemed withdrawn after publication