CN110066930B - 利用稀土金属减轻铝合金材料磨损性能的方法 - Google Patents

利用稀土金属减轻铝合金材料磨损性能的方法 Download PDF

Info

Publication number
CN110066930B
CN110066930B CN201910262412.5A CN201910262412A CN110066930B CN 110066930 B CN110066930 B CN 110066930B CN 201910262412 A CN201910262412 A CN 201910262412A CN 110066930 B CN110066930 B CN 110066930B
Authority
CN
China
Prior art keywords
aluminum alloy
temperature
smelting
rare earth
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910262412.5A
Other languages
English (en)
Other versions
CN110066930A (zh
Inventor
宋彬彬
李仁才
刘丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jinlan Jinying Aluminium Co Ltd
Original Assignee
Anhui Jinlan Jinying Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Jinlan Jinying Aluminium Co Ltd filed Critical Anhui Jinlan Jinying Aluminium Co Ltd
Priority to CN201910262412.5A priority Critical patent/CN110066930B/zh
Publication of CN110066930A publication Critical patent/CN110066930A/zh
Application granted granted Critical
Publication of CN110066930B publication Critical patent/CN110066930B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种利用稀土金属减轻铝合金材料磨损性能的方法,涉及铝合金材料加工技术领域,包括以下操作步骤:(1)配料,(2)熔炼,(3)精炼,(4)铸锭,(5)均热,(6)淬火,(7)退火;本发明以Al作为主料,Mg、Ti、Mn、Co作为辅料,并通过复合稀土的添加来增强所制铝合金材料的耐磨损性能,从而使所制铝合金材料能够应用于对耐磨损性能要求高的领域。

