CN110066727A - 运动控制机构 - Google Patents

运动控制机构 Download PDF

Info

Publication number
CN110066727A
CN110066727A CN201810070369.8A CN201810070369A CN110066727A CN 110066727 A CN110066727 A CN 110066727A CN 201810070369 A CN201810070369 A CN 201810070369A CN 110066727 A CN110066727 A CN 110066727A
Authority
CN
China
Prior art keywords
pipette tips
liquid
connector
outlet end
liquid pipette
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810070369.8A
Other languages
English (en)
Inventor
盛广济
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinaford (beijing) Medical Technology Co Ltd
Sniper Beijing Medical Technologies Co Ltd
Original Assignee
Sinaford (beijing) Medical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinaford (beijing) Medical Technology Co Ltd filed Critical Sinaford (beijing) Medical Technology Co Ltd
Priority to CN201810070369.8A priority Critical patent/CN110066727A/zh
Publication of CN110066727A publication Critical patent/CN110066727A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及一种运动控制机构,包括支撑架、连接件以及驱动元件。所述连接件用于与吐液枪头连接。所述驱动元件固定于所述支撑架,所述驱动元件与所述连接件传动连接。在所述驱动元件的驱动下,吐液枪头的出口端做位移呈正弦变化或者速度呈方波变化的运动。上述运动控制机构,通过带动吐液枪头的出口端做位移呈正弦变化或者速度呈方波变化的振动以生成微液滴,具有微液滴生成效率高、提及均一性高的优点。

