CN110051881A - 一种3d打印纳米银抗菌骨修复材料及其制备方法 - Google Patents

一种3d打印纳米银抗菌骨修复材料及其制备方法 Download PDF

Info

Publication number
CN110051881A
CN110051881A CN201810054100.0A CN201810054100A CN110051881A CN 110051881 A CN110051881 A CN 110051881A CN 201810054100 A CN201810054100 A CN 201810054100A CN 110051881 A CN110051881 A CN 110051881A
Authority
CN
China
Prior art keywords
bone repair
silver
repair material
nano
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810054100.0A
Other languages
English (en)
Inventor
张明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Zhongke Jingcheng Medical Science And Technology Co Ltd
Original Assignee
Shenzhen Zhongke Jingcheng Medical Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Zhongke Jingcheng Medical Science And Technology Co Ltd filed Critical Shenzhen Zhongke Jingcheng Medical Science And Technology Co Ltd
Priority to CN201810054100.0A priority Critical patent/CN110051881A/zh
Publication of CN110051881A publication Critical patent/CN110051881A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • A61L2300/104Silver, e.g. silver sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种3D打印纳米银抗菌骨修复材料及其制备方法。一种3D打印纳米银抗菌骨修复材料,包括按照质量百分比的如下组分:60%~70%的可生物降解聚合物、25%的可生物降解无机物以及5%~15%的纳米银。本发明将聚合物/无机物/纳米银复合于同一骨修复材料中,该骨修复材料具有良好抗菌活性、生物相容性,适宜的初始力学强度、具有良好的骨传导性及骨诱导性,降解速度可调、降解产物中性等优点。同时结合低温快速成型技术,可以精确化、定量化、灵活有效的控制该复合三维多孔骨修复材料的宏观尺寸及微观形貌。实现个性化、快速、有效、低成本的生产。