Description

利用稀土金属减轻铝合金材料磨损性能的方法
技术领域:
本发明涉及铝合金材料加工技术领域,具体涉及一种利用稀土金属减轻铝合金材料磨损性能的方法。
背景技术:
铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已被大量应用。添加一定元素形成的铝合金在保持纯铝质轻等优点的同时还能具有较高的强度,这样使得强度胜过很多合金钢,成为理想的结构材料,广泛用于机械制造、运输机械、动力机械及航空工业等方面,飞机的机身常以铝合金制造,减轻自重。
强度和韧性是铝合金材料的重要性能指标,提高铝合金材料的强度和韧性能够节约材料,降低成本,增加材料在使用过程中的可靠性和延长使用寿命。因此,理想的铝合金材料应该既有足够的强度,又有较好的韧性,但通常的铝合金材料无法兼具这两种使用性能。
相互接触的两个零件有相对运动或相对运动趋势时,就会在接触面产生摩擦力,从而产生相应的磨损。磨损性能的好坏决定了零件的寿命长短。因此,降低零件接触面间的摩擦力,提高材料的耐磨性,对延长零件的寿命具有重要意义。
在铝合金中添加何种元素,如金属元素或者是非金属元素,以及添加的比例的不同,可导致铝合金的耐磨损性能相差甚大。而对于耐磨损性能的提高,还需选择不同的元素进行组合。
发明内容:
本发明所要解决的技术问题在于提供一种利用稀土金属减轻铝合金材料磨损性能的方法,该方法操作简单易行,并且通过微量稀土金属的添加显著增强了所制铝合金材料的耐磨性能。
本发明所要解决的技术问题采用以下的技术方案来实现:
利用稀土金属减轻铝合金材料磨损性能的方法,包括以下操作步骤:
(1)配料:按质量百分比称取各原料,Mg 1-10wt%、Ti 0.5-5wt%、Mn0.5-5wt%、Co 0.5-5wt%、复合稀土0.05-0.5wt%,余量为铝;
(2)熔炼:将铝投入熔炼炉中,升温至690-740℃保温熔炼,完全熔化后再加入Mg和Ti,继续升温至730-780℃保温熔炼0.5-2h,然后加入Mn、Co和复合稀土,继续于730-780℃保温熔炼0.5-2h,得到熔体;
(3)精炼:待熔体温度700℃时加入除渣除气剂,并于700℃静置15-30min,扒渣,并通入氩气精炼0.5-1h,压力1-1.2MPa;
(4)铸锭:将铸锭模具预热至350℃后浇铸熔体,铸锭温度690-740℃,铸锭采用喷水冷却方式,冷却水水温低于30℃,得到铝合金锭;
(5)均热:将铝合金锭进行均热处理,先在430-480℃下保温12-24h,再在500-550℃下保温8-12h;
(6)淬火:将铝合金锭放入循环冷却水中进行淬火,控制转移时间小于5s,淬火温度在380-430℃,冷却水水温低于30℃;
(7)退火:将铝合金锭放入电阻炉中进行低温退火,退火温度130-180℃,退火时间1-3h。
所述复合稀土由质量比1:1的Y和Ce组成。
所述复合稀土由质量比1:1的Sc和Y组成。
所述除渣除气剂的添加量为熔体重量的0.1wt%。
所述除渣除气剂为DSG铝合金除渣除气剂。
所述除渣除气剂由如下重量百分比的组分组成:氯化钾45%、硫酸钠35%、偏铝酸钾20%。
所述除渣除气剂由如下重量百分比的组分组成:氯化钾45%、硫酸钠35%、偏铝酸钾10%、氟硅酸钙10%。
所述除渣除气剂由如下重量百分比的组分组成:氯化钾45%、硫酸钠35%、偏铝酸钾10%、碳酸锂10%。
通过除渣除气剂的组分配方筛选,得到除渣除气效果更好的除渣除气剂。
偏铝酸钾、氟硅酸钙和碳酸锂不属于本领域常规除渣除气剂组分,其中偏铝酸钾能有效吸附、溶解氧化铝,氟硅酸钙能有效去除熔体表面的氧化膜,碳酸锂起到助熔作用。
本发明的有益效果是:
(1)本发明以Al作为主料,Mg、Ti、Mn、Co作为辅料,并通过复合稀土的添加来增强所制铝合金材料的耐磨损性能,从而使所制铝合金材料能够应用于对耐磨损性能要求高的领域。
(2)本发明通过复合稀土的不同组合,来进一步优化所制铝合金材料的耐磨损性能。
(3)本发明通过除渣除气剂的使用,在高效清渣的同时使精炼后铝合金熔体中的氢含量不超过0.08ml/100g Al;并且通过以自制除渣除气剂替代现有DSG铝合金除渣除气剂来优化除渣除气效果,使除渣除气剂在低添加量下就能发挥良好的除渣除气效果。
具体实施方式:
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
实施例1
(1)配料:按质量百分比称取各原料,Mg 2.2wt%、Ti 1.0wt%、Mn 0.8wt%、Co0.5wt%、Y 0.05wt%、Ce 0.05wt%,余量为铝;
(2)熔炼:将铝投入熔炼炉中,升温至720℃保温熔炼,完全熔化后再加入Mg和Ti,继续升温至760℃保温熔炼1h,然后加入Mn、Co和复合稀土,继续于780℃保温熔炼1h,得到熔体;
(3)精炼:待熔体温度700℃时加入熔体0.1wt%的DSG铝合金除渣除气剂,并于700℃静置30min,扒渣,并通入氩气精炼1h,压力1.1MPa;
(4)铸锭:将铸锭模具预热至350℃后浇铸熔体,铸锭温度720℃,铸锭采用喷水冷却方式,冷却水水温23℃,得到铝合金锭;
(5)均热:将铝合金锭进行均热处理,先在450℃下保温16h,再在520℃下保温8h;