Description

运动控制机构
技术领域
本发明涉及微量液体的量取、分配技术领域,特别是涉及一种运动控制机构。
背景技术
目前在医学临床检验、纳米材料制备、食品及环境检测、生化分析等应用领域都有着对微量液体精确操作的广泛需求。微量液体操作的核心技术之一是把微升量级的液体进一步分割为纳升甚至皮升体积的微反应体系。微反应体系生成的一个主要技术分支是乳化微液滴生成。
近些年来,在文献中报道了多种微液滴生成技术,如膜乳化法、喷雾乳化法、微流控芯片法、吐液枪头注射/喷射法等。其中,吐液枪头注射/喷射法作为最新的微液滴生成技术,在微液滴的生成方面及耗材成本控制方面均具有良好的应用前景。使用吐液枪头注射/喷射法时,吐液枪头的出口端在运动控制机构的带动下与油相组合物之间产生相对运动。传统的运动控制机构在使用过程中,无法精确控制吐液枪头的出口端与油相组合物之间的相对运动,所生成微液滴的体积大小均一性较差。
发明内容
基于此,有必要针对使用吐液枪头注射/喷射法生成微液滴时,由于传统的运动控制机构无法精确控制吐液枪头的出口端与油相组合物之间的相对运动,所生成的微液滴体积大小均一性较差的问题,提供一种能够精确控制吐液枪头的出口端与油相组合物之间相对运动的运动控制机构。
一种运动控制机构,包括:
支撑架;
连接件,用于与吐液枪头连接;
驱动元件,固定于所述支撑架,所述驱动元件与所述连接件传动连接;
在所述驱动元件的驱动下,吐液枪头的出口端做位移呈正弦变化或者速度呈方波变化的运动。
上述运动控制机构,通过带动吐液枪头的出口端做位移呈正弦变化或者速度呈方波变化的振动以生成微液滴,具有微液滴生成效率高、提及均一性高的优点。
附图说明
图1为本发明提供的数字PCR检测仪的整体结构示意图;
图2为本发明提供的数字PCR检测仪的微液滴生成装置;
图3为本发明另一实施例提供的吐液枪头的出口端运动时液滴的受力示意图;
图4为本发明一实施例提供的液滴随吐液枪头的出口端运动时理想情况下粘滞阻力变化示意图;
图5为本发明一实施例提供的吐液枪头的出口端两个运动周期生成一个微液滴的过程示意图;
图6为本发明一实施例提供的吐液枪头的出口端一个运动周期生成一个微液滴的过程示意图;
图7为本发明一实施例提供的吐液枪头的出口端一个运动周期生成两个微液滴的过程示意图;
图8为本发明一实施例提供的吐液枪头摆动时微液滴的生成过程示意图;
图9为本发明一实施例提供的第二液体的粘度变化时微液滴的生成过程示意图;
图10为本发明一实施例提供的更换吐液枪头时微液滴的生成过程示意图;
图11为本发明一实施例提供的运动控制机构结构示意图;
图12为本发明一实施例提供的闭环控制电机控制原理图;
图13为本发明一实施例提供的压电式运动控制机构结构示意图;
图14为本发明一实施例提供的电磁-弹性件式运动控制机构结构示意图;
图15为本发明另一实施例提供的电磁-弹性件式运动控制机构结构示意图;
图16为本发明一实施例提供的电磁-轴承式运动控制机构结构示意图;
图17为本发明另一实施例提供的电磁-轴承式运动控制机构结构示意图;
图18为本发明再一实施例提供的电磁-轴承式运动控制机构结构示意图。
其中:
1-数字PCR检测仪;10-微液滴生成装置;20-温控装置;30-荧光信号检测装置;40-定量分析装置;50-控制器;110-吐液枪头;112-出口端;195-液滴;199-微液滴;120-流体驱动机构;130-运动控制机构;131-支撑架;132-连接件;1321-接头;1322-连接轴;133-振动电机;134-延伸板;135-压电陶瓷;136-弹性件;137-电磁铁;138-磁性件;170-第一控制器;60-微液滴容器;699-第二液体;f1-浮力;f2-粘滞阻力;f3-最大附着力;G-重力。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。实施例附图中各种不同对象按便于列举说明的比例绘制,而非按实际组件的比例绘制。
数字PCR(Digital PCR,dPCR)是一种核酸分子绝对定量技术。相较于qPCR,数字PCR可让你能够直接数出DNA分子的个数,是对起始样品的绝对定量。定量PCR是依靠标准曲线或参照基因来测定核酸量,而数字PCR则让你能够直接数出DNA分子的个数,是对起始样品的绝对定量。
目前,数字PCR包括液滴式PCR检测方法和芯片式检测方法。芯片式检测方法中单个芯片上的有效反应腔数量一般只有数千个,远少于液滴式。所以,芯片式数字PCR的动态范围相对于液滴式较窄。液滴式PCR检测方法将样本分散成油包水的反应单元,之后对每个反应单元进行实时或终点荧光分析。但是,目前的数字PCR仪器存在有效反应单元数量少,耗材成本高、动态范围较窄,工作效率低以及集成化程度不高的问题。
基于此,有必要针对目前数字PCR仪器的问题,提供一种数字PCR检测仪。
请参见图1,本发明提供一种数字PCR检测仪1,所述数字PCR检测仪1包括:微液滴生成装置10、温控装置20、荧光信号检测装置30、定量分析装置40以及控制器50。所述微液滴生成装置10用以将核酸扩增反应液微滴化,形成多个微液滴。所述温控装置20与所述微液滴生成装置10通过轨道连接,用以将所述多个微液滴转移至所述温控装置20,进行温度循环,实现核酸扩增。所述荧光信号检测装置30与所述温控装置20相对设置,用以对核酸扩增后的所述多个微液滴进行拍照检测。所述定量分析装置40与所述荧光信号检测装置30通过数据线连接,用以实现所述多个微液滴荧光信息的传输,进行定量分析。所述控制器50分别与所述微液滴生成装置10、所述温控装置20、荧光信号检测装置30以及定量分析装置40连接,用以控制所述微液滴生成装置10、所述温控装置20、荧光信号检测装置30以及定量分析装置40。
所述数字PCR检测仪1可以将所述微液滴生成装置10、所述温控装置20、所述荧光信号检测装置30以及所述定量分析装置40集成化,从而使得操作人员可以实现自动化操作。所述数字PCR检测仪1具有较高的工作效率。
所述数字PCR检测仪1在工作时,所述微液滴生成装置10可以将所述待测核酸扩增反应液进行微滴化,从而形成多个微液滴。所述温控装置20可以对所述多个微液滴进行核酸扩增。所述荧光信号检测装置30实时拍测所述多个微液滴的荧光变化图片。通过所述多个微液滴的荧光变化图片,可以获取所述多个微液滴的荧光变化曲线。根据所述荧光变化曲线,可以获取所述多个微液滴的Ct值,并通过Ct值与起始拷贝数的关系对初始DNA的浓度进行定量分析。其中,Ct值是指每个微液滴的荧光信号达到设定的阈值时所经历的循环数。
所述温控装置20对所述多个微液滴进行核酸扩增反应,并通过所述荧光信号检测装置30采集核酸扩增反应后的所述多个微液滴的产物信号,如荧光、紫外吸收、浊度等信号。利用所述多个扩增与非扩增微液滴在组成上的差异,对获得目标序列扩增的液滴数量进行分析,最终实现对核酸分子的定量分析。通过实时监测所述多个微液滴的荧光变化图片,检测结果具有直接性,可以解决所述多个微液滴中的假阳性和假阴性的问题。
所述数字PCR检测仪1将所述微液滴生成装置10、所述温控装置20、所述荧光信号检测装置30以及所述定量分析装置40集成化,使得所述操作人员可以实现自动化操作,不进提高了工作效率,还具有反应快速、重复性好、灵敏度高、特异性强和结果清晰的优点。
目前医学临床检验、纳米材料制备、食品及环境检测、生化分析等应用领域都对微量液体精确操作具有广泛需求。微量液体操作的核心技术之一是把微升量级的液体进一步分割为纳升甚至皮升体积的液滴,作为微反应体系。微反应体系生成的一个主要技术分支是乳化微液滴生成。
近些年来,在文献中报道了多种微液滴生成技术,如膜乳化法、喷雾乳化法、微流控芯片法和吐液枪头注射/喷射法。然而,通过吐液枪头生成乳化微液滴的方法在实际应用中都各存在一定的缺点。有的方法利用微量液体在气液相界面变换时的界面能和流体剪切力,克服液体在吐液枪头出口的表面张力和附着力,使流出吐液枪头管口的液滴能顺利地脱离吐液枪头,并在不相溶液体中形成大小可控的液滴。但是这种方法需要吐液枪头在液面上下切割运动,还需要对吐液枪头相对于液面的起始和终点位置进行高精度的定位,在工程实现上难度很大。上述方法在吐液枪头反复快速进出液相的过程中,液相的表面易形成不稳定的驻波,限制了微液滴的生成速率。还有的方法通过吐液枪头在液体里的圆周或者螺旋匀速运动产生的剪切力切断注入的不相溶液体而形成液滴。但是,这种方法由于吐液枪头产生液滴的大小受到各种系统因素变化的影响较大(比如液体的粘稠度、环境的温度、运动速度、运动轨迹等),从而产生误差。并且,这一误差会随着产生液滴的数量增多而积累,因而大批量液滴生成的体积大小均一性的控制难度很大。
基于此,有必要针对在生成微液滴的过程中存在的微液滴生成速率较慢、生成微液滴体积大小均一性难以控制的问题,提供一种微液滴快速生成且体积大小均一性高的微液滴生成方法及装置。
请参见图2,在一个实施例中,所述微液滴生成装置10包括吐液枪头110、流体驱动机构120、运动控制机构130以及第一控制器170。所述吐液枪头110具有出口端及入口端,并用于储存第一液体。微液滴生成装置10可以与微液滴容器配合使用。所述微液滴容器中储存有第二液体,所述吐液枪头110的出口端插入所述第二液体的液面下。
所述第一液体与所述第二液体之间互不相溶或具有界面反应。第一液体和第二液体可以为任意不互溶的两种液体,在本发明的一个实施例中,所述第一液体为水溶液,所述第二液体为与水不互溶的油性液体,如矿物油(包括正十四烷等)、植物油、硅油和全氟烷烃油等,生成的液滴为水溶液液滴。或者,所述第一液体为矿物油,如十四烷和正己烷等有机相,所述第二液体为与矿物油不互溶的全氟烷烃油。所述第一液体和第二液体可以为不互溶的双水相,在本发明的另一个实施例中,所述第一液体为水溶液,所述第二液体为与水不互溶的水性液体,如第一液体为右旋糖酐溶液,第二液体为聚乙二醇(PEG)水溶液,生成的液滴为右旋糖酐溶液液滴。