Description

一种3D打印纳米银抗菌骨修复材料及其制备方法
技术领域
本发明涉及了骨修复材料技术领域,特别是涉及了一种3D打印纳米银抗菌骨修复材料及其制备方法。
背景技术
创伤、感染、骨肿瘤、骨坏死等原因造成的骨缺损特别是长段骨缺损的修复和功能重建一直是骨科领域的难题和研究热点。目前,传统自体松质骨移植是治疗局部骨缺损的金标准。自体骨移植提供了最佳的骨传导、骨诱导及骨生成作用。但自体骨移植来源非常有限,造成供骨区的创伤、术后并发症和治疗费用等问题,进而严重限制自体骨移植治疗长段骨缺损的应用。异体骨虽然不受数量限制,但异体骨容易引起排斥反应,通过加工处理可降低异体骨的排斥反应,但其自身成骨诱导和骨生成作用已遭到破坏,新骨替代缓慢,生物力学性状差等问题,因此治疗效果欠佳。
利用组织工程技术制备人工骨移植替代物修复骨缺损是目前再生医学领域的一个研究热点。传统的组织工程技术需要于体外在骨移植替代物上培养高浓度种子细胞,形成细胞与材料的复合体后,移植于体内达到修复骨缺损的目的。但传统的组织工程技术修复长段骨缺损面临着:体外细胞培养引入的病毒或细菌感染的风险、自体干细胞取材有限、以及干细胞体内定向分化成骨的问题。同时手术费用昂贵、周期长、不具有普适性等问题皆限制了传统组织工程骨移植替代物的临床推广、应用和产业化。因此研发一种生物学稳定,易于使用而且价格低廉的具有骨形成促进作用的骨修复材料用于长段骨缺损修复具有创新和应用价值。
另一方面,因细菌感染引起的慢性骨感染是骨缺损治疗中的难点。细菌可以通过血源播散和开放创面(如骨折或溃疡)以及内固定手术造成感染。其中骨修复和填充材料相关的感染随着临床应用的增多,发病率呈上升趋势,防止骨修复材料感染是目前临床上亟需解决的问题。慢性骨髓炎的治疗不仅要控制感染,还要修复手术清楚局部死骨所留下来的骨缺损,理想的抗菌骨修复材料不但能够在局部长期维持有效的抗菌作用,同时还能够促进骨再生、骨修复。
聚羟基乙酸-羟基丙酸共聚物(PLGA)是经美国食品药品管理局(FDA)批准的可用于人体的生物医用材料。因其具有良好的生物相容性,降解速度可控,可塑性高而广泛应用于骨修复材料的研究。但因PLGA材料细胞黏附性能差,力学强度低,同时酸性降解产物造。成局部细胞炎症等缺陷限制了其在作为骨修复材料在临床上使用。目前的研究趋势是通过材料表面改性及复合材料的方法改善其缺点。
相比于PLGA的上述缺点,β-磷酸三钙(β-TCP)在具有良好的生物相容性的同时,无任何局部炎性反应及全身毒副作用,植入机体后可与骨直接融合。但β-TCP脆性大,柔韧性不够,在承受拉伸和弯曲载荷时很小的应力下就会失效,且降解性能不易调节也是不可忽视的缺点。同时β-TCP在制备过程中需要高温烧结,不利于生物活性因子的负载,降低材料的骨诱导潜力。
PLGA/TCP复合材料则可以避免上述两种材料单独使用时的缺陷。PLGA/TCP复合多孔支架具有良好的骨传导性、优良的生物相容性,又有一定的初始力学强度。可通过PLGA,TCP在多孔支架中的成分配比调控支架的力学强度、降解速率等。同时,TCP也可以在一定程度上中和PLGA的酸性降解产物,减少局部炎症反应。是目前最有临床应用前景的骨修复材料之一。
目前已有相关研究表明PLGA/β-TCP为载体的复合材料能够有效促进骨缺损修复,但其作为载体与纳米银结合形成抗菌系统善未见报道。
发明内容
针对上述现有技术的不足,本发明提供了一种3D打印纳米银抗菌骨修复材料及其制备方法。其将聚合物/无机物/纳米银复合于同一骨修复材料中,该骨修复材料具有良好抗菌活性、生物相容性,适宜的初始力学强度、具有良好的骨传导性及骨诱导性,降解速度可调、降解产物中性等优点。同时结合低温快速成型技术,可以精确化、定量化、灵活有效的控制该复合三维多孔骨修复材料的宏观尺寸及微观形貌。实现个性化、快速、有效、低成本的生产。
本发明所要解决的技术问题通过以下技术方案予以实现:
一种3D打印纳米银抗菌骨修复材料,包括按照质量百分比的如下组分:60%~70%的可生物降解聚合物、25%的可生物降解无机物以及5%~15%的纳米银。
在本发明中,所述可生物降解聚合物包括聚乙醇酸-乳酸共聚物、聚乳酸、聚乙醇酸、聚己内酯、聚原酸酯、聚酸酐、聚磷腈、聚氨基酸中的至少一种。
在本发明中,所述可生物降解无机物包括α-磷酸三钙、β-磷酸三钙、羟基磷灰石、磷酸钙、硅酸钙中的至少一种。