(6)淬火:将铝合金锭放入循环冷却水中进行淬火,控制转移时间小于5s,淬火温度在400℃,冷却水水温23℃;
(7)退火:将铝合金锭放入电阻炉中进行低温退火,退火温度160℃,退火时间2h。
实施例2
(1)配料:按质量百分比称取各原料,Mg 2.2wt%、Ti 1.0wt%、Mn 0.8wt%、Co0.5wt%、Sc 0.05wt%、Y 0.05wt%,余量为铝;
(2)熔炼:将铝投入熔炼炉中,升温至720℃保温熔炼,完全熔化后再加入Mg和Ti,继续升温至760℃保温熔炼1h,然后加入Mn、Co和复合稀土,继续于780℃保温熔炼1h,得到熔体;
(3)精炼:待熔体温度700℃时加入熔体0.1wt%的DSG铝合金除渣除气剂,并于700℃静置30min,扒渣,并通入氩气精炼1h,压力1.1MPa;
(4)铸锭:将铸锭模具预热至350℃后浇铸熔体,铸锭温度720℃,铸锭采用喷水冷却方式,冷却水水温23℃,得到铝合金锭;
(5)均热:将铝合金锭进行均热处理,先在450℃下保温16h,再在520℃下保温8h;
(6)淬火:将铝合金锭放入循环冷却水中进行淬火,控制转移时间小于5s,淬火温度在400℃,冷却水水温23℃;
(7)退火:将铝合金锭放入电阻炉中进行低温退火,退火温度160℃,退火时间2h。
实施例3
(1)配料:按质量百分比称取各原料,Mg 2.2wt%、Ti 1.0wt%、Mn 0.8wt%、Co0.5wt%、Sc 0.05wt%、Y 0.05wt%,余量为铝;
(2)熔炼:将铝投入熔炼炉中,升温至720℃保温熔炼,完全熔化后再加入Mg和Ti,继续升温至760℃保温熔炼1h,然后加入Mn、Co和复合稀土,继续于780℃保温熔炼1h,得到熔体;
(3)精炼:待熔体温度700℃时加入熔体0.1wt%的除渣除气剂,并于700℃静置30min,扒渣,并通入氩气精炼1h,压力1.1MPa;
(4)铸锭:将铸锭模具预热至350℃后浇铸熔体,铸锭温度720℃,铸锭采用喷水冷却方式,冷却水水温23℃,得到铝合金锭;
(5)均热:将铝合金锭进行均热处理,先在450℃下保温16h,再在520℃下保温8h;
(6)淬火:将铝合金锭放入循环冷却水中进行淬火,控制转移时间小于5s,淬火温度在400℃,冷却水水温23℃;
(7)退火:将铝合金锭放入电阻炉中进行低温退火,退火温度160℃,退火时间2h。
除渣除气剂由如下重量百分比的组分组成:氯化钾45%、硫酸钠35%、偏铝酸钾20%。
实施例4
(1)配料:按质量百分比称取各原料,Mg 2.2wt%、Ti 1.0wt%、Mn 0.8wt%、Co0.5wt%、Sc 0.05wt%、Y 0.05wt%,余量为铝;
(2)熔炼:将铝投入熔炼炉中,升温至720℃保温熔炼,完全熔化后再加入Mg和Ti,继续升温至760℃保温熔炼1h,然后加入Mn、Co和复合稀土,继续于780℃保温熔炼1h,得到熔体;
(3)精炼:待熔体温度700℃时加入熔体0.1wt%的除渣除气剂,并于700℃静置30min,扒渣,并通入氩气精炼1h,压力1.1MPa;
(4)铸锭:将铸锭模具预热至350℃后浇铸熔体,铸锭温度720℃,铸锭采用喷水冷却方式,冷却水水温23℃,得到铝合金锭;
(5)均热:将铝合金锭进行均热处理,先在450℃下保温16h,再在520℃下保温8h;
(6)淬火:将铝合金锭放入循环冷却水中进行淬火,控制转移时间小于5s,淬火温度在400℃,冷却水水温23℃;
(7)退火:将铝合金锭放入电阻炉中进行低温退火,退火温度160℃,退火时间2h。
除渣除气剂由如下重量百分比的组分组成:氯化钾45%、硫酸钠35%、偏铝酸钾10%、氟硅酸钙10%。
实施例5
(1)配料:按质量百分比称取各原料,Mg 2.2wt%、Ti 1.0wt%、Mn 0.8wt%、Co0.5wt%、Sc 0.05wt%、Y 0.05wt%,余量为铝;
(2)熔炼:将铝投入熔炼炉中,升温至720℃保温熔炼,完全熔化后再加入Mg和Ti,继续升温至760℃保温熔炼1h,然后加入Mn、Co和复合稀土,继续于780℃保温熔炼1h,得到熔体;
(3)精炼:待熔体温度700℃时加入熔体0.1wt%的除渣除气剂,并于700℃静置30min,扒渣,并通入氩气精炼1h,压力1.1MPa;
(4)铸锭:将铸锭模具预热至350℃后浇铸熔体,铸锭温度720℃,铸锭采用喷水冷却方式,冷却水水温23℃,得到铝合金锭;
(5)均热:将铝合金锭进行均热处理,先在450℃下保温16h,再在520℃下保温8h;
(6)淬火:将铝合金锭放入循环冷却水中进行淬火,控制转移时间小于5s,淬火温度在400℃,冷却水水温23℃;
(7)退火:将铝合金锭放入电阻炉中进行低温退火,退火温度160℃,退火时间2h。
除渣除气剂由如下重量百分比的组分组成:氯化钾45%、硫酸钠35%、偏铝酸钾10%、碳酸锂10%。
对照例1
以实施例1为对照,设置不添加Ce的对照例1。
(1)配料:按质量百分比称取各原料,Mg 2.2wt%、Ti 1.0wt%、Mn 0.8wt%、Co0.5wt%、Y 0.1wt%,余量为铝;
(2)熔炼:将铝投入熔炼炉中,升温至720℃保温熔炼,完全熔化后再加入Mg和Ti,继续升温至760℃保温熔炼1h,然后加入Mn、Co和复合稀土,继续于780℃保温熔炼1h,得到熔体;
