CN110057584A - 一种机车牵引电机轴承退化监测方法 - Google Patents

一种机车牵引电机轴承退化监测方法 Download PDF

Info

Publication number
CN110057584A
CN110057584A CN201910256519.9A CN201910256519A CN110057584A CN 110057584 A CN110057584 A CN 110057584A CN 201910256519 A CN201910256519 A CN 201910256519A CN 110057584 A CN110057584 A CN 110057584A
Authority
CN
China
Prior art keywords
feature
time domain
phase
life
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910256519.9A
Other languages
English (en)
Other versions
CN110057584B (zh
Inventor
张兴武
白晓博
刘一龙
陈雪峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201910256519.9A priority Critical patent/CN110057584B/zh
Publication of CN110057584A publication Critical patent/CN110057584A/zh
Application granted granted Critical
Publication of CN110057584B publication Critical patent/CN110057584B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

机车牵引电机轴承退化监测方法,包括:测量电机轴承获得全寿命时域振动信号u(i);基于该信号提取多个时域特征、多个频域特征和多个时频域多维特征构成高维特征集,归一化处理;从正常运转期、早期故障、故障发展期三方面,对该高维特征集优选出三类各10个特征,分别使用自编码网络进行去冗余处理得到三个特征x1、x2、x3,再用马氏距离公式进行样本间距离求取,得到每个样本之间的马氏距离dij,计算相似系数αij和相似系数均值Mi;初步构建自适应邻域K并修正,修正后的进行LLE融合指标构造,得到融合指标Z并进行处理及指数拟合,计算指数拟合参数,得到最终的融合指标;利用最终的融合指标确定正常运转期、早期故障期、故障发展期和失效期四个退化阶段的划分阈值。