在本发明中,所述可生物降解无机物为粉末状。
一种3D打印纳米银抗菌骨修复材料的制备方法,包括以下步骤:将60~70%可生物降解聚合物、25%可生物降解无机物、5~15%银溶液,以上各组分总量100%,按比例在有机溶剂中混合均匀后,超声制备纳米银颗粒,使纳米银颗粒均匀分散在所述可生物降解聚合物微球表面;用低温快速成型仪成型至所需参数的材料,将成型后的材料冷冻干燥成型,即得抗菌骨修复材料。
一种3D打印纳米银抗菌骨修复材料的制备方法,具体包括以下步骤:
步骤1.按质量百分比,称取A:60%-70%的可生物降解聚合物、B:25%可生物降解无机物、C:5%-15%硝酸银,以上各组分总量100%;将ABC混合于烧瓶中,用二氧六环于室温下混合搅拌12h,形成匀相溶液;
步骤2.加入二氯化锡、葡萄糖、抗坏血酸、甲醛中的一种或几种混合作为还原剂,超声1~24h,还原上述银离子,得到纳米银混合溶液;
步骤3:将上述纳米银混合溶液倒入低温快速成型仪中,在-30℃下成型至所需参数的材料;
步骤4:将成型后的材料置于冷冻干燥机内,冷冻干燥24h后成型,即得抗菌骨修复材料。
在本发明中,所述可生物降解聚合物包括聚乙醇酸-乳酸共聚物、聚乳酸、聚乙醇酸、聚己内酯、聚原酸酯、聚酸酐、聚磷腈、聚氨基酸中的至少一种。
在本发明中,所述可生物降解无机物包括α-磷酸三钙、β-磷酸三钙、羟基磷灰石、磷酸钙、硅酸钙中的至少一种。
在本发明中,所述可生物降解无机物为粉末状。
本发明具有如下有益效果:
将聚合物/无机物/纳米银复合于同一骨修复材料中,本发明骨修复材料具有良好抗菌活性、生物相容性,适宜的初始力学强度、具有良好的骨传导性及骨诱导性,具有适合细胞附着、增殖和分化的表面;本发明骨修复材料的降解速度与骨生长速度相匹配,无毒性和持续的抗菌性能,降解速度可调、降解产物中性等优点;而且,本发明骨修复材料中的三维多孔且内部贯通的孔网络结构,以适合细胞的生长、养分输送及代谢废物的排放;还具有与植入组织相匹配的力学性质。同时结合低温快速成型技术,可以精确化、定量化、灵活有效的控制该复合三维多孔骨修复材料的宏观尺寸及微观形貌。实现个性化、快速、有效、低成本的生产。
附图说明
图1为本发明纳米银粒子均匀分散在PLGA微球表面的示意图;
图2为本发明纳米银/PLGA/TCP抗菌骨修复材料支架的示意图;
图3为本发明纳米银/PLGA/TCP抗菌骨修复材料支架的Micro-CT图。
具体实施方式
PLGA/TCP复合多孔支架具有良好的骨传导性、优良的生物相容性,又有一定的初始力学强度。可通过PLGA,TCP在多孔支架中的成分配比调控支架的力学强度、降解速率等。同时,TCP也可以在一定程度上中和PLGA的酸性降解产物,减少局部炎症反应。是目前最有临床应用前景的骨修复材料之一。
但单纯的PLGA/TCP多孔支架不含有抗菌性能,不能解决因细菌感染引起的慢性骨感染。细菌可以通过血源播散和开放创面(如骨折或溃疡)以及内固定手术造成感染。其中骨修复和填充材料相关的感染随着临床应用的增多,发病率呈上升趋势,防止骨修复材料感染是目前临床上亟需解决的问题。慢性骨髓炎的治疗不仅要控制感染,还要修复手术清楚局部死骨所留下来的骨缺损,理想的抗菌骨修复材料不但能够在局部长期维持有效的抗菌作用,同时还能够促进骨再生、骨修复。
基于上述构思,针对目前对于降低细菌感染缺乏有效的骨修复材料,提供一种3D打印纳米银抗菌骨修复材料。
下面结合附图及实施例对骨修复材料及其制备方法做进一步的解释说明。
一实施方式的3D打印纳米银抗菌骨修复材料,其包括按照质量百分比的如下组分:60%~70%的可生物降解聚合物、25%的可生物降解无机物以及5%~15%的纳米银。上述材料复合形成的骨修复材料具有相互贯通的三维孔洞结构,如图2、3所示。
其中,
可生物降解聚合物可以为聚羟基乙酸-羟基丙酸共聚物(PLGA)、聚乳酸(PLA)、聚乙醇酸(PGA)、聚己内酯(PCL)、聚原酸酯、聚酸酐、聚磷腈和聚氨基酸中的一种或几种的混合物。
可生物降解聚合物还可以为聚羟基乙酸-羟基丙酸共聚物(PLGA)、聚乳酸(PLA)、聚乙醇酸(PGA)、聚己内酯(PCL)、聚原酸酯、聚酸酐、聚磷腈和聚氨基酸中的一种或几种的共聚物,例如:乙醇酸和己内酯共聚物。
可生物降解无机物可以为α-磷酸三钙(α-TCP)、β-磷酸三钙(β-TCP)、羟基磷灰石(HA)、磷酸钙或硅酸钙。优选地,所述可生物降解无机物为粉末状。