所述第一液体和第二液体也可以为具有界面反应的两种液体,在本发明的一个实施例中,所述第一液体为海藻酸纳水溶液,所述第二液体为氧化钙水溶液,如质量浓度为1%的氧化钙水溶液,两者存在界面反应,生成的液滴为海藻酸钙凝胶微球。本申请还可以通过更换吐液枪头或吐液枪头内流出第一液体的组分,顺次在开口容器中形成多个不同组分和体积的液滴,既可以用于实现大批量的微体积高通量筛选,也可以实现多步骤的超微量生化反应和检测,具有广阔的应用前景。
所述流体驱动机构120与所述吐液枪头110的入口端连接,用于将储存在所述吐液枪头110内部的所述第一液体从所述吐液枪头110的出口端排出。所述运动控制机构130用于控制所述吐液枪头110的出口端与所述第二液体之间产生设定轨迹或设定速度或设定加速度的相对运动,以使排出所述吐液枪头110的出口端的第一液体克服表面张力及所述吐液枪头110对其的附着力形成微液滴。所述第一控制器170分别与所述流体驱动机构120以及所述运动控制机构130连接,用以控制所述流体驱动机构120以及所述运动控制机构130协调工作。
在本发明一实施例中,在运动控制机构130的带动下,吐液枪头110的出口端112在第二液体液面下做速度大小呈周期变化的运动,在速度大小变化的前半周期与后半周期内,吐液枪头110的出口端112的速度大小均单调变化。单调变化指,在速度大小变化的前半周期或后半周期内,吐液枪头110的出口端112的在后时刻的速度值总是大于等于或者小于等于在前时刻的速度值。例如,在速度大小变化的前半周期内,吐液枪头110的出口端112的速度大小持续增加或部分段持续增加而部分段不变。相应的,在速度大小变化的后半周期内,吐液枪头110的出口端112的速度大小持续减小或部分段持续减小而部分段不变。第一液体从吐液枪头110的出口端112排出后形成附着在吐液枪头110的出口端112的液滴195。液滴195在吐液枪头110的出口端112运动速度达到一定大小时脱离吐液枪头110的出口端112形成微液滴199。如图3所示,微液滴199在脱离吐液枪头110的出口端112之前的所受到的作用力分别为重力G、第二液体699的浮力f1、第二液体699的粘滞阻力f2以及吐液枪头110的出口端112与液滴195之间的最大附着力f3。微液滴199在脱离吐液枪头110的出口端112之前的质量为m、速度为v、加速度为a2。液滴195在第二液体699的运动过程中受粘滞力f2、重力G、浮力f1及附着力f3的共同作用,即液滴195脱离吐液枪头110的出口端112(即生成一个微液滴199)的条件为
吐液枪头110的出口端112与液滴195之间附着力的最大值f3与吐液枪头110的表面自由能、液滴195的表面张力以及吐液枪头110的几何尺寸有关。将附着在吐液枪头110的出口端112的液滴195简化为球状。由斯托克斯(Stokes)公式可知,液滴195在第二液体699中运动时所受到的粘滞阻力f2=6πηrv,其中η为第二液体699的粘滞系数,r为液滴195的半径,v为液滴195的运动速度。在微液滴199生成的过程中,一般液滴195的直径范围在皮升至微升的数量级,而第二液体699的粘滞系数一般比较大。故,一般有因此,吐液枪头110的出口端112在第二液体699液面下做变速周期运动过程中,液滴195脱离吐液枪头110的出口端112(即生成一个微液滴199)的条件近似为
基于此,本发明提供一种微液滴生成方法,包括以下步骤:
S211,提供具有出口端112的吐液枪头110,吐液枪头110内储存有第一液体;提供储存有第二液体699的微液滴容器60,微液滴容器60具有开口;第一液体与第二液体699为任意互不相溶的两种液体或具有界面反应的两种液体;
S212,吐液枪头110的出口端112由微液滴容器60的开口插入第二液体699的液面下;
S213,吐液枪头110的出口端112在第二液体699液面下做速度大小呈周期变化的运动,在速度大小变化的前半周期与后半周期内,吐液枪头110的出口端112的速度大小均单调变化,同时第一液体由吐液枪头110的出口端112匀速排出,排出吐液枪头110的出口端112的第一液体形成附着在吐液枪头110的出口端112的液滴195,液滴195在吐液枪头110的出口端112的运动过程中脱离吐液枪头110的出口端112在第二液体699液面下形成微液滴199。
上述微液滴生成方法,吐液枪头110的出口端112在第二液体699液面下做速度大小呈周期变化的运动,在速度大小变化的前半周期与后半周期内,吐液枪头110的出口端112的速度大小均单调变化。运动过程中,第二液体699对液滴195的粘滞力f2随着吐液枪头110的出口端112速度大小的周期变化也呈现出周期变化。当吐液枪头110的出口端112与液滴195之间的最大附着力f3小于第二液体699对液滴195的粘滞力f2时,液滴195不能与吐液枪头110的出口端112同步运动,进而附着在所述吐液枪头110的出口端112的液滴195脱离所述吐液枪头110的出口端112在第二液体699液面下形成微液滴199。本发明所提供的微液滴生成方法,所述吐液枪头110的出口端112在第二液体699的液面下做变速周期运动以产生微液滴199,减小了所述吐液枪头110的出口端112运动时对第二液体699造成的扰动,保证了微液滴199生成过程的稳定性。
在本实施例中,在步骤S213中,第一液体由吐液枪头110的出口端112连续排出。进一步,在步骤S213中,第一液体由吐液枪头110的出口端112以恒定的流速排出,意即在相等的时间间隔内,排出吐液枪头110的出口端112的第一液体体积总是相等的。第一液体由吐液枪头110的出口端112以恒定的流速排出,有利于通过控制吐液枪头110的出口端112的周期性运动实现生成体积大小一致的微液滴199。
影响液滴195在第二液体699中运动时所受到的粘滞阻力f2的因素中,液滴195的运动速度v比较容易控制。在脱离吐液枪头110的出口端112而形成微液滴199之前,液滴195与吐液枪头110的出口端112保持同步运动。因此,液滴195的运动速度v可以通过控制吐液枪头110的出口端112的运动速度实现精确控制。控制第一液体以均匀的流速排出吐液枪头110的出口端112,液滴195半径的大小r在固定的时间间隔内也呈现出周期性的变化。影响液滴195在第二液体699中运动时所受到的粘滞阻力f2的因素中,第二液体699的粘滞系数η会在使用过程中在一定范围内变化,但第二液体699的粘滞系数η的变化范围很小。
在不更换吐液枪头110及第一液体的情况下,吐液枪头110的表面自由能、吐液枪头110的几何尺寸及液滴195的表面张力作为影响吐液枪头110的出口端112与液滴195之间最大附着力f3的两个因素是确定的。因此,在不更换吐液枪头110及第一液体的情况下,吐液枪头110的出口端112与液滴195之间附着力的最大值f3是固定的。当使用多个吐液枪头110同时或者顺次生成微液滴199时,吐液枪头110的表面自由能及吐液枪头110的几何尺寸作为影响吐液枪头110的出口端112与液滴195之间最大附着力f3的两个因素是变化的。但批量加工能够控制吐液枪头110的表面自由能及吐液枪头110的几何尺寸在一定的区间内变化。液滴195的表面张力作为影响吐液枪头110的出口端112与液滴195之间最大附着力f3的另一个因素也只是在很小的范围内变化。吐液枪头110的出口端112与液滴195之间附着力的最大值f3只在很小的区间内波动。
因此,只需控制液滴195在第二液体699中运动时所受到的粘滞阻力f2大于吐液枪头110的出口端112与液滴195之间附着力的最大值f3的区间值即可。由于在同一批次生成微液滴199的过程中,液滴195半径的大小r应是固定的。一旦实验参数确定,液滴195半径的大小r也就随之确定。吐液枪头110的出口端112在第二液体699液面下的运动速度是变化的。当吐液枪头110的出口端112在第二液体699液面下的运动速度满足v>f3/6πηr时,液滴195从吐液枪头110的出口端112脱离形成微液滴199。
吐液枪头110的出口端112在第二液体699液面下做速度大小周期变化的运动。控制第一液体以均匀的流速从吐液枪头110的出口端112排出,附着在吐液枪头110的出口端112的液滴195体积也是均匀增大的。将第一个微液滴199从吐液枪头110的出口端112掉落时,微液滴199的半径称为临界半径,微液滴199的速度成为临界速度。调整吐液枪头110的出口端112的运动周期及第一液体排出吐液枪头110的出口端112的流速,以使经过相同的时间间隔(吐液枪头110的出口端112运动周期的倍数)后,附着在吐液枪头110的出口端112的液滴195同时达到临界半径及临界速度,新的微液滴199形成。由于第一液体是以均匀的流速排出吐液枪头110的出口端112,所生成的微液滴199的体积大小相同。
作为一种可实现的形式,在步骤S213中,在一个速度大小变化周期内,吐液枪头110的出口端112的速度大小以中间时刻点为中点呈中心对称。进一步,在步骤S213中,吐液枪头110的出口端112在第二液体699液面下的加速度、速度及运动轨迹均呈周期性变化。更进一步,在步骤S213中,吐液枪头110的出口端112在第二液体699液面下的速度大小呈余弦曲线变化。
可选的,在步骤S213中,吐液枪头110的出口端112在第二液体699液面下的运动轨迹包括直线段、圆弧段、多边形等多种轨迹中的一种或多种的组合。在步骤S213中,吐液枪头110的出口端112在第二液体699液面下周期运动的频率介于0.1赫兹与200赫兹之间,在工程上容易实现。