Description

一种机车牵引电机轴承退化监测方法
技术领域
本发明属于信号处理分析与故障诊断技术领域,特别是一种机车牵引电机轴 承退化监测方法。
背景技术
牵引电机悬挂于机车转向架上,作为动力输出装置牵引机车前行,这使得牵 引电机轴承成为了传动系统的核心部件,因此,牵引电机轴承的正常运转是保证 机车安全运行的关键,其要求极为严苛。
机车往往运行于复杂、恶劣、多变的环境之中,这导致机车牵引电机轴承的 运行监测较为困难,涉及开发机车牵引电机轴承监测系统的厂商以唐智科技等企 业为主。
目前,针对机车牵引电机轴承装置的监测,主要采用的方法有:
依赖于轴温趋势的监测,实际运行中环境温度、运行工况多变,这些因素对 轴温有较大不利影响,仅仅依赖于轴温监测,可靠性不高;
依赖于共振解调的实时故障分析,实际运行中,车厢振动往往较大,同时共 振解调通带带宽的选择等因素都对该方法监测的准确性产生了不利影响。
唐智科技的机车车辆走行部轴承保持架故障预报警方法,分别对时域冲击数 据、时域振动数据及温度数据进行单独特征提取,每类数据提取一个相关指标, 并对其趋势分析后进行报警或预警,虽然结合了冲击、振动、温度等三方面的数 据来源,但是就某方面数据的特征提取上,尤其是振动数据分析中,提取的特征 单一,难以从多方面反映振动数据所蕴含的轴承性能退化状态信息。
成都运达的基于动态报警阈值的转向架旋转部件的故障监测方法,其以振动 冲击传感器采集的振动冲击数据为基础,而实际机车运行中,车体振动往往较大, 对该类监测效果有较大不利影响。
上述牵引电机轴承监测的手段,以轴温和振动数据分析为主,其所采用的方 法可靠性和准确率比较低,尤其在复杂环境下,对牵引电机轴承的早期故障和退 化状态均无法可靠、有效、及时地进行监测,特别在变工况变阈值情况下,监测 的可靠性和准确率将大幅度下降。在目前监测系统不完善的情况下,只能依赖于 计划性维修,这又导致了机车维修成本高昂,运行效率低下。
在背景技术部分中公开的上述信息仅仅用于增强对本发明背景的理解,因此 可能包含不构成在本国中本领域普通技术人员公知的现有技术的信息。
发明内容
针对现有技术中存在的问题,本发明提出一种机车牵引电机轴承退化监测方 法,可以用于机车牵引电机轴承的早期故障和退化状态的监测,该方法将时域振 动数据作为主要分析对象,提取其时域、频域、时频域多维特征,并且将优选后 的退化特征进行融合,最后得到一个单调递增的退化指标,用于刻画机车牵引电 机轴承的性能退化状况,该指标可以提升机车牵引电机轴承性能退化监测的准确 性和可靠性。
本发明的目的是通过以下技术方案予以实现,一种机车牵引电机轴承退化监 测方法包括以下步骤:
第一步骤(S1)中,通过测量牵引电机轴承以获得其全寿命时域振动信号u(i);
第二步骤(S2)中,基于所述全寿命时域振动信号u(i)提取多个时域特征、 多个频域特征和多个时频域多维特征构成高维特征集,时域特征至少包括均方根 值特征T9,其为u(i)表示全寿命时域振动信号的样本点, i=1,2,3,...,N;N表示全寿命时域振动信号u(i)的样本点总数;
第三步骤(S3)中,归一化处理高维特征集,基于均方根值特征,将全寿命 时域振动信号u(i)按照三个划分阈值μ1、μ2、μ3分为四个阶段:正常运转期、 早期故障期、故障发展期和失效期;全寿命时域振动信号u(i)四个阶段对应的数 据范围为:正常期对应数据范围为早期故障数据范围为 故障发展期数据范围为失效期数据范围为 以上,其中,u(1)为全寿命时域振动信号u(i)中的第1个样本点, u(N)为全寿命时域振动信号u(i)中的最后一个样本点,为三 个划分阈值对应的全寿命时域振动信号u(i)中的样本点;
第四步骤(S4)中,采用综合加权评价准则对高维特征进行优选,分别优选 出正常运转期表征性良好的特征、早期故障期表征性良好的特征、故障发展期表 征性良好的特征三类特征预定个数特征,对上述三类具有良好不同阶段指示性能 的指标分别采用自编码网络去冗余,提取其一维低维特征,得到正常运行期表征 性良好的特征、早期故障指示性良好的特征、发展期指示性良好的特征,记为x1、 X2、X3
第五步骤(S5)中,将所述优选出的三个特征x1、x2、x3用马氏距离公式 进行样本间距离求取,得到每个样本之间的马氏距离dij,基于马氏距离dij计 算相似系数αij和相似系数均值Mi;相似系数αij和相似系数均值Mi初步构建 自适应邻域K;使用高斯核概率密度算法修正自适应邻域K;使用修正后的自 适应邻域K进行局部线性嵌入(LLE)融合指标构造,得到最终的融合指标z, 所述融合指标进行初步处理及指数拟合,计算指数拟合参数,得到最终的融合指 标;由该指标确定正常运转期、早期故障期、故障发展期和失效期四个退化阶段 的划分阈值。
所述的方法中,全寿命时域振动数据u(i)既可以只含有单个方向的振动数据, 也可以同时包含多个方向的振动数据。
所述的方法中,时域特征包括:均值T1,其为际准差T2,其 为方差T3,其为偏斜度T4, 其为峭度T5,其为峰峰值T6, 其为max(u(i))-min(u(i))、方根幅值T7,其为平均幅值T8, 其为均方幅根值T9,其为峰值指标T10,其 为max(|u(i)|)、波形指标T11,其为T9/T8、峰值指标T12,其为max(u(i))/T9、脉冲 指标T13,其为max(u(i))/T8、裕度指标T14,其为max(u(i))/T7、偏斜度指标T15, 其为峭度指标T16,其为其中,Tk为 时域特征标号;k=1,2,3,...,16;u(i)表示全寿命时域振动信号的样本点 i=1,2,3,...,N;N表示全寿命时域振动信号u(i)的样本点总数。
所述的方法中,频域特征包括:F1,其为F2,其为F3,其为F4,其为 F5、其为F6,其为F7,其为 F8,其为F9,其为 F10,其为F6/F5、T11,其为F12,其为 F13,其为F14,其为其中,Fi为频域特征标号,i=1,2,3,...,14;y(j)表示全寿命时域振动信号u(i)经过FFT 变换后得到的频域序列;j=1,2,3,...,n;n表示频谱中的谱线个数;fj表示全寿 命时域振动信号u(i)频谱中的频率成分;p(y(j))表示全寿命时域振动信号u(i)的 频域序列中某个样本点出现的概率。
所述的方法中,时频域特征包括:
全寿命时域振动信号u(i)经过EMD分解得到前6层本征模式IMF分量能量 和1个EMD能量熵共7个特征,
其中,IMF分量能量其中,imfm(i)为本征 模式IMF的第m个分量,m为本征模式IMF分量分解层标号,m=1,2,3,...,6, i=1,2,3,...,n,EMD能量熵表示为其中,pm为每个本征模 式IMF占总能量的比例,
使用小波函数db4对全寿命时域振动信号序列u(i)进行小波包分解,分解为 4层,得到16组小波包变换系数,分别计算这16组小波包变换系数的能量,得 到16个小波包节点能量特征,
其中,能量计算公式如下所示:s为小波包分解 节点序号,s=1,2,3,...,16;us(z)是全寿命时域振动信号u(i)小波分解之后得 到的第s组小波包变换系数,z=1,2,3,...,N/24;Es是小波包变换系数us(z) 的能量;
所述的方法中,第四步骤(S4)中,采用综合加权评价准则对高维特征进行 优选,分别优选出正常运转期表征性良好的特征、早期故障期表征性良好的特征、 故障发展期表征性良好的特征三类预定个数的特征,对优选出的三类具有不同阶 段良好指示性能的指标分别采用自编码网络去冗余,提取其一维低维特征,得到 正常运行期表征性良好的特征、早期故障指示性良好的特征、发展期指示性良好 的特征,记为x1、x2、x3
所述的方法中,第四步骤(S4)中,综合加权评价的加权评分准则目标函数 如下式所示:
max J=ω1C(x)+ω2M(x)+ω3R(x)