(3)精炼:待熔体温度700℃时加入熔体0.1wt%的DSG铝合金除渣除气剂,并于700℃静置30min,扒渣,并通入氩气精炼1h,压力1.1MPa;
(4)铸锭:将铸锭模具预热至350℃后浇铸熔体,铸锭温度720℃,铸锭采用喷水冷却方式,冷却水水温23℃,得到铝合金锭;
(5)均热:将铝合金锭进行均热处理,先在450℃下保温16h,再在520℃下保温8h;
(6)淬火:将铝合金锭放入循环冷却水中进行淬火,控制转移时间小于5s,淬火温度在400℃,冷却水水温23℃;
(7)退火:将铝合金锭放入电阻炉中进行低温退火,退火温度160℃,退火时间2h。
对照例2
以实施例1为对照,设置不添加Y的对照例2。
(1)配料:按质量百分比称取各原料,Mg 2.2wt%、Ti 1.0wt%、Mn 0.8wt%、Co0.5wt%、Ce 0.1wt%,余量为铝;
(2)熔炼:将铝投入熔炼炉中,升温至720℃保温熔炼,完全熔化后再加入Mg和Ti,继续升温至760℃保温熔炼1h,然后加入Mn、Co和复合稀土,继续于780℃保温熔炼1h,得到熔体;
(3)精炼:待熔体温度700℃时加入熔体0.1wt%的DSG铝合金除渣除气剂,并于700℃静置30min,扒渣,并通入氩气精炼1h,压力1.1MPa;
(4)铸锭:将铸锭模具预热至350℃后浇铸熔体,铸锭温度720℃,铸锭采用喷水冷却方式,冷却水水温23℃,得到铝合金锭;
(5)均热:将铝合金锭进行均热处理,先在450℃下保温16h,再在520℃下保温8h;
(6)淬火:将铝合金锭放入循环冷却水中进行淬火,控制转移时间小于5s,淬火温度在400℃,冷却水水温23℃;
(7)退火:将铝合金锭放入电阻炉中进行低温退火,退火温度160℃,退火时间2h。
对照例3
以实施例1为对照,设置不添加稀土金属的对照例3。
(1)配料:按质量百分比称取各原料,Mg 2.2wt%、Ti 1.0wt%、Mn 0.8wt%、Co0.5wt%,余量为铝;
(2)熔炼:将铝投入熔炼炉中,升温至720℃保温熔炼,完全熔化后再加入Mg和Ti,继续升温至760℃保温熔炼1h,然后加入Mn、Co和复合稀土,继续于780℃保温熔炼1h,得到熔体;
(3)精炼:待熔体温度700℃时加入熔体0.1wt%的DSG铝合金除渣除气剂,并于700℃静置30min,扒渣,并通入氩气精炼1h,压力1.1MPa;
(4)铸锭:将铸锭模具预热至350℃后浇铸熔体,铸锭温度720℃,铸锭采用喷水冷却方式,冷却水水温23℃,得到铝合金锭;
(5)均热:将铝合金锭进行均热处理,先在450℃下保温16h,再在520℃下保温8h;
(6)淬火:将铝合金锭放入循环冷却水中进行淬火,控制转移时间小于5s,淬火温度在400℃,冷却水水温23℃;
(7)退火:将铝合金锭放入电阻炉中进行低温退火,退火温度160℃,退火时间2h。
对照例4
以实施例3为对照,设置不添加偏铝酸钾作为除渣除气剂组分的对照例4。
(1)配料:按质量百分比称取各原料,Mg 2.2wt%、Ti 1.0wt%、Mn 0.8wt%、Co0.5wt%、Sc 0.05wt%、Y 0.05wt%,余量为铝;
(2)熔炼:将铝投入熔炼炉中,升温至720℃保温熔炼,完全熔化后再加入Mg和Ti,继续升温至760℃保温熔炼1h,然后加入Mn、Co和复合稀土,继续于780℃保温熔炼1h,得到熔体;
(3)精炼:待熔体温度700℃时加入熔体0.1wt%的除渣除气剂,并于700℃静置30min,扒渣,并通入氩气精炼1h,压力1.1MPa;
(4)铸锭:将铸锭模具预热至350℃后浇铸熔体,铸锭温度720℃,铸锭采用喷水冷却方式,冷却水水温23℃,得到铝合金锭;
(5)均热:将铝合金锭进行均热处理,先在450℃下保温16h,再在520℃下保温8h;
(6)淬火:将铝合金锭放入循环冷却水中进行淬火,控制转移时间小于5s,淬火温度在400℃,冷却水水温23℃;
(7)退火:将铝合金锭放入电阻炉中进行低温退火,退火温度160℃,退火时间2h。
除渣除气剂由质量比45:35的氯化钾和硫酸钠组成。
分别利用实施例1-5、对照例1-4加工制备铝合金材料,采用WWM-A立式万能摩擦磨损试验机,止推圈式面面接触,上试件为材料HT250、230HV的止推圈,下试件为待测试的铝合金材料,载荷600N,速率800r/min,磨损长度15958m,试验条件为室温,环境介质为68EP冷冻油润滑状态,采用轮廓法来评定铝合金材料的磨损量;并对步骤(3)所得熔体进行减压凝固分析,选用ALSCAN铝水氢含量测定仪测试氢含量,结果如表1所示。
表1
组别 磨损量mm<sup>3</sup> 氢含量ml/100g Al
实施例1 8.45 0.063
实施例2 7.96 /
实施例3 / 0.055
实施例4 / 0.048
实施例5 / 0.041
对照例1 9.84 /
对照例2 10.58 /
对照例3 12.03 /
对照例4 / 0.082
由表1可知,本发明通过稀土元素Y、Ce、Sc的添加能够显著提高所制铝合金材料的耐磨损性能;并通过偏铝酸钾、氟硅酸钙和碳酸锂的添加使所制除渣除气剂能显著降低精炼所得熔体的氢含量。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (2)