将聚合物/无机物/纳米银复合于同一骨修复材料中,该骨修复材料具有良好抗菌活性、生物相容性,适宜的初始力学强度、具有良好的骨传导性及骨诱导性,降解速度可调、降解产物中性等优点。
本发明进行大量试验,选择上述较为合理的配比,一是根据低温3D打印设备对物料的流动性和粘性要求;二是根据纳米银离子对身体不会造成毒性的上限浓度;三是按此比例制备成功的骨修复材料,具有最合适的力学强度,既能很好的在骨缺损部位起到很好的支撑效果,又能避免应力遮挡效应。
如图2、3所示的上述骨修复材料的制备方法,包括如下步骤:
S10、按照质量百分比,称取60~70%可生物降解聚合物、25%可生物降解无机物、5~15%硝酸银,室温下用有机溶剂溶解后形成均相溶液。
所述有机溶剂可以为二氧六环、三氯甲烷、二氯甲烷或四氢呋喃。
可生物降解聚合物可以为聚羟基乙酸-羟基丙酸共聚物、聚乳酸、聚乙醇酸、聚己内酯、聚原酸酯、聚酸酐、聚磷腈或聚氨基酸。
可生物降解无机物可以为α-磷酸三钙、β-磷酸三钙、羟基磷灰石、磷酸钙或硅酸钙。
S20、超声制备纳米银颗粒,使纳米银颗粒均匀分散在所述可生物降解聚合物微球表面。
具体地,往均相溶液中加入二氯化锡、葡萄糖、抗坏血酸、甲醛中的一种或几种混合作还原剂,超声1~24h,还原上述银离子,得到纳米银混合溶液,使纳米银颗粒均匀分散在所述可生物降解聚合物微球表面,如图1所示。
S30、在低温快速成型设备中、-30℃的条件下,将S20得到的混合溶液快速成型,得到成型材料。
低温快速成型设备可以为低温快速成型仪。
S40、将S30得到的成型材料冷冻干燥,得到骨修复材料。
冷冻干燥操作可以在冷冻干燥机内进行,干燥时间可以为至少为24h。
以下为具体实施例部分;其中,低温快速成型仪型号为TissueForm Ⅲ。
实施例1
本实施例的抗菌骨修复材料包括质量百分比的如下组分:60%的PLGA、25%的TCP以及15%的纳米银。
这种抗菌骨修复材料的制备方法,按以下步骤进行:
步骤1.按质量百分比,称取A:60%的PLGA、B:25%TCP、C:15%硝酸银;将ABC混合于烧瓶中,用二氧六环于室温下混合搅拌12h,形成匀相溶液;
步骤2.加入二氯化锡作为还原剂,超声12h,还原上述银离子,得到纳米银混合溶液,其SEM示意图如图1所示;
步骤3:将上述纳米银混合溶液倒入低温快速成型仪中,在-30℃下成型至所需参数的材料;
步骤4:将成型后的材料置于冷冻干燥机内,冷冻干燥24h后成型,即得抗菌骨修复材料,如图2、3所示。
本实施例制得的骨修复材料采用微计算机断层扫描技术扫描,得到如图3所示的Micro-CT图,如图所示,该抗菌骨修复材料具有相互贯通的三维孔洞结构。
实施例2
本实施例的抗菌骨修复材料包括质量百分比的如下组分:65%的聚乳酸、25%的磷酸钙以及10%的纳米银。
这种抗菌骨修复材料的制备方法,按以下步骤进行:
步骤1.按质量百分比,称取A:65%的聚乳酸、B:25%磷酸钙、C:10%硝酸银;将ABC混合于烧瓶中,用二氧六环于室温下混合搅拌12h,形成匀相溶液;
步骤2.加入二葡萄糖作为还原剂,超声12h,还原上述银离子,得到纳米银混合溶液;
步骤3:将上述纳米银混合溶液倒入低温快速成型仪中,在-30℃下成型至所需参数的材料;
步骤4:将成型后的材料置于冷冻干燥机内,冷冻干燥24h后成型,即得抗菌骨修复材料。
实施例3
本实施例的抗菌骨修复材料包括质量百分比的如下组分:70%的聚氨基酸、25%的羟基磷灰石以及5%的纳米银。
这种抗菌骨修复材料的制备方法,按以下步骤进行:
步骤1.按质量百分比,称取A:70%的聚氨基酸、B:25%羟基磷灰石、C:5%硝酸银;将ABC混合于烧瓶中,用二氧六环于室温下混合搅拌12h,形成匀相溶液;
步骤2.加入二氯化锡、抗坏血酸、甲醛中的混合作为还原剂,超声12h,还原上述银离子,得到纳米银混合溶液;
步骤3:将上述纳米银混合溶液倒入低温快速成型仪中,在-30℃下成型至所需参数的材料;
步骤4:将成型后的材料置于冷冻干燥机内,冷冻干燥24h后成型,即得抗菌骨修复材料。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制,但凡采用等同替换或等效变换的形式所获得的技术方案,均应落在本发明的保护范围之内。