系数ω1、ω2、ω3为三个评价指标的加权系数;x为上述某时域、频域、时 频域特征向量;J表示某特征向量的综合得分,得分越高,越有利于表征轴承的 退化趋势,C(x)函数利用adaboost回归算法进行计算,决定系数C的值表征了 时间序列与退化特征之间的这种相关性,值越大表示相关性越强,如下公式所示:
ESS为回归平方和:
RSS为残差平方和:
TSS为总离差平方和:
M(x)函数为
R(x)函数为
上式中,xi为高维特征集中某特征向量x中的样本点;为该特征向量X 的均值;为adaboost回归算法的预测向量中的样本点;n表示该特征向量X 的长度;别表示该特征向量x的残余向量、趋势向量中的样本点,即 δ(xi)函数为单位阶跃函数,当xi≥0时,δ(xi)=1,当xi<0 时,δ(xi)=0。
所述的方法中,第五步骤(S5)中,
马氏距离作为LLE算法距离度量算法计算待融合特征各样本点之间的马氏 距离dij,其公式表示为:其中,C-1为两个 退化特征向量Xi、xj的协方差矩阵的逆矩阵;(xi-xj)T为(xi-xj)的转置;
相似系数αij=exp(-dij/β),其中,β表示退化特征中所有样本点马氏 距离dij的平均值,表示为dij表示退化特征中两个样本 点之间的马氏距离值,N表示退化特征的样本总数,i=1,2,3,...,N, j=1,2,3,...,N;
相似系数的均值其中,N表示退化特征的样本总数, i=1,2,3,...,N,j=1,2,3,...,N;
相似矩阵S表示为如下函数:由相似矩阵S初 步构建自适应邻域K{k1,k2,k3,...,kN},ki为退化特征第i个样本点的邻域大小;
高斯核概率密度估计公式表示为:其 中,其中dij表示退化特征中两个样本点之间的马氏距离值;ki表示初步构建的 自适应邻域K中第i个样本的值,N表示退化特征的样本总数;
平均概率密度公式表示为:其中,pi表示退化特征中第 i个样本点的高斯核概率密度,N表示该退化特征的样本总数;
自适应邻域大小可表示为:其中,floor表示向 下取整,表示退化特征中第i个样本点的改进自适应邻域的大小,κ为调整 系数,系数κ能整体按比例调整改进自适应邻域的大小,ki是由相似矩阵S初步 构建的自适应邻域第i个样本点的邻域大小,pi表示第i个样本点的高斯核概率 密度,表示退化特征的平均概率密度。
所述的方法中,第五步骤(S5)中,改进自适应邻域LLE的特征融合结果 表示为:{x1,x2,x3}→z,其中,z表示融合后的退化特征,对上述融合结果z做 如下处理,使退化曲线的最小值为零,以利于退化特征的表示: zi=zi+abs(min(z)),式中zi为融合退化特征z的样本点;abs(min(z))表示融 合结果中样本点的最小值的绝对值。
所述的方法中,第五步骤(S5)中,对融合退化特征进行指数拟合,得到可 以良好表征轴承性能退化的融合指标,如下式所示:
σ(i)=λ+βexp(ηi)
上式中,i表示融合退化特征z的序号;λ、β、η是指数拟合函数的参数; σ(i)为拟合函数,exp(ηi)表示自然常数e的ηi次方,由该融合指标确定退化 阈值。
和现有技术相比,本发明具有以下优点:
现有的特征评价算法无法全面有效的评价滚动轴承性能退化特征。滚动轴承 的性能退化趋势,往往是前期较为平稳,幅值缓慢增加,到了故障期,幅值增加 的速度快速提升,这导致轴承的性能退化趋势往往是强非线性的,利用本发明中 所述算法,其中相关性评价指标利用了adaboost回归算法,通过多个弱学习器, 可以学习到这种非线性关系,再结合单调性和鲁棒性评价指标,能有效优选出可 用的优良特征;单一特征较难全面的刻画轴承的全寿命退化情况,当工况发生改 变时,其可靠性会大为降低,如峭度特征对冲击类故障识别能力较强,所以它对 早期故障较敏感,时频域特征可以刻画非平稳信号统计特征随时间变化的情况, 但受Heisenberg测不准原理约束,它对突变信号和非平稳信号的分析存在局限 性。因此,本发明将提取多个全寿命时域振动信号的多维特征,从正常期、早期故障、故障发展期三个方面进行特征优选,再利用改进自适应邻域LLE算法融 合优选出来的指标,得到一个机车牵引电机轴承性能退化表征性良好的指标,该 融合指标从多方面有效地表征了轴承的这种强非线性的性能退化趋势。
附图说明
通过阅读下文优选的具体实施方式中的详细描述,本发明各种其他的优点和 益处对于本领域普通技术人员将变得清楚明了。说明书附图仅用于示出优选实施 方式的目的,而并不认为是对本发明的限制。显而易见地,下面描述的附图仅仅 是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其他的附图。而且在整个附图中,用相同的附 图标记表示相同的部件。
在附图中:
图1是根据本发明一个实施例的机车牵引电机轴承退化监测方法的步骤示 意图;
图2是根据本发明一个实施例的实施机车牵引电机轴承退化监测方法的流 程示意图;
图3是根据本发明一个实施例的实施机车牵引电机轴承退化监测方法的自 编码网络模型示意图;
图4是根据本发明一个实施例的实施机车牵引电机轴承退化监测方法的改 进自适应邻域LLE算法原始融合结果示意图;
图5是根据本发明一个实施例的实施机车牵引电机轴承退化监测方法的改 进自适应邻域LLE算法所构造的融合结果示意图;
图6是根据本发明一个实施例的实施机车牵引电机轴承退化监测方法的指 数函数拟合结果示意图。
以下结合附图和实施例对本发明作进一步的解释。
具体实施方式
下面将参照附图1至图6更详细地描述本发明的具体实施例。虽然附图中显 示了本发明的具体实施例,然而应当理解,可以以各种形式实现本发明而不应被 这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发 明,并且能够将本发明的范围完整的传达给本领域的技术人员。
需要说明的是,在说明书及权利要求当中使用了某些词汇来指称特定组件。 本领域技术人员应可以理解,技术人员可能会用不同名词来称呼同一个组件。本 说明书及权利要求并不以名词的差异来作为区分组件的方式,而是以组件在功能 上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含” 或“包括”为一开放式用语,故应解释成“包含但不限定于”。说明书后续描述 为实施本发明的较佳实施方式,然所述描述乃以说明书的一般原则为目的,并非 用以限定本发明的范围。本发明的保护范围当视所附权利要求所界定者为准。
为便于对本发明实施例的理解,下面将结合附图以具体实施例为例做进一步 的解释说明,且各个附图并不构成对本发明实施例的限定。
为了更好地理解,图1是根据本发明一个实施例的机车牵引电机轴承退化监 测方法的步骤示意图,如图1所示,一种机车牵引电机轴承退化监测方法包括以 下步骤:
第一步骤(S1)中,通过测量牵引电机轴承以获得其全寿命时域振动信号u(i);
第二步骤(S2)中,基于所述全寿命时域振动信号u(i)提取多个时域特征、 多个频域特征和多个时频域特征构成高维特征集,时域特征至少包括均方根值特 征T9,其为u(i)表示全寿命时域振动信号的样本点, i=1,2,3,...,N;N表示全寿命时域振动信号u(i)的样本点总数;
第三步骤(S3)中,归一化处理高维特征集,基于均方根值特征,将全寿命 时域振动信号u(i)按照三个划分阈值μ1、μ2、μ3分为四个阶段:正常运转期、 早期故障期、故障发展期和失效期;全寿命时域振动信号u(i)四个阶段对应的数 据范围为:正常期对应数据范围为早期故障数据范围为 故障发展期数据范围为失效期数据范围为 以上,其中,u(1)为全寿命时域振动信号u(i)中的第1个样本点, u(N)为全寿命时域振动信号u(i)中的最后一个样本点,为三 个划分阈值对应的全寿命时域振动信号u(i)中的样本点;