以吐液枪头110的出口端112在第二液体699液面下做轨迹为圆弧、速度呈余弦变化的周期运动为例,此时吐液枪头110的出口端112实际上做摆动运动,运动位移可以用正弦曲线表示,如图4中曲线a所示。在流体控制机构的驱动下,第一液体以均匀的流速从吐液枪头110的出口端112排出。假设液滴195不脱离吐液枪头110的出口端112。通过计算,液滴195在第二液体699中运动时所受到的粘滞阻力f随时间变化如图4中曲线b所示。第一液体以均匀的流速从吐液枪头110的出口端112排出的初始阶段,随着液滴195体积的增大,液滴195的半径r也明显增大。随着液滴195半径r的不断增大,液滴195体积的匀速增大只能引起液滴195半径r的缓慢增大。因此,吐液枪头110的出口端112的前几个摆动周期内,液滴195在第二液体699中运动时所受到的粘滞阻力f2的最大值迅速增加,而后逐渐趋于缓慢增加。如图4所示,液滴195在第二液体699中运动时所受到的粘滞阻力f2也呈现出与吐液枪头110的出口端112的周期运动相似的周期性,即液滴195在第二液体699中运动时所受到的粘滞阻力f2随吐液枪头110的出口端112的速度变化而变化。在实际工况中,当液滴195在第二液体699中运动时所受到的粘滞阻力f2增大并大于吐液枪头110的出口端112与液滴195之间附着力的最大值f3时,液滴195从吐液枪头110的出口端112脱落形成微液滴199。
在本发明一实施例中,如图5所示,控制吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化的摆动。在不更换吐液枪头110及第一液体的情况下,吐液枪头110的出口端112与液滴195之间附着力的最大值f3是固定的。随着附着在吐液枪头110的出口端112的液滴195半径r不断增大,液滴195在第二液体699中运动时所受到的粘滞阻力f2也不断增大。液滴195在第二液体699中运动时所受到的粘滞阻力f2大于吐液枪头110的出口端112与液滴195之间附着力的最大值f3的瞬间,液滴195从吐液枪头110的出口端112脱落形成微液滴199,图5中为液滴Ⅰ。进入下一轮微液滴199的生成循环中。
在本实施例中,吐液枪头110的出口端112与液滴195之间附着力的最大值f3=1.8×10-4N,吐液枪头110的出口端112的摆动频率是50赫兹。在吐液枪头110的出口端112做位移呈正弦变化的摆动运动的第二个周期末尾生成第一个微液滴199,图5中为液滴I。在生成第二个微液滴199的初始阶段,虽然吐液枪头110的出口端112的运动速度有所减小,但由于附着在吐液枪头110的出口端112的液滴195半径r增加较快,液滴195在第二液体699中运动时所受到的粘滞阻力f2并没有立刻下降反而呈现出小范围的增加。此后,液滴195半径r缓慢增加,液滴195在第二液体699中运动时所受到的粘滞阻力f2主要随吐液枪头110的出口端112的运动速度变化而变化。
当控制第一液体以均匀流速排出吐液枪头110的出口端112时,吐液枪头110的出口端112在生成上一个微液滴199后的两个运动周期的时刻又生成与上一个微液滴199等体积的新的液滴195,图5中为液滴II。且此时吐液枪头110的出口端112的运动速度也与两个运动周期之前相同。与上一个微液滴199等体积的新的液滴195从吐液枪头110的出口端112脱落。第一液体的匀速排出及吐液枪头110的出口端112做位移呈正弦变化的摆动运动共同保证了生成微液滴199的体积大小均一性。
在本发明一实施例中,如图6所示,控制吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化的摆动。在不更换吐液枪头110及第一液体的情况下,吐液枪头110的出口端112与液滴195之间附着力的最大值f3是固定的。随着附着在吐液枪头110的出口端112的液滴195半径r不断增大,液滴195在第二液体699中运动时所受到的粘滞阻力f2也不断增大。液滴195在第二液体699中运动时所受到的粘滞阻力f2大于吐液枪头110的出口端112与液滴195之间附着力的最大值f3的瞬间,液滴195从吐液枪头110的出口端112脱落形成微液滴199。进入下一轮微液滴199的生成循环中。
在本实施例中,吐液枪头110的出口端112与液滴195之间附着力的最大值f3=1.5×10-4N,吐液枪头110的出口端112的摆动频率是50赫兹。在吐液枪头110的出口端112做位移呈正弦变化的摆动运动的第一个周期末尾生成第一个微液滴199,图6中为液滴I。在生成第二个微液滴199的初始阶段,虽然吐液枪头110的出口端112的运动速度有所减小,但由于附着在吐液枪头110的出口端112的液滴195半径r增加较快,液滴195在第二液体699中运动时所受到的粘滞阻力f2并没有立刻下降反而呈现出小范围的增加。此后,液滴195半径r缓慢增加,液滴195在第二液体699中运动时所受到的粘滞阻力f2主要随吐液枪头110的出口端112的运动速度变化而变化。
当控制第一液体以均匀流速排出吐液枪头110的出口端112时,吐液枪头110的出口端112在生成上一个微液滴199后的一个运动周期的时刻又生成与上一个微液滴199等体积的新的液滴195,且此时吐液枪头110的出口端112的运动速度也与一个运动周期之前相同。与上一个微液滴199等体积的新的液滴195从吐液枪头110的出口端112脱落,图6中为液滴II。如此循环,生成液滴III、液滴IV等。第一液体的匀速排出及吐液枪头110的出口端112做位移呈正弦变化的摆动运动共同保证了生成微液滴199的体积大小均一性。
在本发明一实施例中,如图7及图8所示,控制吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化的摆动。在不更换吐液枪头110及第一液体的情况下,吐液枪头110的出口端112与液滴195之间附着力的最大值f3是固定的。随着附着在吐液枪头110的出口端112的液滴195半径r不断增大,液滴195在第二液体699中运动时所受到的粘滞阻力f2也不断增大。液滴195在第二液体699中运动时所受到的粘滞阻力f2大于吐液枪头110的出口端112与液滴195之间附着力的最大值f3的瞬间,液滴195从吐液枪头110的出口端112脱落形成微液滴199,图7中为液滴I。进入下一轮微液滴199的生成循环中。
在本实施例中,吐液枪头110的出口端112与液滴195之间附着力的最大值f3=1.0×10-4N,吐液枪头110的出口端112的摆动频率是50赫兹。在吐液枪头110的出口端112做位移呈正弦变化的摆动运动的前半周期的加速阶段生成第一个微液滴199,图7中为液滴I。在生成第二个微液滴199的初始阶段,当吐液枪头110的出口端112的运动速度有所减小,但由于附着在吐液枪头110的出口端112的液滴195半径r增加较快,液滴195在第二液体699中运动时所受到的粘滞阻力f2并没有立刻下降反而呈现出小范围的增加。此后,液滴195半径r缓慢增加,液滴195在第二液体699中运动时所受到的粘滞阻力f2主要随吐液枪头110的出口端112的运动速度变化而变化。
控制第一液体以均匀流速排出吐液枪头110的出口端112。吐液枪头110的出口端112在做位移呈正弦变化的摆动运动的后半周期加速阶段生成第二个微液滴199,图7中为液滴II。此后进入稳定生成微液滴199的阶段。吐液枪头110的出口端112生成第二个微液滴199后的半个运动周期的时刻又生成与第二个微液滴199等体积的新的液滴195,且此时吐液枪头110的出口端112的运动速度也与半个运动周期之前相同。与第二个微液滴199等体积的新的液滴195从吐液枪头110的出口端112脱落,如此循环,生成图7中所示的液滴III、液滴IV、液滴V等。第一液体的匀速排出及吐液枪头110的出口端112做位移呈正弦变化的摆动运动共同保证了生成微液滴199的体积大小均一性。
由上述可知,附着在吐液枪头110的出口端112的液滴195脱离吐液枪头110的出口端112(即生成一个微液滴199)的条件近似为:在控制第一液体以均匀流速排出吐液枪头110的出口端112的情况下,所生成的微液滴199的体积大小均一的条件是:微液滴199等时间间隔的从吐液枪头110的出口端112脱落。
影响吐液枪头110的出口端112与液滴195之间附着力的最大值f3的因素包括:吐液枪头110的表面自由能、几何尺寸及第一液体的表面张力。在不更换吐液枪头110及第一液体的情况下,吐液枪头110的出口端112与液滴195之间附着力的最大值f3是固定的。影响液滴195在第二液体699中运动时所受到的粘滞阻力f2的因素包括:第二液体699的粘滞系数η、液滴195的半径r及液滴195的运动速度v。第一液体匀速排出吐液枪头110的出口端112时,液滴195的半径r由微液滴199生成的间隔时间决定。液滴195在脱离吐液枪头110的出口端112之前与吐液枪头110的出口端112同步运动,可通过运动控制机构130实现精确控制吐液枪头110的出口端112的运动速度。第二液体699的粘滞系数η在液滴195的生成过程中会在一定范围内变化,但第二液体699的粘滞系数η的变化范围很小。如图9所示,曲线a表示吐液枪头110的出口端112的位移变化,曲线b和曲线c为当第二液体699的粘滞系数η在很小的范围内变化时微液滴199的生成过程曲线。当第二液体699的粘滞系数η在很小的范围内变化时,只会在很小范围内改变微液滴199的生成时刻。而不会改变微液滴199的生成时间间隔。如图9所示,曲线b和曲线c所表示的微液滴199的生成时间间隔均为半个周期t/2,保证了所生成微液滴199的体积大小均一性。