Claims (9)

1.一种3D打印纳米银抗菌骨修复材料,其特征在于,包括按照质量百分比的如下组分:60%~70%的可生物降解聚合物、25%的可生物降解无机物以及5%~15%的纳米银。
2.根据权利要求1所述的3D打印纳米银抗菌骨修复材料,其特征在于,所述可生物降解聚合物包括聚乙醇酸-乳酸共聚物、聚乳酸、聚乙醇酸、聚己内酯、聚原酸酯、聚酸酐、聚磷腈、聚氨基酸中的至少一种。
3.根据权利要求1所述的3D打印纳米银抗菌骨修复材料,其特征在于,所述可生物降解无机物包括α-磷酸三钙、β-磷酸三钙、羟基磷灰石、磷酸钙、硅酸钙中的至少一种。
4.根据权利要求1所述的3D打印纳米银抗菌骨修复材料,其特征在于,所述可生物降解无机物为粉末状。
5.一种3D打印纳米银抗菌骨修复材料的制备方法,其特征在于,包括以下步骤:将60~70%可生物降解聚合物、25%可生物降解无机物、5~15%银溶液,以上各组分总量100%,按比例在有机溶剂中混合均匀后,超声制备纳米银颗粒,使纳米银颗粒均匀分散在所述可生物降解聚合物微球表面;用低温快速成型仪成型至所需参数的材料,将成型后的材料冷冻干燥成型,即得抗菌骨修复材料。
6.根据权利要求5所述的3D打印纳米银抗菌骨修复材料的制备方法,其特征在于,包括以下步骤:
步骤1.按质量百分比,称取A:60%-70%的可生物降解聚合物、B:25%可生物降解无机物、C:5%-15%硝酸银,以上各组分总量100%;将ABC混合于烧瓶中,用二氧六环于室温下混合搅拌12h,形成匀相溶液;
步骤2.加入二氯化锡、葡萄糖、抗坏血酸、甲醛中的一种或几种混合作为还原剂,超声1~24h,还原上述银离子,得到纳米银混合溶液;
步骤3:将上述纳米银混合溶液倒入低温快速成型仪中,在-30℃下成型至所需参数的材料;
步骤4:将成型后的材料置于冷冻干燥机内,冷冻干燥24h后成型,即得抗菌骨修复材料。
7.根据权利要求5或6所述的3D打印纳米银抗菌骨修复材料的制备方法,其特征在于,所述可生物降解聚合物包括聚乙醇酸-乳酸共聚物、聚乳酸、聚乙醇酸、聚己内酯、聚原酸酯、聚酸酐、聚磷腈、聚氨基酸中的至少一种。
8.根据权利要求5或6所述的3D打印纳米银抗菌骨修复材料的制备方法,其特征在于,所述可生物降解无机物包括α-磷酸三钙、β-磷酸三钙、羟基磷灰石、磷酸钙、硅酸钙中的至少一种。
9.根据权利要求5或6所述的3D打印纳米银抗菌骨修复材料的制备方法,其特征在于,所述可生物降解无机物为粉末状。
CN201810054100.0A 2018-01-19 2018-01-19 一种3d打印纳米银抗菌骨修复材料及其制备方法 Withdrawn CN110051881A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810054100.0A CN110051881A (zh) 2018-01-19 2018-01-19 一种3d打印纳米银抗菌骨修复材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810054100.0A CN110051881A (zh) 2018-01-19 2018-01-19 一种3d打印纳米银抗菌骨修复材料及其制备方法