第四步骤(S4)中,采用综合加权评价准则对高维特征进行优选,分别优选 出正常运转期表征性良好的特征、早期故障期表征性良好的特征、故障发展期表 征性良好的特征三类特征预定个数特征,对上述三类具有良好不同阶段指示性能 的指标分别采用自编码网络去冗余,提取其一维低维特征,得到正常运行期表征 性良好的特征、早期故障指示性良好的特征、发展期指示性良好的特征,记为x1、 X2、X3
第五步骤(S5)中,将所述优选出的三个特征x1、x2、x3用马氏距离公式 进行样本间距离求取,得到每个样本之间的马氏距离dij,基于马氏距离dij计 算相似系数αij和相似系数均值Mi;相似系数αij和相似系数均值Mi初步构 建自适应邻域K;使用高斯核概率密度算法修正自适应邻域K;使用修正后的 自适应邻域K进行局部线性嵌入(LLE)融合指标构造,得到最终的融合指标z, 所述融合指标进行初步处理及指数拟合,计算指数拟合参数,得到最终的融合指 标;由该指标确定正常运转期、早期故障期、故障发展期和失效期四个退化阶段 的划分阈值。
所述的方法的一个实施例中,全寿命时域振动数据u(i)既可以只含有单个 方向的振动数据,也可以同时包含多个方向的振动数据。
所述的方法的一个实施例中,时域特征包括:均值T1,其为标准差T2,其为方差T3,其为 偏斜度T4,其为峭度T5, 其为峰峰值T6,其为max(u(i))-min(u(i))、方根幅值T7, 其为平均幅值T8,其为均方幅根值T9,其 为峰值指标T10,其为max(|u(i)|)、波形指标T11,其为T9/T8、 峰值指标T12,其为max(u(i))/T9、脉冲指标T13,其为max(u(i))/T8、裕度指标T14, 其为max(u(i))/T7、偏斜度指标T15,其为峭度指标T16,其 为其中,Tk为时域特征标号;k=1,2,3,...,16;u(i)表示 全寿命时域振动信号的样本点i=1,2,3,...,N;N表示全寿命时域振动信号u(i)的 样本点总数。
所述的方法的一个实施例中,频域特征包括:F1,其为F2, 其为F3,其为F4,其为 F5、其为F6,其为 F7,其为F8,其为F9,其为 F10,其为F6/F5、T11,其为 F12,其为F13,其为F14,其为其中,Fi为频域特征标号,i=1,2,3,....,4;y(j)表 示全寿命时域振动信号u(i)经过FFT变换后得到的频域序列;j=1,2,3,...,n;n表 示频谱中的谱线个数;fj表示全寿命时域振动信号u(i)频谱中的频率成分; p(y(j))表示全寿命时域振动信号u(i)的频域序列中某个样本点出现的概率。
所述的方法的一个实施例中,时频域特征包括:
全寿命时域振动信号u(i)经过EMD分解得到前6层本征模式IMF分量能量 和1个EMD能量熵共7个特征,
其中,IMF分量能量其中,imfm(i)为本征 模式IMF的第m个分量,m为本征模式IMF分量分解层标号,m=1,2,3,...,6,i=1,2,3,...,n,EMD能量熵表示为其中,pm为每个本征 模式IMF占总能量的比例,
使用小波函数db4对全寿命时域振动信号序列u(i)进行小波包分解,分解为 4层,得到16组小波包变换系数,分别计算这16组小波包变换系数的能量,得 到16个小波包节点能量特征,
其中,能量计算公式如下所示:s为小波包分解节 点序号,s=1,2,3,...,16;us(z)是全寿命时域振动信号u(i)小波分解之后得到 的第s组小波包变换系数,z=1,2,3,...,N/24;Es是小波包变换系数us(z)的 能量;
所述的方法的一个实施例中,第四步骤(S4)中,采用综合加权评价准则对 高维特征进行优选,分别优选出正常运转期表征性良好的特征、早期故障期表征 性良好的特征、故障发展期表征性良好的特征三类预定个数的特征,对优选出的 三类具有不同阶段良好指示性能的指标分别采用自编码网络去冗余,提取其一维 低维特征,得到正常运行期表征性良好的特征、早期故障指示性良好的特征、发 展期指示性良好的特征,记为x1、x2、x3
所述的方法的一个实施例中,第四步骤(S4)中,综合加权评价的加权评分 准则目标函数如下式所示:
max J=ω1C(x)+ω2M(x)+ω3R(x)
系数ω1、ω2、ω3为三个评价指标的加权系数;x为上述某时域、频域、时 频域特征向量;J表示某特征向量的综合得分,得分越高,越有利于表征轴承的 退化趋势,C(x)函数利用adaboost回归算法进行计算,决定系数C的值表征了 时间序列与退化特征之间的这种相关性,值越大表示相关性越强,如下公式所示:
ESS为回归平方和:
RSS为残差平方和:
TSS为总离差平方和:
M(x)函数为
R(x)函数为
上式中,xi为高维特征集中某特征向量x中的样本点;为该特征向量X的 均值;为adaboost回归算法的预测向量中的样本点;n表示该特征向量X的 长度;别表示该特征向量X的残余向量、趋势向量中的样本点,即 δ(xi)函数为单位阶跃函数,当xi≥0时,δ(xi)=1,当xi<0时, δ(xi)=0。
所述的方法的一个实施例中,第五步骤(S5)中,
马氏距离作为LLE算法距离度量算法计算待融合特征各样本点之间的马氏 距离dij,其公式表示为:其中,C-1为两 个退化特征向量Xi、xj的协方差矩阵的逆矩阵;(xi-xj)T为(xi-xj) 的转置;
相似系数αij=exp(-dij/β),其中,β表示退化特征中所有样本点马 氏距离dij的平均值,表示为dij表示退化特征中两个样 本点之间的马氏距离值,N表示退化特征的样本总数,i=1,2,3,...,N, J=1,2,3,...,N;
相似系数的均值其中,N表示退化特征的样本总数, i=1,2,3,...,N,j=1,2,3,...,N;
相似矩阵s表示为如下函数:由相似矩阵s初 步构建自适应邻域K{k1,k2,k3,...,kN},ki为退化特征第i个样本点的 邻域大小;
高斯核概率密度估计公式表示为:其 中,其中dij表示退化特征中两个样本点之间的马氏距离值;ki表示初步构建的 自适应邻域K中第i个样本的值,N表示退化特征的样本总数;
平均概率密度公式表示为:其中,pi表示退化特征中 第i个样本点的高斯核概率密度,N表示该退化特征的样本总数;
自适应邻域大小可表示为:其中,floor表示向 下取整,表示退化特征中第i个样本点的改进自适应邻域的大小,κ为调整 系数,系数κ能整体按比例调整改进自适应邻域的大小,ki是由相似矩阵S初步 构建的自适应邻域第i个样本点的邻域大小,pi表示第i个样本点的高斯核概率 密度,表示退化特征的平均概率密度。
所述的方法的一个实施例中,第五步骤(S5)中,改进自适应邻域LLE的 特征融合结果表示为:{x1,x2,x3}→z,其中,z表示融合后的退化特征,对上 述融合结果z做如下处理,使退化曲线的最小值为零,以利于退化特征的表示: zi=zi+abs(min(z)),式中zi为融合退化特征z的样本点;abs(min(z))表示融 合结果中样本点的最小值的绝对值。
所述的方法的一个实施例中,第五步骤(S5)中,对融合退化特征进行指数 拟合,得到可以良好表征轴承性能退化的融合指标,如下式所示:
σ(i)=λ+βexp(ηi)
上式中,i表示融合退化特征z的序号;λ、β、η是指数拟合函数的参数; σ(i)为拟合函数,exp(ηi)表示自然常数e的ηi次方,由该融合指标确定退化阈 值。
为了进一步理解本发明,特征提取方面的一个实施例中:
提取全寿命时域振动信号u(i)的时域特征和频域特征,如下表格所示:
提取的时频域特征有以下两种:
1)EMD经验模式分解方法可以逐级分解出全寿命时域振动信号u(i)中不 同尺度的波动或变化趋势,本发明使用该方法,提取全寿命时域振动信号u(i)经 过EMD分解之后的前6层本征模式IMF分量能量和1个EMD能量熵,共7个 特征。
IMF分量能量计算公式如下所示:
上式中,imfm(i)为本征模式IMF的第m个分量,m为本征模式IMF分量分 解层标号,m=1,2,3,...,6,i=1,2,3,...,n
EMD能量熵公式如下所示:
pm为每个本征模式IMF占总能量的比例,