如图10所示,在更换吐液枪头110时,或温度变化等引起第一液体的表面张力发生变化时,吐液枪头110的出口端112与液滴195之间附着力的最大值f3难以精确控制,因此如果生成的微液滴199体积对f3在一定范围内变化不敏感,那么对生成均一尺寸的微液滴199具有重要意义。图10中,曲线a表示吐液枪头110的出口端112的位移变化,曲线b和曲线c为当更换吐液枪头110的情况下微液滴199的生成过程曲线。更换吐液枪头110后,吐液枪头110的出口端112与液滴195之间附着力的最大值f3在一定范围内波动会导致液滴195脱落时吐液枪头110的出口端112对应不同的速度。但是当微液滴199的生成达到稳定状态后,液滴195脱落时吐液枪头110的出口端112的速度在每个摆动周期内都是固定的,如图10所示,曲线b和曲线c所表示的微液滴199的生成时间间隔均为半个周期t/2。因此能够保证微液滴199生成的间隔时间是固定的。当第一液体排出吐液枪头110的出口端112的流速固定时,生成的微液滴199的体积是均一的。同时调整第一液体排出吐液枪头110的出口端112的流速及吐液枪头110的出口端112在第二液体699内的摆动频率,即可同时控制均一体积微液滴199的体积大小及生成速率。
上述实施例中吐液枪头110的出口端112做位移呈正弦变化的周期运动时,对附着力的最大值f3及粘滞阻力f2的变化具有一定的容忍性,即附着力的最大值f3或粘滞阻力f2在一定范围内变化时,仍然能够生成体积大小均一的微液滴199。当吐液枪头110的出口端112做位移呈正弦变化的周期运动时,保证生成体积大小均一的微液滴199的前提下,能够容忍的附着力的最大值f3的变化范围称为平台期。平台期的存在对于吐液枪头110的加工及微液滴199生成温度的控制具有重要的意义。平台期的存在允许在一定程度内降低吐液枪头110的加工精度要求,即使同批加工的吐液枪头110之间的表面自由能之间存在差异,也能够生成体积大小均一的微液滴199。同理,平台期的存在也允许在一定程度内降低微液滴199生成过程的温度控制要求。
平台期的存在允许在一定程度内降低吐液枪头110的加工精度要求或微液滴199生成过程的温度控制要求,进一步降低了微液滴199生成过程中的耗材成本及控制成本。上述实施例中吐液枪头110的出口端112的每个运动周期内生成两个微液滴199,容易理解的是,只要吐液枪头110的出口端112做位移呈正弦变化的周期运动,当吐液枪头110的出口端112的每一个运动周期内生成一个微液滴199或者每两个运动周期内生成一个微液滴199时,仍然对附着力的最大值f3及粘滞阻力f2的变化具有一定的容忍性,也都存在平台期。
由于微液滴199的生成几乎不受微液滴199的重力及惯性力的影响。因此生成微液滴199时,吐液枪头110的出口端112在第二液体699内可沿任意方向做位移呈正弦变化的周期运动。吐液枪头110的出口端112的运动轨迹是弧线、直线或者其他形状的轨迹。
在微液滴199的生成过程中,吐液枪头110的出口端112做包含瞬时加速的周期运动,不仅能够有效的生成微液滴199,且便于对所生成微液滴199的大小进行控制。吐液枪头110的出口端112做位移呈正弦变化的周期运动,不能能够有效的生成微液滴199,且所生成微液滴199具有良好的体积大小均一性。吐液枪头110的出口端112在运动控制机构130的驱动下做包含瞬时加速的周期运动或者位移呈正弦变化的周期运动。
如图11所示,本发明提供一种运动控制机构130,包括支撑架131、连接件132以及驱动元件。连接件132用于与吐液枪头110连接。驱动元件固定于支撑架131,驱动元件与连接件132传动连接。在驱动元件的驱动下,吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动。本发明所提供的运动控制机构130,通过带动吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动以生成微液滴199,具有微液滴199生成效率高、提及均一性高的优点。本发明中的运动控制机构130还可以采用其他旋转驱动装置,例如摆动气缸、旋转电磁铁137等。
在本发明一实施例中,驱动元件包括振动电机133,优选的,振动电机133的类型是振镜电机,振镜电机的输出轴与连接件132传动连接。振镜电机可以提供稳定且高速的往复摆动及往复直线动作,且摆幅和频率可以按照需求设定,极大提高了本发明运动控制机构130的适用范围。可选的,旋转电机还可以使音圈电机或者压电电机。进一步,振动电机133采用具有闭环控制振动角度或位置的电机,由闭环控制振动角度或位置的电机驱动吐液枪头110的输出端进行振动,从而精密的控制吐液枪头110的摆动轨迹,从而进一步减少环境和系统带来的扰动。
以下结合图12阐述闭环控制振动角度或位置的电机在本发明中的应用。闭环控制振动角度或位置的电机包括红外位置传感器、控制电路和信号处理电路等部件。在本实施例中,在运动控制机构130的旋转轴上安装红外位置传感器,通过红外位置传感器把其所获得的位置信号反馈到控制电路中,控制电路依据PID自动化控制原理分别对反馈的位置信号做了比例、积分、微分运算处理,并且结合位置前馈和速度环、电流环等的信号处理电路,实现了电机运动时的绝对位置精确控制。采用闭环控制振动角度或位置的电机可以避免其它振动电机133受到复杂的负载环境变化而引起振动位置的改变,其有利于工程上精确控制液滴195体积和生成速度。
在本发明一实施例中,连接件132包括接头1321。接头1321与振动电机133的输出轴传动连接。接头1321呈中空管状,接头1321的一端用于与吐液枪头110连接,接头1321的另一端用于与吐液枪头110的流体控制机构连接。吐液枪头110内储存有用于生成微液滴199的第一液体190,流体控制机构的作用是在微液滴199的生成过程中将吐液枪头110内的第一液体190按照设定的流速排出。在流体控制机构的控制下,储存在吐液枪头110内的第一液体190以恒定的流速排出,或者流速呈现出规律性变化,或者其他类别设定的流速。在本实施例中,吐液枪头110内的第一液体190在流体控制机构的控制下以恒定的流速从吐液枪头110的出口端112排出。具体的,流体控制机构的细管123与接头1321远离吐液枪头110的一端连接。接头1321能够同时起到连通吐液枪头110和流体控制机构以及带动吐液枪头110运动的作用。作为一种可实现的方式,接头1321与吐液枪头110连接后,接头1321与吐液枪头110同轴。
为了便于安装和拆卸吐液枪头110,接头1321靠近吐液枪头110的一端外缘呈倒圆台状,吐液枪头110套设于接头1321呈倒圆台状的一端。接头1321靠近吐液枪头110的一端外缘呈倒圆台状能够减小吐液枪头110安装和拆卸的阻力,同时便于牢固的安装吐液枪头110。进一步,连接件132包括连接轴1322,连接轴1322转动设置于支撑架131,连接轴1322与振动电机133传动连接,接头1321的数量是多个,多个接头1321间隔固定设置于连接轴1322。在一个连接轴1322上间隔安装多个接头1321,多个接头1321能够同时安装多个吐液枪头110,大大提高了微液滴199的生成效率。
可选的,连接轴1322转动设置于支撑架131包括连接轴1322的两端与支撑架131转动连接以及连接轴1322的其他位置与支撑架131转动连接。在本实施例中,连接轴1322的两端转动设置于支撑架131,连接轴1322的一端与振动电机133传动连接,多个接头1321固定设置于连接轴1322的两端之间。连接轴1322的两端转动设置于支撑件,有利于增加整个转轴的转动稳定性。作为一种了实现的方式,连接轴1322的两端通过转动轴承转动设置于支撑架131。在其他的实施例中,也可以在满足转动及传动的条件下,将连接轴1322的其他位置转动设置于支撑架131。
接头1321固定于连接轴1322时,接头1321的轴向与连接轴1322的轴向之间的夹角能够改变吐液枪头110的出口端112的运动轨迹及运动速度。作为一种可实现的方式,接头1321的轴向与连接轴1322的轴向相互垂直。接头1321的轴向与连接轴1322的轴向保持相互垂直,有利于吐液枪头110充分利用连接轴1322的转动实现自身的振动。进一步,多个接头1321等间距间隔设置在连接轴1322的两端之间。等间距间隔设置的吐液枪头110在第二液体699液面下振动过程中,均匀的扰动第二液体699,以保证各个吐液枪头110生成微液滴199的环境及条件相同。
本发明一实施例中,驱动元件包括压电陶瓷135和弹性件136,压电陶瓷135通电产生第一方向的变形时驱动连接件132的接头1321向第一方向运动,与连接件132连接的弹性件136产生弹性变形。压电陶瓷135通电产生与第一方向相反的变形时,弹性件136的弹性变形恢复同时带动连接件132的接头1321向与第一方向相反的方向运动。如此反复,连接件132带动吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的运动。如图13所示,具体的,通过压电方式实现吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化或者速度呈方波变化的振动。接头1321通过轴承转动设置于支撑架131,吐液枪头110套设在接头1321的一端,吐液枪头110能够以轴承的轴心为中点做轨迹为圆弧的运动。接头1321与支撑架131转动连接的位置具有对称的延伸板134,延伸板134的延伸方向与接头1321的延伸方向垂直。驱动元件包括压电陶瓷135和弹性件136,压电陶瓷135和弹性件136配合驱动连接件132。压电陶瓷135与弹性件136通过驱动延伸板134进而实现吐液枪头110的出口端112的快速振动。压电的方式具有结构简单、驱动性能稳定的优点。