1.利用稀土金属减轻铝合金材料磨损性能的方法,其特征在于:包括以下操作步骤:
(1) 配料:按质量百分比称取各原料,Mg 1-10wt%、Ti 0.5-5wt%、Mn 0.5-5wt%、Co0.5-5wt%、复合稀土 0.05-0.5 wt%,余量为铝;
所述复合稀土由质量比1 : 1的Y和Ce组成或者由质量比1 : 1的Sc和Y组成;
(2) 熔炼:将铝投入熔炼炉中,升温至690-740℃保温熔炼,完全熔化后再加入Mg和Ti,继续升温至730-780℃保温熔炼0.5-2 h,然后加入Mn、Co和复合稀土,继续于730-780℃保温熔炼0.5-2 h,得到熔体;
(3) 精炼:待熔体温度700℃时加入除渣除气剂,并于700℃静置15-30 min,扒渣,并通入氩气精炼0.5-1 h,压力1-1.2 MPa;
所述除渣除气剂由如下重量百分比的组分组成:氯化钾 45%、硫酸钠 35%、偏铝酸钾20%;
(4) 铸锭:将铸锭模具预热至350℃后浇铸熔体,浇铸温度690-740℃,铸锭采用喷水冷却方式,冷却水水温低于30℃,得到铝合金锭;
(5) 均热:将铝合金锭进行均热处理,先在430-480℃下保温12-24 h,再在500-550℃下保温8-12 h;
(6) 淬火:将铝合金锭放入循环冷却水中进行淬火,控制转移时间小于5 s,淬火温度在380-430℃,冷却水水温低于30℃;
(7) 退火:将铝合金锭放入电阻炉中进行低温退火,退火温度130-180℃,退火时间1-3h。
2.根据权利要求1所述的利用稀土金属减轻铝合金材料磨损性能的方法,其特征在于:所述除渣除气剂的添加量为熔体重量的0.1wt%。
CN201910262412.5A 2019-04-02 2019-04-02 利用稀土金属减轻铝合金材料磨损性能的方法 Active CN110066930B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910262412.5A CN110066930B (zh) 2019-04-02 2019-04-02 利用稀土金属减轻铝合金材料磨损性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910262412.5A CN110066930B (zh) 2019-04-02 2019-04-02 利用稀土金属减轻铝合金材料磨损性能的方法