2)小波包频带分解法。使用小波函数db4对全寿命时域振动信号序列u(i)进 行小波包分解,分解为4层,得到16组小波包变换系数,分别计算这16组小波 包变换系数的能量,得到16个小波包节点能量特征,能量计算公式如下所示:
上式中s为小波包分解节点序号,s=1,2,3,...,16;us(z)是全寿命时域振 动信号u(i)小波分解之后得到的第s组小波包变换系数,z=1,2,3,...,N/24; Es是小波包变换系数us(z)的能量。
一组全寿命时域振动信号经过上述特征提取方法,提取包括时域特征16个, 频域特征14个,时频域特征23个,共计53个特征。
为了方便在同一尺度上进行后续特征的优选,将上述53个高维特征进行归 一化处理。
在一个实施例中,步骤(S2)包括:
1)获取全寿命时域振动信号u(i);
2)计算全寿命时域振动信号u(i)的16个时域特征;
3)计算全寿命时域振动信号u(i)的14个频域特征;
4)计算全寿命时域振动信号u(i)的EMD分解得到的前6层IMF分量能量 和1个EMD能量熵,共7个特征;
5)计算全寿命时域振动信号u(i)的小波包4层分解得到的16个频带能量特 征;
6)通过步骤2),3),4),5)四步计算,共得到全寿命时域振动信号u(i)的 53个多维退化特征,对其再进行归一化处理,方便在同一尺度上进行特 征优选。
本发明的一个具体实施例中:
通过牵引电机轴承加速寿命实验(不限于加速寿命实验所获得的轴承全寿命 数据),初步获得NU214轴承全寿命性能退化数据;以驱动端NU214轴承数据 为例,使用三向加速度传感器,从X、Y、Z三个方向对牵引电机轴承的三个方 向的时域振动数据ux(i)、uy(i)、uz(i)加以采集。
利用步骤(S2),在NU214轴承X、Y、Z三个方向上,每方向振动数据提 取53个特征,三个方向共计159个高维特征,同时为了方便进行特征的优选, 将该高维特征集进行归一化处理,作为备选特征集。
本发明的一个方面,特征优选方面的一个实施例中:
现有常用指标当中,时域指标均方根值(RMS)常作为轴承退化的标准监测 指标,本发明利用该指标,初步将全寿命时域振动信号u(i)分为四个阶段:正常 运转期、微弱故障期(早期故障)、故障发展期、失效期;μ1、μ2、μ3为四个不 同退化阶段的三个划分阈值,其对应的全寿命时域振动信号u(i)中的样本点分别 为u(1)为全寿命时域振动信号u(i)中的第1个样本点,u(N) 为全寿命时域振动信号u(i)中的最后一个样本点,全寿命时域振动信号u(i)四个 阶段对应的数据范围为:正常期对应数据范围为微弱故障期(早 期故障)数据范围为故障发展期数据范围为失 效期数据范围为在轴承正常运行期内,将正常运行期表征性良 好的时域方根幅值作为优选算法相关性评价准则中的训练特征,对adaboost回归模型进行训练,以便从高维特征集中优选正常期表征性良好的特征;在轴承微弱 故障期(早期故障),将早期故障指示性良好频域特征3作为优选算法相关性评 价准则中的训练特征,对adaboost回归模型进行训练,以便从高维特征集中优选 轴承微弱故障期(早期故障)表征性良好的特征;在故障发展期,将发展期指示 性良好的频域特征2作为优选算法相关性评价准则中的训练特征,对adaboost 回归模型进行训练,以便从高维特征集中优选发展期指示性良好的频域特征。
将归一化后的高维特征集从单调性、鲁棒性、相关性三个方面进行综合加权 评价,按照得分高低,将综合得分较大的特征作为待融合特征予以保留,优选出 正常运行期表征性良好的特征、早期故障指示性良好的特征、发展期指示性良好 的特征各10个。对上述三类具有良好不同阶段指示性能的指标分别采用自编码 网络去冗余,分别提取其一维低维特征,得到正常运行期表征性良好的特征、早 期故障指示性良好的特征、发展期指示性良好的特征,以提升后期融合指标构造 算法运算速度。
优选方法中,adaboost回归模型和自编码网络参数介绍如下:
adaboost回归训练模型参数设置如下:
自编码网络模型图参见图3,参数设置如下所示:
参数名称 参数值
输入层节点数 10
隐层节点数 2
二范数正则项系数 0
隐层激活函数 ’tanh_opt’
激活函数 ’sigm’
损失函数 平方损失函数
将隐层节点2的输出保留,作为去冗余后的特征。
加权评分准则目标函数如下式所示:
max J=ω1C(x)+ω2M(x)+ω3R(x)
系数ω1、ω2、ω3为三个评价指标的加权系数;X为上述某时域、频域、时 频域特征向量;J表示某特征向量的综合得分,得分越高,越有利于表征轴承的 退化趋势。
C(x)函数利用adaboost回归算法进行计算,决定系数C的值表征了时间序 列与退化特征之间的这种相关性,值越大表示相关性越强,如下公式所示:
ESS为回归平方和:
RSS为残差平方和:
TSS为总离差平方和:
M(x)函数为
R(x)函数为
上式中,xi为高维特征集中某特征向量X中的样本点;为该特征向量X 的均值;为adaboost回归算法的预测向量中的样本点;n表示该特征向量X的 长度;别表示该特征向量X的残余向量、趋势向量中的样本点,即 δ(xi)函数为单位阶跃函数,当xi≥0时,δ(xi)=1,当xi<0 时,δ(xi)=0。
在一个实施例中,步骤(S4)包括以下步骤:
1)利用均方根值(RMS),将全寿命时域振动信号u(i)初步划分为四个阶段: 正常运转期、微弱故障期(早期故障)、故障发展期、失效期;
2)对归一化后的53个备选特征集进行鲁棒性和单调性两项评价准则得分 计算;
3)将正常运行期表征性良好的时域方根幅值作为adaboost回归模型中的训 练特征,对归一化后的53个备选特征集的每个特征进行相关性得分计 算,结合步骤3)中的鲁棒性和单调性两项得分,将相关性、鲁棒性、 单调性三个评价准则结果加权相加,得到53个备选特征每个特征的综 合评分J,保留J值最高的前10个特征;
4)将早期故障表征性良好的频域特征3作为adaboost回归模型中的训练特 征,对归一化后的53个备选特征集的每个特征进行相关性得分计算, 结合步骤3)中的鲁棒性和单调性两项得分,将相关性、鲁棒性、单调 性三个评价准则结果加权相加,得到53个备选特征每个特征的综合评 分J,保留J值最高的前10个特征;
5)将故障发展期表征性良好的频域特征2作为adaboost回归模型中的训练 特征,对归一化后的53个备选特征集的每个特征进行相关性得分计算, 结合步骤3)中的鲁棒性和单调性两项得分,将相关性、鲁棒性、单调 性三个评价准则结果加权相加,得到53个备选特征每个特征的综合评 分J,保留J值最高的前10个特征;
6)利用自编码网络分别对步骤3)、4)、5)中得到的10个特征进行去冗余, 提取其隐层2维低维特征,并将第二个隐层节点的输出作为去冗余后的 特征予以保留。最终得到正常运转期指示性好的特征、早期故障指示性 好的特征、故障发展期指示性好的三类优良特征各1个,用以进行后续 融合指标的构造;
本发明的一个具体实施例中,
以步骤(S2)实施例中NU214轴承为例,其全寿命时域振动信号uz(i)的总 长度为12118,利用Z轴方向的均方根值(RMS)特征,初步将该轴承全寿命时域 振动信号分为四个退化阶段:正常运转期、微弱故障期(早期故障)、故障发展 期、失效期。四个阶段的数据范围分别为:正常期数据范围:1~10455;微弱故 障期(早期故障)数据范围:10456~11126;故障发展期数据范围:11127~11608; 失效期数据范围:11609~12118。
在轴承正常运行期内,将Z轴全寿命时域振动信号uz(i)的时域方根幅值 作为正常运行期表征性良好的特征;在轴承微弱故障期(早期故障)内,将Z 轴全寿命时域振动信号uz(i)的频域特征3作为早期故障指示性良好的特征;在 故障发展期内,将Z轴全寿命时域振动信号uz(i)的频域特征2作为发展期指示 性良好的特征,执行步骤(S4)中的步骤3)、4)、5)、6),按照正常运转期指 示性好的特征、早期故障指示性好的特征、故障发展期指示性好的特征三类优选 出各10个特征,其中,评价指标加权的三个权值系数ω1、ω2、ω3参数,由试 验设置为0.4、0.2、0.4,优选出的三类特征如下所示:
a)正常运转期指示性好的特征:
X轴向振动数据时域特征:方根幅值、平均幅值、均方根值、标准差;
X轴向振动数据频域特征:频域特征1、频域特征13;
Y轴向振动数据时域特征:方根幅值;
Z轴向振动数据时域特征:平均幅值、均方根值、方根幅值;
b)早期故障指示性好的特征:
X轴向振动数据时域特征:峭度、波形指标;
X轴向振动数据频域特征:频域特征4;
Y轴向振动数据频域特征:频域特征4、频域特征3;
Y轴向振动数据小波包节点能量特征:小波包节点2能量;
Z轴向振动数据时域特征:波形指标、峭度;
Z轴向振动数据频域特征:频域特征3、频域特征4;
c)故障发展期指示性好的特征:
X轴向振动数据时域特征:方差;
X轴向振动数据频域特征:频域特征2;
X轴向振动数据小波包节点能量特征:小波包节点8、4、7的能量;
X轴向振动数据EMD频带能量特征:imf2能量;
Y轴向振动数据小波包节点能量特征:小波包节点3能量、小波包节点 7能量;
Z轴向振动数据小波包节点能量特征:小波包节点2能量;
Z轴向振动数据频域特征:频域特征2;
执行步骤(S4)中的步骤6),得到正常运转期指示性好的特征、早期故障 指示性好的特征、故障发展期指示性好的特征各1个,不但从正常期、故障早期、 故障发展期三个方面保留了多个特征的退化特性,同时又提升了后期融合指标构 造算法的运算速度。
本发明的另一个方面,融合指标构造方面的一个实施例,
所述改进自适应邻域局部线性嵌入(LLE)算法详述如下:
马氏距离作为LLE算法距离度量算法计算待融合特征各样本点之间的马氏 距离dij,其公式表示为:其中,C-1为两个退化特征向量Xi、Xj的协方差矩阵的逆矩阵;(xi-xj)T为(xi-xj) 的转置;
相似系数αij=exp(-dij/β),其中,β表示退化特征中所有样本点马 氏距离dij的平均值,表示为dij表示退化特征中两个样 本点之间的马氏距离值,N表示退化特征的样本总数,i=1,2,3,...,N, j=1,2,3,...,N;
相似系数的均值其中,N表示退化特征的样本总数, i=1,2,3,...,N,j=1,2,3,...,N;
相似矩阵s表示为如下函数:由相似矩阵s初步 构建自适应邻域K{k1,k2,k3,...,kN},ki为退化特征第i个样本点的邻域大小;
高斯核概率密度估计公式表示为:其 中,其中dij表示退化特征中两个样本点之间的马氏距离值;ki表示初步构建的 自适应邻域K中第i个样本的值,N表示退化特征的样本总数;
平均概率密度公式表示为:其中,pi表示退化特征中 第i个样本点的高斯核概率密度,N表示该退化特征的样本总数;
自适应邻域大小可表示为:其中,floor表示向下 取整,表示退化特征第i个样本点的改进自适应邻域的大小,ki表示由相似 矩阵s初步构建的自适应邻域退化特征第i个样本点的邻域大小,pi表示退化特 征第i个样本点的高斯核概率密度,表示退化特征的平均概率密度;κ为调 整系数,系数κ能整体按比例调整改进自适应邻域的大小,当邻域整体较大时, 会导致融合算法运算时间大幅度增加,通过减小κ的值,对邻域值进行整体等比
将上述改进自适应邻域用于LLE融合算法中,计算融合特征,该方法避 免了LLE算法全局便用一个固定的邻域所导致的参数敏感性高的不足,同时提 高了融合结果的鲁棒性。
改进自适应邻域LLE的特征融合结果表示为:
{x1,x2,x3}→z
上式中,z表示融合后的退化特征,对上述融合结果z做如下处理,使退化 曲线的最小值为零,以利于退化特征的表示:
zi=zi+abs(min(z)),
式中zi为融合退化特征z的样本点;abs(min(z))表示融合结果中样本点的最 小值的绝对值;
对该融合指标进行指数拟合,得到可以良好表征轴承性能退化的融合指标, 如下式所示:
σ(i)=λ+βexp(ηi)
上式中,i表示融合退化特征z的序号;λ、β、η是指数拟合函数的参数; σ(i)为拟合函数,exp(ηi)表示自然常数e的ηi次方,由该融合指标确定退化 阈值。
根据经验确定该融合指标的退化阈值:μ1、μ2、μ3;机车牵引电机轴承正 常运行状态时,阈值区间为0~μ1;初始退化阶段(早期故障)阈值区间为 μ1~μ2,该阶段表示轴承已经产生了微弱故障;故障发展阶段阈值区间为 μ2~μ3,该阶段表示轴承的故障处于扩大发展期;失效阶段阈值范围为大于 μ3,如下表所示:
退化阶段 阈值区间
正常运行阶段 0~μ<sub>1</sub>
初期退化阶段 μ<sub>1</sub>~μ<sub>2</sub>
故障发展阶段 μ<sub>2</sub>~μ<sub>3</sub>
失效阶段 大于μ<sub>3</sub>
在一个实施例中,步骤(S5)包含以下步骤:
1)将所述去冗余后得到的三个特征用马氏距离公式进行样本间距离求取, 得到每个样本之间的马氏距离dij
2)由步骤1)样本之间的马氏距离dij,计算相似系数αij和相似系数均值 Mi
3)由步骤2)相似系数αij和相似系数均值Mi初步构建自适应邻域K;
4)使用高斯核概率密度算法修正步骤3)自适应邻域K;
5)使用步骤4)得到的修正自适应邻域K,进行LLE融合指标构造,得到 最终的融合指标z。
6)对步骤5)得到的融合指标进行处理及指数拟合,计算指数拟合参数, 得到最终的融合指标;
7)由步骤6)得到的融合退化指标确定正常运行状态、初始退化阶段(早 期故障)、故障发展阶段、失效阶段等四个退化阶段的划分阈值。
本发明的一个具体实施例中:
将步骤四(S4)得到的三个特征作为改进自适应邻域LLE算法的输入,执 行步骤步骤五(S5)中的步骤1)、2)、3)、4)、5),得到融合结果,其中,自 适应邻域大小系数κ,通过算法多次运行验证,设为0.05,即保证了较快的运算 速度,又取得了较好的融合结果。图4为改进自适应邻域LLE算法得到的原始 融合结果。
对该融合结果进行下式处理,使得融合结果幅值最小为零,结果如图5所示:
zi=zi+abs(min(z))
式中zi为融合退化特征z的样本点;abs(min(z))表示融合结果中样本点的最 小值的绝对值。
对该一维离散点进行指数拟合,得到拟合函数如下所示:
σ(i)=αexp(ai)+βexp(bi)
式中,i表示融合特征向量z的序号;α、β、a、b是指数拟合函数的参数; σ函数为拟合函数。
在95%置信度下,指数拟合参数具体为:
α=0.1676,β=1.848×10-7,a=1.069×10-4,b=0.001421
用指数函数拟合融合指标后的结果如图6所示。该融合指标的幅值前期缓慢 变高,早期故障明显,同时故障发展期指示性也较好,可以较好的描述轴承随着 时间的退化过程,反映轴承的性能退化状态。
根据经验确定该融合指标的退化阈值:μ1=0.76μ2=1.2μ3=4.1;机车牵引电机 轴承正常运行状态时,阈值区间为0~0.76;初始退化阶段(早期故障)阈值区间为0.76~ 1.2, 该阶段表示轴承已经产生了微弱故障;故障发展阶段阈值区间为1.2~4.1,该阶段表 示轴承 的故障处于扩大发展期;失效阶段阈值范围为大于4.1,如下表所示:
退化阶段 阈值区间
正常运行阶段 0~0.76
初期退化阶段 0.76~1.2
故障发展阶段 1.2~4.1
失效阶段 大于4.1
尽管以上结合附图对本发明的实施方案进行了描述,但本发明并不局限于上 述的具体实施方案和应用领域,上述的具体实施方案仅仅是示意性的、指导性的, 而不是限制性的。本领域的普通技术人员在本说明书的启示下和在不脱离本发明 权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本发明 保护之列。