Publications (1)

Publication Number Publication Date
CN110051881A true CN110051881A (zh) 2019-07-26

Family

ID=67315489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810054100.0A Withdrawn CN110051881A (zh) 2018-01-19 2018-01-19 一种3d打印纳米银抗菌骨修复材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110051881A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110251726A (zh) * 2019-08-02 2019-09-20 科先医疗科技(苏州)有限公司 一种复合人工骨材料及其制备方法
CN111068110A (zh) * 2019-11-25 2020-04-28 中国科学院长春应用化学研究所 一种3d打印可降解复合支架、其制备方法及载物复合支架
CN111248195A (zh) * 2020-02-24 2020-06-09 暨南大学 载纳米银的聚膦腈复合抗菌剂及其制备方法和应用
CN111558091A (zh) * 2020-05-19 2020-08-21 中南大学 一种含载银碳纳米管的抗菌聚合物基骨支架及其制备方法
CN111995847A (zh) * 2020-07-31 2020-11-27 陕西科技大学 一种可抗菌的3d打印线材的制备方法
CN112773940A (zh) * 2021-01-26 2021-05-11 深圳市创想三维科技有限公司 一种3d打印用人工骨支架材料及其制备方法和应用
CN112972762A (zh) * 2021-02-24 2021-06-18 深圳市创想三维科技有限公司 一种可降解树脂及其制备方法和应用
CN115232304A (zh) * 2022-07-26 2022-10-25 四川大学 含双膦酸聚氨基酸共聚物、抗骨肿瘤骨材料及其制备
CN116942921A (zh) * 2023-08-01 2023-10-27 深圳中科精诚医学科技有限公司 一种含镁可降解注射水凝胶骨修复材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100317617A1 (en) * 2009-06-15 2010-12-16 Vascular Vision Pharmaceutical Co. Silver nanoparticles as anti-microbial
CN102145196A (zh) * 2011-04-02 2011-08-10 中国人民解放军军事医学科学院基础医学研究所 一种具有抗感染能力骨组织工程支架材料及其制备方法
CN102824657A (zh) * 2011-07-29 2012-12-19 深圳先进技术研究院 骨修复材料及其制备方法
CN103977452A (zh) * 2014-04-29 2014-08-13 辽宁医学院 有抗菌性的纳米银-羟基磷灰石-聚乳酸材料及制备方法
CN104083804A (zh) * 2014-06-23 2014-10-08 福州市第二医院 一种骨修复材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100317617A1 (en) * 2009-06-15 2010-12-16 Vascular Vision Pharmaceutical Co. Silver nanoparticles as anti-microbial
CN102145196A (zh) * 2011-04-02 2011-08-10 中国人民解放军军事医学科学院基础医学研究所 一种具有抗感染能力骨组织工程支架材料及其制备方法
CN102824657A (zh) * 2011-07-29 2012-12-19 深圳先进技术研究院 骨修复材料及其制备方法
CN103977452A (zh) * 2014-04-29 2014-08-13 辽宁医学院 有抗菌性的纳米银-羟基磷灰石-聚乳酸材料及制备方法
CN104083804A (zh) * 2014-06-23 2014-10-08 福州市第二医院 一种骨修复材料及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110251726A (zh) * 2019-08-02 2019-09-20 科先医疗科技(苏州)有限公司 一种复合人工骨材料及其制备方法
CN111068110A (zh) * 2019-11-25 2020-04-28 中国科学院长春应用化学研究所 一种3d打印可降解复合支架、其制备方法及载物复合支架
CN111248195A (zh) * 2020-02-24 2020-06-09 暨南大学 载纳米银的聚膦腈复合抗菌剂及其制备方法和应用
CN111558091A (zh) * 2020-05-19 2020-08-21 中南大学 一种含载银碳纳米管的抗菌聚合物基骨支架及其制备方法
CN111995847A (zh) * 2020-07-31 2020-11-27 陕西科技大学 一种可抗菌的3d打印线材的制备方法
CN112773940A (zh) * 2021-01-26 2021-05-11 深圳市创想三维科技有限公司 一种3d打印用人工骨支架材料及其制备方法和应用
CN112972762A (zh) * 2021-02-24 2021-06-18 深圳市创想三维科技有限公司 一种可降解树脂及其制备方法和应用
CN115232304A (zh) * 2022-07-26 2022-10-25 四川大学 含双膦酸聚氨基酸共聚物、抗骨肿瘤骨材料及其制备
CN115232304B (zh) * 2022-07-26 2023-05-26 四川大学 含双膦酸聚氨基酸共聚物、抗骨肿瘤骨材料及其制备
CN116942921A (zh) * 2023-08-01 2023-10-27 深圳中科精诚医学科技有限公司 一种含镁可降解注射水凝胶骨修复材料及其制备方法