在本发明一实施中,驱动元件包括电磁铁137、磁性件138和弹性件136,弹性件136的一端固定设置于支撑架131,连接件132固定设置于弹性件136的另一端,磁性件138与连接件132的接头1321固定连接。电磁铁137通电对磁性件138产生第一方向的力时,磁性件138及连接件132的接头1321向第一方向运动,同时弹性件136产生弹性变形。电磁铁137断电时,弹性件136带动连接件132的接头1321及磁性件138向与第一方向相反的方向运动。控制电磁铁137的通断电,磁性件138通过连接件132带动吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的运动。
具体的,如图14所示,通过电磁的方式实现吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化或者速度呈方波变化的振动。在本实施例中,吐液枪头110的出口端112的运动轨迹接近平面圆弧的水平段。弹性件136的一端固定在支撑架131上,弹性件136的另一端与接头1321固定连接。吐液枪头110套设于接头1321的一端。驱动元件包括电磁铁137和磁性件138,磁性件138与连接件132固定连接,电磁铁137通过磁性件138驱动连接件132。电磁铁137固定设置于支撑架131,能够被电磁铁137吸引的磁性件138固定设置于接头1321并与电磁铁137保持在工作距离范围内。位置传感器能够检测磁性件138的运动位置,通过计算可得出吐液枪头110的出口端112的位置。电磁铁137通电时,吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向运动,同时弹性件136因发生弹性变形而蓄能。当吐液枪头110的出口端112靠近电磁铁137运动到第一设定位置时,电磁铁137断电。吐液枪头110在弹性件136的恢复力的作用下远离电磁铁137。当吐液枪头110的出口端112远离电磁铁137运动到第二设定位置时,电磁铁137通电。电磁铁137吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向运动,同时弹性件136因发生弹性变形而蓄能,如此循环。可根据具体工况调整电磁铁137的工作参数和弹性件136的弹性模量,以实现吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动。作为一种可实现的方式,弹性件136包括弹性钢片及其他能够满足弹性要求的弹性件136。
如图15所示,在本发明一实施中,通过电磁的方式实现吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化或者速度呈方波变化的振动。在本实施例中,吐液枪头110的出口端112的运动轨迹接近平面圆弧的竖直段。弹性件136的一端固定在支撑架131上,弹性件136的另一端与接头1321固定连接。吐液枪头110套设于接头1321的一端。电磁铁137固定设置于支撑架131,能够被电磁铁137吸引的磁性件138固定设置于接头1321并与电磁铁137保持在工作距离范围内。位置传感器能够检测磁性件138的运动位置,通过计算可得出吐液枪头110的出口端112的位置。电磁铁137通电时,吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向运动,同时弹性件136因发生弹性变形而蓄能。当吐液枪头110的出口端112靠近电磁铁137运动到第一设定位置时,电磁铁137断电。吐液枪头110在弹性件136的恢复力的作用下远离电磁铁137。当吐液枪头110的出口端112远离电磁铁137运动到第二设定位置时,电磁铁137通电。电磁铁137吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向运动,同时弹性件136因发生弹性变形而蓄能,如此循环。可根据具体工况调整电磁铁137的工作参数和弹性件136的弹性模量,以实现吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动。作为一种可实现的方式,弹性件136包括弹性钢片及其他能够满足弹性要求的弹性件136。
在本发明一实施例中,驱动元件包括电磁铁137和磁性件138,磁性件137与连接件132的接头1321固定连接,电磁铁137产生变化的磁场,磁性件138在变化的磁场中运动。磁性件137通过连接件132带动吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的运动。
进一步,如图16所示,使用电磁铁137实现吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化或者速度呈方波变化的振动。接头1321通过轴承转动设置于支撑架131,吐液枪头110套设在接头1321的一端。电磁铁137固定设置于支撑架131,能够被电磁铁137吸引的磁性件138固定设置于接头1321并与电磁铁137保持在工作距离范围内。位置传感器能够检测接头1321的转动角度,通过计算可得出吐液枪头110的出口端112的位置。电磁铁137通电时,吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向运动,当吐液枪头110的出口端112靠近电磁铁137运动到第一设定位置时,电磁铁137转换通电方向。吐液枪头110在电磁铁137的反向作用力的作用下远离电磁铁137。当吐液枪头110的出口端112远离电磁铁137运动到第二设定位置时,电磁铁137再次转换通电方向。电磁铁137吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向运动,如此循环。可根据具体工况调整电磁铁137的工作参数,以实现吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动。
上述实施例给出了振动电机133输出转动、吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化或者速度呈方波变化的振动。在其他的实施例中,吐液枪头110的出口端112还可做轨迹为直线、位移呈正弦变化或者速度呈方波变化的振动。
如图17所示,在本发明一实施例中,使用电磁铁137实现吐液枪头110的出口端112做轨迹为直线、位移呈正弦变化或者速度呈方波变化的振动。在本实施例中,吐液枪头110的出口端112在水平面内做轨迹为直线的振动。接头1321通过直线轴承滑动设置于支撑架131,吐液枪头110套设在接头1321的一端。电磁铁137固定设置于支撑架131,能够被电磁铁137吸引的磁性件138固定设置于接头1321并与电磁铁137保持在工作距离范围内。位置传感器能够检测接头1321的滑动位置,通过计算可得出吐液枪头110的出口端112的位置。电磁铁137通电时,吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向滑动,当吐液枪头110的出口端112靠近电磁铁137运动到第一设定位置时,电磁铁137转换通电方向。吐液枪头110在电磁铁137的反向作用力的作用下远离电磁铁137滑动。当吐液枪头110的出口端112远离电磁铁137运动到第二设定位置时,电磁铁137再次转换通电方向。电磁铁137吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向滑动,如此循环。可根据具体工况调整电磁铁137的工作参数,以实现吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动。
如图18所示,在本发明一实施例中,使用电磁铁137实现吐液枪头110的出口端112做轨迹为直线、位移呈正弦变化或者速度呈方波变化的振动。在本实施例中,吐液枪头110的出口端112在竖直面内做轨迹为直线的振动。接头1321通过直线轴承滑动设置于支撑架131,吐液枪头110套设在接头1321的一端。电磁铁137固定设置于支撑架131,能够被电磁铁137吸引的磁性件138固定设置于接头1321并与电磁铁137保持在工作距离范围内。位置传感器能够检测接头1321的滑动位置,通过计算可得出吐液枪头110的出口端112的位置。电磁铁137通电时,吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向滑动,当吐液枪头110的出口端112靠近电磁铁137运动到第一设定位置时,电磁铁137转换通电方向。吐液枪头110在电磁铁137的反向作用力的作用下远离电磁铁137滑动。当吐液枪头110的出口端112远离电磁铁137运动到第二设定位置时,电磁铁137再次转换通电方向。电磁铁137吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向滑动,如此循环。可根据具体工况调整电磁铁137的工作参数,以实现吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动。
振镜电机能够输出往复直线运动,在本发明其他的实施例中,通过振镜电机驱动吐液枪头110的出口端112做轨迹为直线、位移呈正弦变化或者速度呈方波变化的振动。
本发明提供的微液滴生成装置及生成方法在医学临床检验、纳米材料制备、食品及环境检测、生化分析等应用领域都有广泛应用。在一个具体的应用环境中,本发明提供的微液滴199的生成装置及生成方法应用在聚合酶链式反应(Polymerase Chain Reaction,PCR)中。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

1.一种运动控制机构,其特征在于,包括:
支撑架;
连接件,用于与吐液枪头连接;
驱动元件,固定于所述支撑架,所述驱动元件与所述连接件传动连接;
在所述驱动元件的驱动下,吐液枪头的出口端做位移呈正弦变化或者速度呈方波变化的运动。
2.根据权利要求1所述的运动控制机构,其特征在于,所述驱动元件包括振镜电机,所述振镜电机的输出轴与所述连接件传动连接。
3.根据权利要求1所述的运动控制机构,其特征在于,所述连接件包括接头,所述接头与所述振动电机的输出轴传动连接,所述接头呈中空管状,所述接头的一端用于与吐液枪头连接,所述接头的另一端用于与吐液枪头的流体控制机构连接。
4.根据权利要求3所述的运动控制机构,其特征在于,所述接头靠近吐液枪头的一端外缘呈倒圆台状,吐液枪头套设于所述接头呈倒圆台状的一端。
5.根据权利要求3所述的运动控制机构,其特征在于,所述连接件包括连接轴,所述连接轴转动设置于所述支撑架,所述连接轴与所述振动电机传动连接,所述接头的数量是多个,多个所述接头间隔固定设置于所述连接轴。
6.根据权利要求5所述的运动控制机构,其特征在于,所述连接轴的两端转动设置于所述支撑架,所述连接轴的一端与所述振动电机传动连接,多个所述接头固定设置于所述连接轴的两端之间。
7.根据权利要求6所述的运动控制机构,其特征在于,所述接头的轴向与所述连接轴的轴向相互垂直。
8.根据权利要求6所述的运动控制机构,其特征在于,多个所述接头等间距间隔设置在所述连接轴的两端之间。
9.根据权利要求1所述的运动控制机构,其特征在于,所述驱动元件包括压电陶瓷和弹性件,所述压电陶瓷通电产生第一方向的变形时驱动所述连接件向第一方向运动,与所述连接件连接的所述弹性件产生弹性变形;所述压电陶瓷通电产生与第一方向相反的变形时,所述弹性件的弹性变形恢复同时带动所述连接件向与第一方向相反的方向运动;如此反复,所述连接件带动吐液枪头的出口端做位移呈正弦变化或者速度呈方波变化的运动。
10.根据权利要求1所述的运动控制机构,其特征在于,所述驱动元件包括电磁铁和磁性件,所述磁性件与所述连接件固定连接,所述电磁铁产生变化的磁场,所述磁性件在变化的磁场中运动;所述磁性件通过所述连接件带动吐液枪头的出口端做位移呈正弦变化或者速度呈方波变化的运动。
11.根据权利要求10所述的运动控制机构,其特征在于,所述驱动元件包括还包括弹性件,所述弹性件的一端固定设置于所述支撑架,所述连接件固定设置于所述弹性件的另一端,所述磁性件与所述连接件固定连接;所述电磁铁通电对所述磁性件产生第一方向的力时,所述磁性件及所述连接件向第一方向运动,同时所述弹性件产生弹性变形;所述电磁铁断电时,所述弹性件带动所述连接件及所述磁性件向与第一方向相反的方向运动;控制所述电磁铁的通断电,所述磁性件通过所述连接件带动吐液枪头的出口端做位移呈正弦变化或者速度呈方波变化的运动。
CN201810070369.8A 2018-01-24 2018-01-24 运动控制机构 Pending CN110066727A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810070369.8A CN110066727A (zh) 2018-01-24 2018-01-24 运动控制机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810070369.8A CN110066727A (zh) 2018-01-24 2018-01-24 运动控制机构

Publications (1)

Publication Number Publication Date
CN110066727A true CN110066727A (zh) 2019-07-30

Family

ID=67365680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810070369.8A Pending CN110066727A (zh) 2018-01-24 2018-01-24 运动控制机构

Country Status (1)

Country Link
CN (1) CN110066727A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202195997U (zh) * 2011-08-24 2012-04-18 上海梭伦信息科技有限公司 液滴影像法界面流变测试装置
CN104198049A (zh) * 2014-07-29 2014-12-10 苏州佳世达电通有限公司 热电式感应装置
CN104450891A (zh) * 2014-11-17 2015-03-25 中国科学院微生物研究所 基于微液滴的数字核酸扩增定量分析方法及系统
CN104753303A (zh) * 2013-12-31 2015-07-01 博立码杰通讯(深圳)有限公司 驱动装置及器件制作方法
CN106798429A (zh) * 2017-03-27 2017-06-06 杭州卡夕洛贸易有限公司 一种床护栏立柱单元及床护栏
TWM549647U (zh) * 2017-06-03 2017-10-01 hong-ru Zhou 模型屨帶車輛的伺服機構

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202195997U (zh) * 2011-08-24 2012-04-18 上海梭伦信息科技有限公司 液滴影像法界面流变测试装置
CN104753303A (zh) * 2013-12-31 2015-07-01 博立码杰通讯(深圳)有限公司 驱动装置及器件制作方法
CN104198049A (zh) * 2014-07-29 2014-12-10 苏州佳世达电通有限公司 热电式感应装置
CN104450891A (zh) * 2014-11-17 2015-03-25 中国科学院微生物研究所 基于微液滴的数字核酸扩增定量分析方法及系统
CN106798429A (zh) * 2017-03-27 2017-06-06 杭州卡夕洛贸易有限公司 一种床护栏立柱单元及床护栏
TWM549647U (zh) * 2017-06-03 2017-10-01 hong-ru Zhou 模型屨帶車輛的伺服機構

Similar Documents

Publication Publication Date Title
CN208494266U (zh) 吐液枪头及微液滴生成装置
JP7220366B2 (ja) 運動制御機構、液体吐出ピペットチップ、微小液滴生成装置及び生成方法、流体駆動機構及び流体駆動方法、微小液滴生成方法並びに液体吐出ピペットチップの表面処理方法
Srivastava et al. Analysis of non-Newtonian liquids using a microfluidic capillary viscometer
CN208378891U (zh) 运动控制机构
CN208131057U (zh) 流体驱动机构
CN102065970A (zh) 用于移动流体中颗粒的装置和方法
CN110075933A (zh) 微液滴生成装置、系统及生成方法
CN110064443B (zh) 微液滴平铺方法
CN217910483U (zh) 一种用于微液滴制备的控制装置
CN110237787A (zh) 一种蜂窝状碳纳米管多孔微球及其制备方法和用途
US3700170A (en) Generator of monodisperse aerosols
CN110064452A (zh) 微液滴生成方法
Tenjimbayashi et al. A review on control of droplet motion based on wettability modulation: principles, design strategies, recent progress, and applications
Ko et al. Micropipette resonator enabling targeted aspiration and mass measurement of single particles and cells
CN110066727A (zh) 运动控制机构
WO2021154832A1 (en) Systems and methods for scalable manufacturing of therapeutic cells in bioreactors
CN110066721A (zh) 微液滴生成方法
CN110064453A (zh) 吐液枪头、微液滴生成装置及生成方法
CN110064444A (zh) 微液滴生成用油相组合物及其处理方法
CN110064451A (zh) 流体驱动机构及流体驱动方法
CN118253359A (zh) 吐液枪头、微液滴生成装置及生成方法
Liang et al. Simple Method to Generate Droplets Spontaneously by a Superhydrophobic Double-Layer Split Nozzle
CN110064450A (zh) 吐液枪头表面处理方法
CN116698671B (zh) 一种磁纳米毛刷及其制备方法
CN116593356B (zh) 一种利用磁纳米毛刷搅拌检测微量溶液粘度的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 215127 Room 101, Building 27, Zone C, Phase II, Sangtian Island Bio industrial Park, Chuangyuan Road, Suzhou Industrial Park, Suzhou City, Jiangsu Province

Applicant after: Sinafo (Suzhou) Life Technology Co.,Ltd.

Address before: 100094 Beijing Haidian District, Beiqing Road, No. 68 Courtyard, Building A, 4th Floor 0235

Applicant before: Sinaford (Beijing) Medical Technology Co.,Ltd.