Claims (10)

1.一种机车牵引电机轴承退化监测方法,所述方法包括以下模块:
第一步骤(S1)中,通过测量牵引电机轴承以获得其全寿命时域振动信号u(i);
第二步骤(S2)中,基于所述全寿命时域振动信号u(i)提取多个时域特征、多个频域特征和多个时频域特征构成高维特征集,时域特征至少包括均方根值特征T9,其为u(i)表示全寿命时域振动信号的样本点,i=1,2,3,...,N;N表示全寿命时域振动信号u(i)的样本点总数;
第三步骤(S3)中,归一化处理高维特征集,基于均方根值特征,将全寿命时域振动信号u(i)按照三个划分阈值μ1、μ2、μ3分为四个阶段:正常运转期、早期故障期、故障发展期和失效期;全寿命时域振动信号u(i)四个阶段对应的数据范围为:正常期对应数据范围为早期故障数据范围为故障发展期数据范围为失效期数据范围为以上,其中,u(1)为全寿命时域振动信号u(i)中的第1个样本点,u(N)为全寿命时域振动信号u(i)中的最后一个样本点,为三个划分阈值对应的全寿命时域振动信号u(i)中的样本点;
第四步骤(S4)中,采用综合加权评价准则对高维特征进行优选,分别优选出正常运转期表征性良好的特征、早期故障期表征性良好的特征、故障发展期表征性良好的特征三类特征预定个数特征,对上述三类具有良好不同阶段指示性能的指标分别采用自编码网络去冗余,提取其一维低维特征,得到正常运行期表征性良好的特征、早期故障指示性良好的特征、发展期指示性良好的特征,记为x1、x2、x3
第五步骤(S5)中,将所述优选出的三个特征x1、x2、x3用马氏距离公式进行样本间距离求取,得到每个样本之间的马氏距离dij,基于马氏距离dij计算相似系数αij和相似系数均值Mi;相似系数αij和相似系数均值Mi初步构建自适应邻域K;使用高斯核概率密度算法修正自适应邻域K;使用修正后的自适应邻域K进行局部线性嵌入(LLE)融合指标构造,得到最终的融合指标z,所述融合指标进行初步处理及指数拟合,计算指数拟合参数,得到最终的融合指标;由该指标确定正常运转期、早期故障期、故障发展期和失效期四个退化阶段的划分阈值。
2.根据权利要求1所述的方法,其中,优选的,全寿命时域振动数据u(i)包括单个方向的振动数据和/或多个方向的振动数据。
3.根据权利要求1所述的方法,其中,时域特征包括:均值T1,其为标准差T2,其为方差T3,其为偏斜度T4,其为峭度T5,其为峰峰值T6,其为max(u(i))-min(u(i))、方根幅值T7,其为平均幅值T8,其为均方幅根值T9,其为峰值指标T10,其为max(|u(i)|)、波形指标T11,其为T9/T8、峰值指标T12,其为max(u(i))/T9、脉冲指标T13,其为max(u(i))/T8、裕度指标T14,其为max(u(i))/T7、偏斜度指标T15,其为峭度指标T16,其为其中,Tk为时域特征标号;k=1,2,3,...,16;u(i)表示全寿命时域振动信号的样本点,i=1,2,3,...,N;N表示全寿命时域振动信号u(i)的样本点总数。
4.根据权利要求1所述的方法,其中,频域特征包括:F1,其为F2,其为F3,其为F4,其为F5、其为F6,其为F7,其为F8,其为F9,其为F10,其为F6/F5、T11,其为F12,其为F13,其为F14,其为其中,Fi为频域特征标号,i=1,2,3,...,14;y(j)表示全寿命时域振动信号u(i)经过FFT变换后得到的频域序列;j=1,2,3,...,n;n表示频谱中的谱线个数;fj表示全寿命时域振动信号u(i)频谱中的频率成分;p(y(j))表示全寿命时域振动信号u(i)的频域序列中某个样本点出现的概率。
5.根据权利要求1所述的方法,其中,时频域特征包括:
全寿命时域振动信号u(i)经过EMD分解得到前6层本征模式IMF分量能量和1个EMD能量熵共7个特征,其中,IMF分量能量其中,imfm(i)为本征模式IMF的第m个分量,m为本征模式IMF分量分解层标号,m=1,2,3,...,6,i=1,2,3,...,n;EMD能量熵表示为其中,pm为每个本征模式IMF占总能量的比例,
使用小波函数db4对全寿命时域振动信号序列u(i)进行小波包分解,分解为4层,得到16组小波包变换系数,分别计算这16组小波包变换系数的能量,得到16个小波包节点能量特征,其中,能量计算公式如下所示:s为小波包分解节点序号,s=1,2,3,...,16;us(z)是全寿命时域振动信号u(i)小波分解之后得到的第s组小波包变换系数,z=1,2,3,...,N/24;Es是小波包变换系数us(z)的能量。
6.根据权利要求1所述的方法,第四步骤(S4)中,在正常运转期,将正常运行期表征性良好的时域方根幅值作为训练特征,对adaboost回归模型进行训练,使用该模型对高维特征集中的每个特征进行相关性评价,得到高维特征中每个特征的相关性得分,该adaboost回归模型可使正常运转期指示性良好的特征将获得更高的相关性得分;在早期故障期,将早期故障指示性良好频域特征3作为训练特征,对adaboost回归模型进行训练,使用该模型对高维特征集中的每个特征进行相关性评价,得到高维特征中每个特征的相关性得分,该adaboost回归模型可使早期故障指示性良好的特征将获得更高的相关性得分;在故障发展期,将早期故障指示性良好频域特征3作为训练特征,对adaboost回归模型进行训练,使用该模型对高维特征集中的每个特征进行相关性评价,得到高维特征中每个特征的相关性得分,该adaboost回归模型可使故障发展期指示性良好的特征将获得更高的相关性得分。
7.根据权利要求1所述的方法,第四步骤(S4)中,优选后去冗余所设计的自编码的网络模型参数设置为:输入层节点数:10、隐层节点数:2、二范数正则项系数:0、隐层激活函数:’tanh_opt’、激活函数:’sigm’、损失函数:平方损失函数,并且将隐层第二个节点的输出作为去冗余处理后的特征予以保留。
8.根据权利要求1所述的方法,第五步骤(S5)中,
马氏距离公式表示为:其中,C-1为两个退化特征向量xi、xj的协方差矩阵的逆矩阵;(xi-xj)T为(xi-xj)的转置;
相似系数αij=exp(-dij/β),其中,β表示退化特征中所有样本点马氏距离dij的平均值,表示为dij表示退化特征中两个样本点之间的马氏距离值,N表示退化特征的样本总数,i=1,2,3,...,N,j=1,2,3,...,N;
相似系数的均值其中,N表示退化特征的样本总数,i=1,2,3,...,N,j=1,2,3,...,N;
相似矩阵S表示为如下函数:由相似矩阵S初步构建自适应邻域K{k1,k2,k3,...,kN},ki为退化特征第i个样本点的邻域大小;
高斯核概率密度估计公式表示为:其中,其中dij表示退化特征中两个样本点之间的马氏距离值;ki表示初步构建的自适应邻域K中第i个样本的值,N表示退化特征的样本总数;
平均概率密度公式表示为:其中,pi表示退化特征中第i个样本点的高斯核概率密度,N表示退化特征的样本总数;
自适应邻域大小可表示为:其中,floor表示向下取整,表示退化特征中第i个样本点的改进自适应邻域的大小,κ为调整系数,系数κ能整体按比例调整改进自适应邻域的大小,ki是由相似矩阵S初步构建的自适应邻域第i个样本点的邻域大小,pi表示第i个样本点的高斯核概率密度,表示退化特征的平均概率密度。
9.根据权利要求1所述的方法,第五步骤(S5)中,改进自适应邻域局部线性嵌入(LLE)方法的特征融合结果表示为:{x1,x2,x3}→z,其中,z表示融合后的退化特征,对上述融合结果z做如下处理,使退化曲线的最小值为零,以利于退化特征的表示:zi=zi+abs(min(z)),式中zi为融合退化特征z的样本点;abs(min(z))表示融合结果中样本点的最小值的绝对值。
10.根据权利要求9所述的方法,其中,
对融合退化特征z进行指数拟合,得到可以良好表征轴承性能退化的融合指标,如下式所示:
σ(i)=λ+βexp(ηi)
上式中,i表示融合退化特征z的序号;λ、β、η是指数拟合函数的参数;σ(i)为拟合函数,exp(ηi)表示自然常数e的ηl次方,由该融合指标确定退化阈值。
CN201910256519.9A 2019-04-01 2019-04-01 一种机车牵引电机轴承退化监测方法 Active CN110057584B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910256519.9A CN110057584B (zh) 2019-04-01 2019-04-01 一种机车牵引电机轴承退化监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910256519.9A CN110057584B (zh) 2019-04-01 2019-04-01 一种机车牵引电机轴承退化监测方法