Publications (2)

Publication Number Publication Date
CN110066930A CN110066930A (zh) 2019-07-30
CN110066930B true CN110066930B (zh) 2021-05-04

Family

ID=67366968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910262412.5A Active CN110066930B (zh) 2019-04-02 2019-04-02 利用稀土金属减轻铝合金材料磨损性能的方法

Country Status (1)

Country Link
CN (1) CN110066930B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115707789A (zh) * 2022-11-11 2023-02-21 浙江极嘉轻量化科技有限公司 一种高强韧铝合金的生产工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772934A (zh) * 2004-11-14 2006-05-17 林海 高温耐磨合金
CN102758109A (zh) * 2012-08-07 2012-10-31 曾琦 一种高强度耐磨耐热铝合金材料及其制备方法
CN102877060A (zh) * 2012-09-26 2013-01-16 孙晓冰 镁合金表面激光熔覆耐磨耐腐蚀涂层用amr合金粉
JP2018516313A (ja) * 2015-04-23 2018-06-21 アペラン スチール、該スチールで製造された製品、及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772934A (zh) * 2004-11-14 2006-05-17 林海 高温耐磨合金
CN102758109A (zh) * 2012-08-07 2012-10-31 曾琦 一种高强度耐磨耐热铝合金材料及其制备方法
CN102877060A (zh) * 2012-09-26 2013-01-16 孙晓冰 镁合金表面激光熔覆耐磨耐腐蚀涂层用amr合金粉
JP2018516313A (ja) * 2015-04-23 2018-06-21 アペラン スチール、該スチールで製造された製品、及びその製造方法

Also Published As

Publication number Publication date
CN110066930A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
CN110760718B (zh) 一种高钨高钴的镍合金高纯净度细晶棒料的制备方法
CN109266901B (zh) 一种Cu15Ni8Sn高强耐磨合金杆/丝的制备方法
CN104831115A (zh) 含锰黄铜合金及其制备方法
CN113667890A (zh) 一种低硅微合金化高温渗碳齿轮钢及其制备方法
CN113073268A (zh) 铜包钢丝用盘条及其生产方法
CN114561593A (zh) 一种长寿命高强韧耐腐蚀水下采油树阀体用钢及其热处理方法和生产方法
CN110066930B (zh) 利用稀土金属减轻铝合金材料磨损性能的方法
CN114134402A (zh) 一种海上、岩石用大规格高强度风电紧固件钢及其制造方法
CN112593116A (zh) 一种高强度的铜锌合金的制备方法
CN104195432A (zh) 一种用于汽车变速齿轮的合金钢材料及其制造方法
CN105177395A (zh) 一种镍铜合金的制造工艺
CN114134397B (zh) 一种适用于冷挤压滚珠丝母用钢及其生产方法
CN111235482A (zh) 一种耐高温铝液熔蚀-磨损高硼铸钢材料及其制备方法
CN112575242A (zh) 一种合金结构用钢及其制造方法
CN103014482A (zh) 耐热耐腐蚀的奥氏体球墨铸铁生产的金属材料及制法
LU502587B1 (en) Low-cost, high-strength ferritic nodular cast iron, and preparation method and use thereof
JP2015129335A (ja) 浸炭軸受用鋼
CN115094307B (zh) 一种电渣重熔用热作模具钢连铸圆坯及其生产工艺
CN113151744B (zh) 一种工程机械回转支承用钢s48c及其生产方法
CN104294081A (zh) 一种高强耐热减磨铸造锡镍青铜及其制备方法
CN114293065A (zh) 一种具有高强度的铜合金板材
CN110468329B (zh) ZG-SY09MnCrNiMo RE钢及铸件制备方法
CN109536774B (zh) 铜合金材料、制备方法及滑动轴承
CN112921154A (zh) 一种制作高合金马氏体气阀钢的方法
CN111922313A (zh) 一种新型镁合金半固态成型工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method for reducing the wear properties of aluminum alloy materials by using rare earth metals

Effective date of registration: 20220810

Granted publication date: 20210504

Pledgee: The development of small and medium-sized enterprises financing Company Limited by Guarantee Jieshou City

Pledgor: ANHUI JINLAN JINYING ALUMINUM CO.,LTD.

Registration number: Y2022980012287