Similar Documents

Publication Publication Date Title
CN110051881A (zh) 一种3d打印纳米银抗菌骨修复材料及其制备方法
Soundarya et al. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques
Serrano-Aroca et al. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications
CN111070376B (zh) 一种3d打印仿生多孔生物陶瓷人工骨及其制备方法
Nie et al. Development of chitosan/gelatin hydrogels incorporation of biphasic calcium phosphate nanoparticles for bone tissue engineering
Pina et al. Natural‐based nanocomposites for bone tissue engineering and regenerative medicine: A review
CN111973811B (zh) 一种含锌人工骨及其制备方法
Baino et al. Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances
Wu et al. 3D printed chitosan-gelatine hydrogel coating on titanium alloy surface as biological fixation interface of artificial joint prosthesis
CN102824657B (zh) 骨修复材料及其制备方法
Kolan et al. Bioprinting with bioactive glass loaded polylactic acid composite and human adipose stem cells
Yoshida et al. Bone augmentation using a highly porous PLGA/β‐TCP scaffold containing fibroblast growth factor‐2
Leng et al. Material-based therapy for bone nonunion
Jamshidi Adegani et al. Coating of electrospun poly (lactic‐co‐glycolic acid) nanofibers with willemite bioceramic: improvement of bone reconstruction in rat model
Qi et al. Sr2+ sustained release system augments bioactivity of polymer scaffold
Hu et al. Recent progress in 3D printing degradable polylactic acid‐based bone repair scaffold for the application of cancellous bone defect
Jadidi et al. Mechanical strength and biocompatibility of bredigite (Ca7MgSi4O16) tissue-engineering scaffolds modified by aliphatic polyester coatings
Liu et al. Biomimetic porous silk fibroin/biphasic calcium phosphate scaffold for bone tissue regeneration
He et al. Novel extrusion-microdrilling approach to fabricate calcium phosphate-based bioceramic scaffolds enabling fast bone regeneration
Iannazzo et al. Hybrid ceramic/polymer composites for bone tissue regeneration
Song et al. Design and fabrication of drug-loaded alginate/hydroxyapatite/collagen composite scaffolds for repairing infected bone defects
Raja et al. Multifunctional calcium-deficient hydroxyl apatite–alginate core–shell-structured bone substitutes as cell and drug delivery vehicles for bone tissue regeneration
Feng et al. Diopside modified porous polyglycolide scaffolds with improved properties
Hu et al. 3D printed polyetheretherketone bone tissue substitute modified via amoxicillin-laden hydroxyapatite nanocoating
da Silveira Gerzson et al. Assessment of Adhesion and Proliferation of Bone Marrow Mesenchymal Stem Cells in Polymer Matrices with rhGH.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190726