Publications (2)

Publication Number Publication Date
CN110057584A true CN110057584A (zh) 2019-07-26
CN110057584B CN110057584B (zh) 2020-04-28

Family

ID=67317957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910256519.9A Active CN110057584B (zh) 2019-04-01 2019-04-01 一种机车牵引电机轴承退化监测方法

Country Status (1)

Country Link
CN (1) CN110057584B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567611A (zh) * 2019-10-16 2019-12-13 中车大连机车车辆有限公司 自动补偿环境温度的温升监测、机车运行控制方法及机车
CN110991546A (zh) * 2019-12-10 2020-04-10 西安交通大学 一种基于改进局部线性嵌入算法的轴承退化特征提取方法
CN111473761A (zh) * 2020-04-27 2020-07-31 西安理工大学 一种结合非线性检测的滑动副间隙值快速识别方法
CN112036270A (zh) * 2020-08-18 2020-12-04 兰州理工大学 一种滚动轴承早期损伤状态的振动监测方法
CN112052979A (zh) * 2020-07-17 2020-12-08 北京天泽智云科技有限公司 基于故障预测与健康管理的设备备件需求预测系统
CN112084885A (zh) * 2020-08-19 2020-12-15 昆明理工大学 一种基于多域特征提取和相关补偿距离的滚动轴承性能评估方法
CN112101220A (zh) * 2020-09-15 2020-12-18 哈尔滨理工大学 一种无监督模型参数迁移的滚动轴承寿命预测方法
CN112304615A (zh) * 2020-09-11 2021-02-02 西安英特迈思信息科技有限公司 一种风电机组传动系统轴承退化特征优选方法
CN112597705A (zh) * 2020-12-28 2021-04-02 哈尔滨工业大学 一种基于scvnn的多特征健康因子融合方法
CN112816195A (zh) * 2021-01-04 2021-05-18 安徽容知日新科技股份有限公司 往复式机械设备故障诊断方法及装置
CN113255777A (zh) * 2021-05-28 2021-08-13 郑州轻工业大学 基于多模态敏感特征选取融合的设备故障预警方法及系统
CN113670611A (zh) * 2021-07-23 2021-11-19 美核电气(济南)股份有限公司 一种轴承早期退化评估方法、系统、介质及电子设备
CN113670616A (zh) * 2021-09-03 2021-11-19 苏州大学 一种轴承性能退化状态检测方法及系统
CN113985267A (zh) * 2021-10-29 2022-01-28 河北工业大学 基于热电组网设备智能开关阀的退化指标构建、判定方法
CN113985217A (zh) * 2021-07-26 2022-01-28 中国电力科学研究院有限公司 一种用于确定最优起晕参数的方法及系统
CN114659789A (zh) * 2022-03-08 2022-06-24 湖南第一师范学院 转向架牵引电机轴承的故障测定方法、系统、介质及设备
CN115310490A (zh) * 2022-08-17 2022-11-08 中国核动力研究设计院 基于多域特征与敏感特征选择的旋转设备故障分析方法
CN115371988A (zh) * 2022-10-27 2022-11-22 北谷电子有限公司 基于多特征融合的工程机械故障诊断方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954450A (zh) * 2014-05-19 2014-07-30 重庆交通大学 基于主成分分析的轴承寿命退化性能评估指标构建方法
CN104155108A (zh) * 2014-07-21 2014-11-19 天津大学 一种基于振动时频分析的滚动轴承故障诊断方法
CN105973602A (zh) * 2016-06-16 2016-09-28 温州大学 一种电机轴承外圈故障辨识方法
CN107024352A (zh) * 2017-05-03 2017-08-08 哈尔滨理工大学 一种基于滑动熵‑ica算法的滚动轴承故障特征提取方法
CN107036817A (zh) * 2017-04-05 2017-08-11 哈尔滨理工大学 基于磷虾群算法的svr滚动轴承性能衰退预测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954450A (zh) * 2014-05-19 2014-07-30 重庆交通大学 基于主成分分析的轴承寿命退化性能评估指标构建方法
CN104155108A (zh) * 2014-07-21 2014-11-19 天津大学 一种基于振动时频分析的滚动轴承故障诊断方法
CN105973602A (zh) * 2016-06-16 2016-09-28 温州大学 一种电机轴承外圈故障辨识方法
CN107036817A (zh) * 2017-04-05 2017-08-11 哈尔滨理工大学 基于磷虾群算法的svr滚动轴承性能衰退预测方法
CN107024352A (zh) * 2017-05-03 2017-08-08 哈尔滨理工大学 一种基于滑动熵‑ica算法的滚动轴承故障特征提取方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567611A (zh) * 2019-10-16 2019-12-13 中车大连机车车辆有限公司 自动补偿环境温度的温升监测、机车运行控制方法及机车
CN110991546A (zh) * 2019-12-10 2020-04-10 西安交通大学 一种基于改进局部线性嵌入算法的轴承退化特征提取方法
CN110991546B (zh) * 2019-12-10 2022-06-21 西安交通大学 一种基于改进局部线性嵌入算法的轴承退化特征提取方法
CN111473761A (zh) * 2020-04-27 2020-07-31 西安理工大学 一种结合非线性检测的滑动副间隙值快速识别方法
CN111473761B (zh) * 2020-04-27 2022-01-07 西安理工大学 一种结合非线性检测的滑动副间隙值快速识别方法
CN112052979B (zh) * 2020-07-17 2024-02-13 北京天泽智云科技有限公司 基于故障预测与健康管理的设备备件需求预测系统
CN112052979A (zh) * 2020-07-17 2020-12-08 北京天泽智云科技有限公司 基于故障预测与健康管理的设备备件需求预测系统
CN112036270A (zh) * 2020-08-18 2020-12-04 兰州理工大学 一种滚动轴承早期损伤状态的振动监测方法
CN112036270B (zh) * 2020-08-18 2024-03-05 兰州理工大学 一种滚动轴承早期损伤状态的振动监测方法
CN112084885A (zh) * 2020-08-19 2020-12-15 昆明理工大学 一种基于多域特征提取和相关补偿距离的滚动轴承性能评估方法
CN112304615A (zh) * 2020-09-11 2021-02-02 西安英特迈思信息科技有限公司 一种风电机组传动系统轴承退化特征优选方法
CN112101220B (zh) * 2020-09-15 2023-03-03 哈尔滨理工大学 一种无监督模型参数迁移的滚动轴承寿命预测方法
CN112101220A (zh) * 2020-09-15 2020-12-18 哈尔滨理工大学 一种无监督模型参数迁移的滚动轴承寿命预测方法
CN112597705B (zh) * 2020-12-28 2022-05-24 哈尔滨工业大学 一种基于scvnn的多特征健康因子融合方法
CN112597705A (zh) * 2020-12-28 2021-04-02 哈尔滨工业大学 一种基于scvnn的多特征健康因子融合方法
CN112816195A (zh) * 2021-01-04 2021-05-18 安徽容知日新科技股份有限公司 往复式机械设备故障诊断方法及装置
CN113255777B (zh) * 2021-05-28 2023-01-31 郑州轻工业大学 基于多模态敏感特征选取融合的设备故障预警方法及系统
CN113255777A (zh) * 2021-05-28 2021-08-13 郑州轻工业大学 基于多模态敏感特征选取融合的设备故障预警方法及系统
CN113670611A (zh) * 2021-07-23 2021-11-19 美核电气(济南)股份有限公司 一种轴承早期退化评估方法、系统、介质及电子设备
CN113985217A (zh) * 2021-07-26 2022-01-28 中国电力科学研究院有限公司 一种用于确定最优起晕参数的方法及系统
CN113985217B (zh) * 2021-07-26 2023-10-13 中国电力科学研究院有限公司 一种用于确定最优起晕参数的方法及系统
CN113670616A (zh) * 2021-09-03 2021-11-19 苏州大学 一种轴承性能退化状态检测方法及系统
CN113985267A (zh) * 2021-10-29 2022-01-28 河北工业大学 基于热电组网设备智能开关阀的退化指标构建、判定方法
CN113985267B (zh) * 2021-10-29 2023-08-11 河北工业大学 基于热电组网设备智能开关阀的退化指标构建、判定方法
CN114659789A (zh) * 2022-03-08 2022-06-24 湖南第一师范学院 转向架牵引电机轴承的故障测定方法、系统、介质及设备
CN115310490A (zh) * 2022-08-17 2022-11-08 中国核动力研究设计院 基于多域特征与敏感特征选择的旋转设备故障分析方法
CN115310490B (zh) * 2022-08-17 2024-03-29 中国核动力研究设计院 基于多域特征与敏感特征选择的旋转设备故障分析方法
CN115371988A (zh) * 2022-10-27 2022-11-22 北谷电子有限公司 基于多特征融合的工程机械故障诊断方法及系统

Also Published As

Publication number Publication date
CN110057584B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN110057584A (zh) 一种机车牵引电机轴承退化监测方法
Li et al. A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection
Xiao et al. Transfer learning with convolutional neural networks for small sample size problem in machinery fault diagnosis
Pfister et al. Real-time recognition of affective states from nonverbal features of speech and its application for public speaking skill analysis
CN105760839A (zh) 基于多特征流形学习与支持向量机的轴承故障诊断方法
CN108519768A (zh) 一种基于深度学习和信号分析的故障诊断方法
CN110795843B (zh) 一种识别滚动轴承故障的方法及装置
CN109993102A (zh) 相似人脸检索方法、装置及存储介质
CN113158984B (zh) 基于复Morlet小波和轻量级卷积网络的轴承故障诊断方法
Raurale et al. Emg wrist-hand motion recognition system for real-time embedded platform
CN106503616A (zh) 一种基于分层超限学习机的运动想象脑电信号分类方法
CN107478418A (zh) 一种旋转机械故障特征自动提取方法
Xu et al. Dually attentive multiscale networks for health state recognition of rotating machinery
Chen et al. Probabilistic latent semantic analysis-based gear fault diagnosis under variable working conditions
Yuan et al. An improved initialization method of D-KSVD algorithm for bearing fault diagnosis
Wu et al. Quality estimation method for gear hobbing based on attention and adversarial transfer learning
Pfisterer et al. Benchmarking time series classification--Functional data vs machine learning approaches
Liang et al. 1d convolutional neural networks for fault diagnosis of high-speed train bogie
Liu et al. Imbalanced sample fault diagnosis of rolling bearing using deep condition multidomain generative adversarial network
Zhang et al. A novel framework based on adaptive multi-task learning for bearing fault diagnosis
CN114224343A (zh) 认知障碍检测方法、装置、设备及存储介质
Cheng et al. Nearest neighbor convex hull tensor classification for gear intelligent fault diagnosis based on multi-sensor signals
Wald et al. Fourier transforms for vibration analysis: A review and case study
Ding et al. A novel weak feature extraction method for rotating machinery: link dispersion entropy
Redwood-Brown et al. Determinants of boat velocity during a 200 m race in elite Paralympic sprint kayakers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant