CN110051857A - 一种双金属掺杂多面可降解介孔二氧化硅纳米颗粒的制备方法及其应用 - Google Patents

一种双金属掺杂多面可降解介孔二氧化硅纳米颗粒的制备方法及其应用 Download PDF

Info

Publication number
CN110051857A
CN110051857A CN201910308134.2A CN201910308134A CN110051857A CN 110051857 A CN110051857 A CN 110051857A CN 201910308134 A CN201910308134 A CN 201910308134A CN 110051857 A CN110051857 A CN 110051857A
Authority
CN
China
Prior art keywords
particle
bimetal
panel
preparation
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910308134.2A
Other languages
English (en)
Inventor
康言吉
陈爱政
王士斌
刘晨光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN201910308134.2A priority Critical patent/CN110051857A/zh
Publication of CN110051857A publication Critical patent/CN110051857A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种双金属掺杂多面可降解介孔二氧化硅纳米颗粒的制备方法及其应用,本发明采用改进溶胶凝胶法制备了两种金属元素掺杂的多面可降解介孔二氧化硅纳米颗粒,所制备的纳米颗粒成圆‑椭圆相接的多面结构,且两种金属元素分别分布于两面。药物装载于介孔孔道内,并于金属配位结合形成具有pH响应的配位键,在酸性条件下配位键断开释放药物,而在中性条件下稳定装载药物。由于金属掺杂与介孔二氧化硅结构中,提高了介孔二氧化硅给的生物降解性,使纳米颗粒能在细胞内降解并释放金属离子,而这些金属离子可催化芬顿与类芬顿反应,产生活性氧,并激活细胞铁死亡通路,最终高效地杀死肿瘤细胞。

Description

一种双金属掺杂多面可降解介孔二氧化硅纳米颗粒的制备方 法及其应用
技术领域
本发明属于医药材料技术领域,具体涉及一种双金属掺杂多面可降解介孔二氧化硅纳米颗粒的制备方法及其应用。
背景技术
近年来癌症治疗已被广泛研究,治疗手段也越来越丰富,除传统的化疗、放疗外,光动力治疗利用光激发产生具细胞毒性的活性氧(ROS)杀死肿瘤细胞。然而,由于光的穿透深度不足,即使近红外光在人体的穿透深度也只能达到2-3cm,导致这种先进疗法的适用性受到限制。而化学动力治疗则是在不需要外部刺激的情况下,通过铁、铜、锰等金属元素在细胞内催化芬顿或类芬顿反应,产生羟基自由基,同时激活细胞铁死亡通路,调节细胞内氧化型与还原型谷胱甘肽比例,抑制谷胱甘肽过氧化物酶4,促使脂质过氧化,从而杀死肿瘤细胞。
介孔二氧化硅纳米颗粒(MSN)由于其生物相容性好、介孔结构等特点已在生物医药学领域广泛应用。各种形状(如六边形、立方形、层状、虫孔状等)以及与各种功能性材料(如金、银、铂、四氧化三铁等)复合的核壳或多面(Janus)结构的介孔二氧化硅纳米颗粒在提高载药效率、靶向性、响应控释以及多治疗手段结合等方面取得一定进展。然而目前的方法往往被限制于制备步骤繁多、药物选择性释放、生物体内的降解和代谢以及生物毒性等方面问题。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种双金属掺杂多面可降解介孔二氧化硅纳米颗粒的制备方法。
本发明的另一目的在于提供上述双金属掺杂多面可降解介孔二氧化硅纳米颗粒的应用。
本发明的原理如下:
本发明采用改进溶胶凝胶法制备了两种金属元素掺杂的多面可降解介孔二氧化硅纳米颗粒,所制备的纳米颗粒成圆-椭圆相接的多面结构,且两种金属元素分别分布于两面。药物装载于介孔孔道内,并于金属配位结合形成具有pH响应的配位键,在酸性条件下配位键断开释放药物,而在中性条件下稳定装载药物。由于金属掺杂与介孔二氧化硅结构中,提高了介孔二氧化硅给的生物降解性,使纳米颗粒能在细胞内降解并释放金属离子,而这些金属离子可催化芬顿与类芬顿反应,产生活性氧,并激活细胞铁死亡通路,最终高效地杀死肿瘤细胞。
本发明的技术方案如下:
一种双金属掺杂多面可降解介孔二氧化硅纳米颗粒的制备方法,包括如下步骤:
(1)将表面活性剂加入到氨水中,获得表面活性剂溶液;该表面活性剂包括十六烷基三甲基溴/氯化铵、十四烷基三甲基溴/氯化铵、十二烷基三甲基溴/氯化铵、十烷基三甲基溴/氯化铵、乙氧基-丙氧基形成的两性三嵌段聚合物中的至少一种;
(2)将第一金属盐、第二金属盐和正硅酸乙酯溶解于乙醇中,获得混合溶液,其中,第一金属盐和第二金属盐均为金属元素的硝酸盐或硫酸盐,且第一金属盐和第二金属盐中的金属元素不相同,且该金属元素包括铜、铁、钴、镍、铬、锌、锰、镧系金属元素和锕系金属元素;
(3)将步骤(2)所得的混合溶液缓慢滴加到步骤(1)所得的表面活性剂溶液中,于38-42℃下剧烈搅拌1.5-2.5h,随后于38-42℃下静置15-17h,接着以10000-13000rpm的速度离心10-20min,然后以去离子水和乙醇洗涤,获得纳米颗粒;
(4)将上述纳米颗粒置于酸性醇溶液中,于68-72℃回流洗涤5-7h,接着以10000-13000rpm的速度离心10-20min,然后以去离子水和乙醇洗涤,获得所述双金属掺杂多面可降解介孔二氧化硅纳米颗粒。
在本发明的一个优选实施方案中,所述第一金属盐与第二金属盐的总量与正硅酸乙酯的摩尔比为0.5-5∶100,其中正硅酸乙酯以Si的摩尔量计算。
在本发明的一个优选实施方案中,所述酸性醇溶液为硝酸铵的异丙醇溶液。
进一步优选的,所述硝酸铵与异丙醇的比例为0.2-0.4g∶45-50mL。
本发明的技术方案之二如下:
上述制备方法制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒在制备调控细胞内环境的药物中的应用。
本发明的技术方案之三如下:
上述制备方法制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒在制备肿瘤化学动力治疗药物中的应用。
本发明的技术方案之四如下:
上述制备方法制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒在制备诱导细胞铁死亡的药物中的应用。
本发明的有益效果是:
1、本发明工艺简单,制备周期短,成本低,具有实用性强及广阔的应用前景。
2、本发明制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒能够在无外界刺激的情况下显著调控细胞内环境(ROS水平和GSH/GSSG比例等),能够更好的用于治疗肿瘤。
3、本发明制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒提供了药物的装载和pH响应释放,使药物在到达肿瘤部位前被更好地保护,而在肿瘤细胞释放,增加靶向性。
附图说明
图1为本发明实施例1制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒的示意图以及离心前后的照片。
图2为本发明实施例1制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒的透射电镜照片和元素定位。
图3为本发明实施例1制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒在培养基(左)、pH7.4磷酸盐缓冲液(中)和pH5.0磷酸盐缓冲液(右)72小时后的照片和透射电镜照片。
图4为普通介孔二氧化硅纳米颗粒和实施例1制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒所负载的药物在不同pH下释放曲线。
图5为实施例1制得的双金属掺杂多面可降解介孔二氧化硅纳米颗粒进行胞内物质调控实验的结果图。其中,a为双金属掺杂多面可降解介孔二氧化硅纳米颗粒及其载药纳米颗粒与细胞共孵育后胞内ROS水平荧光强度图;b为普通、单金属及双金属掺杂介孔二氧化硅纳米颗粒与细胞共孵育后胞内GSH/GSSG比例;c为普通、单金属及双金属掺杂介孔二氧化硅纳米颗粒与细胞共孵育后胞内MDA产量。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。
实施例1:
称取0.58g十六烷基三甲基溴化铵,加入300mL 0.51mol/L氨水中;按硅:(铜+铁)摩尔比为30:1配制5mL 0.88mol/L的硝酸铜、硝酸铁与正硅酸乙酯的乙醇混合溶液;将硝酸铜、硝酸铁与正硅酸乙酯的乙醇混合溶液缓慢滴加入十六烷基三甲基溴化铵的氨水溶液中,于40℃下剧烈搅拌2h,随后混合液于40℃下静置16h,以12000rpm离心15min,并分别以水、乙醇洗涤3遍;将纳米颗粒置于0.3g硝酸铵和50mL异丙醇所构成的酸性醇溶液中,70℃回流6h洗涤样品,12000rpm离心15min,并分别以水、乙醇洗涤3遍,收集得到双金属掺杂多面可降解介孔二氧化硅纳米颗粒。将该纳米颗粒离心或超声分散于超纯水中拍摄图片。
图1为本实施例中双金属掺杂多面可降解介孔二氧化硅纳米颗粒的示意图和离心前、后的照片,图2为本实施例制得的双金属掺杂多面可降解介孔二氧化硅纳米颗粒透射电镜照片和元素定位,由图2看出纳米颗粒为铜、铁分别分布于球和椭球两侧的多面结构。
实施例2:
取实施例1中制得的双金属掺杂多面可降解介孔二氧化硅纳米颗粒5mg,分别浸泡于含血清培养基、中性磷酸盐缓冲液和酸性磷酸盐缓冲液中,37℃,150rpm旋摇72小时。图3为所得纳米颗粒离心前后的照片和透射电镜照片,由图3可知纳米颗粒在培养基中较稳定,在酸性条件下被降解成小碎屑。说明本发明实施例1中制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒具有生物降解性,尤其在细胞摄入后,在溶酶体中可迅速降解。
实施例3:
取实施例1中制得的双金属掺杂多面可降解介孔二氧化硅纳米颗粒12.5mg,置于5mL 0.5mg/mL的阿霉素甲醇溶液中搅拌过夜,装载抗癌药物阿霉素。随后将载药纳米颗粒置于中性和酸性下释放药物,同时以普通介孔二氧化硅纳米颗粒对比。图4为药物释放曲线,有图所示双金属掺杂多面可降解介孔二氧化硅纳米颗粒有很好的pH响应药物释放效果。说明本发明实施例1制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒具很好的防止药物泄露和选择释放能力。
实施例4:
对实施例1中制得的双金属掺杂多面可降解介孔二氧化硅纳米颗粒进行胞内物质调控实验。
(1)将人宫颈癌细胞HeLa接种于12孔板细胞培养板中,每孔1×105个细胞,每孔培养基中加入1mL的DMEM培养基,细胞培养贴壁24h后,取出原培养基,向实验组中分别加入500μl含10μg/mL的纳米颗粒,继续培养4h;
(2)吸掉孔板中的上清液,使用磷酸盐缓冲溶液冲洗细胞,并用活性氧探针DCFH-DA标记胞内活性氧,并在激光共聚焦显微镜下观察并拍摄照片。
(3)同(1)法用普通、单金属掺杂、双金属掺杂介孔二氧化硅纳米颗粒处理细胞4h后,消化、离心收集细胞并破碎收集各组上清,以脂质过氧化产物丙二醛与硫代巴比妥酸反应生成红色产物在532nm下检测吸光度。另外,以生色底物DTNB分别与谷胱甘(GSH)和除GSH细胞液反应,得到黄色产物测量吸光度测得谷胱甘肽总量和氧化型谷胱甘肽(GSSG)。
胞内物质调控的实验结果如图5所示,a为双金属掺杂多面可降解介孔二氧化硅纳米颗粒及其载药纳米颗粒与细胞共孵育后胞内ROS水平荧光强度图,可见本发明中制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒能显著提高胞内ROS水平,对细胞造成氧化损伤杀死肿瘤;b为普通、单金属及双金属掺杂介孔二氧化硅纳米颗粒与细胞共孵育后胞内GSH/GSSG比例,相比于无金属,双金属掺杂介孔二氧化硅导致GSH/GSSG比例显著下降,即谷胱甘肽大多以氧化态存在;c为普通、单金属及双金属掺杂介孔二氧化硅纳米颗粒与细胞共孵育后胞内MDA产量。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (7)

1.一种双金属掺杂多面可降解介孔二氧化硅纳米颗粒的制备方法,其特征在于:包括如下步骤:
(1)将表面活性剂加入到氨水中,获得表面活性剂溶液;该表面活性剂包括十六烷基三甲基溴/氯化铵、十四烷基三甲基溴/氯化铵、十二烷基三甲基溴/氯化铵、十烷基三甲基溴/氯化铵、乙氧基-丙氧基形成的两性三嵌段聚合物中的至少一种;
(2)将第一金属盐、第二金属盐和正硅酸乙酯溶解于乙醇中,获得混合溶液,其中,第一金属盐和第二金属盐均为金属元素的硝酸盐或硫酸盐,且第一金属盐和第二金属盐中的金属元素不相同,且该金属元素包括铜、铁、钴、镍、铬、锌、锰、镧系金属元素和锕系金属元素;
(3)将步骤(2)所得的混合溶液缓慢滴加到步骤(1)所得的表面活性剂溶液中,于38-42℃下剧烈搅拌1.5-2.5h,随后于38-42℃下静置15-17h,接着以10000-13000rpm的速度离心10-20min,然后以去离子水和乙醇洗涤,获得纳米颗粒;
(4)将上述纳米颗粒置于酸性醇溶液中,于68-72℃回流洗涤5-7h,接着以10000-13000rpm的速度离心10-20min,然后以去离子水和乙醇洗涤,获得所述双金属掺杂多面可降解介孔二氧化硅纳米颗粒。
2.如权利要求1所述的制备方法,其特征在于:所述第一金属盐与第二金属盐的总量与正硅酸乙酯的摩尔比为0.5-5∶100,其中正硅酸乙酯以Si的摩尔量计算。
3.如权利要求1所述的制备方法,其特征在于:所述酸性醇溶液为硝酸铵的异丙醇溶液。
4.如权利要求3所述的制备方法,其特征在于:所述硝酸铵与异丙醇的比例为0.2-0.4g:45-50mL。
5.权利要求1至4中任一权利要求所述的制备方法制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒在制备调控细胞内环境的药物中的应用。
6.权利要求1至4中任一权利要求所述的制备方法制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒在制备肿瘤化学动力治疗药物中的应用。
7.权利要求1至4中任一权利要求所述的制备方法制备的双金属掺杂多面可降解介孔二氧化硅纳米颗粒在制备诱导细胞铁死亡的药物中的应用。
CN201910308134.2A 2019-04-17 2019-04-17 一种双金属掺杂多面可降解介孔二氧化硅纳米颗粒的制备方法及其应用 Pending CN110051857A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910308134.2A CN110051857A (zh) 2019-04-17 2019-04-17 一种双金属掺杂多面可降解介孔二氧化硅纳米颗粒的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910308134.2A CN110051857A (zh) 2019-04-17 2019-04-17 一种双金属掺杂多面可降解介孔二氧化硅纳米颗粒的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN110051857A true CN110051857A (zh) 2019-07-26

Family

ID=67317825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910308134.2A Pending CN110051857A (zh) 2019-04-17 2019-04-17 一种双金属掺杂多面可降解介孔二氧化硅纳米颗粒的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110051857A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110591110A (zh) * 2019-10-08 2019-12-20 浙江理工大学 一种Mn基金属-有机框架材料、制备方法和应用
CN111137899A (zh) * 2020-01-10 2020-05-12 天津大学 一种多功能铁杂化介孔二氧化硅纳米载体及其制备方法
CN113618079A (zh) * 2021-08-12 2021-11-09 长春工业大学 一种在介孔掺镧硅酸钙的孔道内合成低聚金纳米粒子的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553060A (zh) * 2013-10-14 2014-02-05 南京理工大学 一种载氧化铁/零价铁短孔道介孔硅的合成方法
CN106582774A (zh) * 2016-12-13 2017-04-26 天津工业大学 一种铁铜双金属负载介孔硅非均相芬顿催化材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553060A (zh) * 2013-10-14 2014-02-05 南京理工大学 一种载氧化铁/零价铁短孔道介孔硅的合成方法
CN106582774A (zh) * 2016-12-13 2017-04-26 天津工业大学 一种铁铜双金属负载介孔硅非均相芬顿催化材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN-GUANG LIU等: "Rerouting engineered metal-dependent shapes of mesoporous silica nanocontainers to biodegradable Janus-type (sphero-ellipsoid) nanoreactors for chemodynamic therapy", 《CHEMICAL ENGINEERING JOURNAL》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110591110A (zh) * 2019-10-08 2019-12-20 浙江理工大学 一种Mn基金属-有机框架材料、制备方法和应用
CN111137899A (zh) * 2020-01-10 2020-05-12 天津大学 一种多功能铁杂化介孔二氧化硅纳米载体及其制备方法
CN113618079A (zh) * 2021-08-12 2021-11-09 长春工业大学 一种在介孔掺镧硅酸钙的孔道内合成低聚金纳米粒子的方法

Similar Documents

Publication Publication Date Title
Wang et al. Upconverted metal–organic framework janus architecture for near-infrared and ultrasound co-enhanced high performance tumor therapy
Guo et al. Metal–phenolic network-based nanocomplexes that evoke ferroptosis by apoptosis: promoted nuclear drug influx and reversed drug resistance of cancer
Liu et al. Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief
Meng et al. Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy
Hao et al. State-of-the-art advances of copper-based nanostructures in the enhancement of chemodynamic therapy
Xie et al. O2-Cu/ZIF-8@ Ce6/ZIF-8@ F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy
Xiao et al. H2O2 self-supplying and GSH-depleting nanoplatform for chemodynamic therapy synergetic photothermal/chemotherapy
Wang et al. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy
Dou et al. Pb@ Au core–satellite multifunctional nanotheranostics for magnetic resonance and computed tomography imaging in vivo and synergetic photothermal and radiosensitive therapy
CN110051857A (zh) 一种双金属掺杂多面可降解介孔二氧化硅纳米颗粒的制备方法及其应用
Hu et al. Urchin-shaped metal organic/hydrogen-bonded framework nanocomposite as a multifunctional nanoreactor for catalysis-enhanced synergetic therapy
Wang et al. A three-in-one ZIFs-derived CuCo (O)/GOx@ PCNs hybrid cascade nanozyme for immunotherapy/enhanced starvation/photothermal therapy
Shang et al. Metal nanoparticles for photodynamic therapy: A potential treatment for breast cancer
Pei et al. Bioactive inorganic nanomaterials for cancer theranostics
Liu et al. Rapid decomposition and catalytic cascade nanoplatforms based on enzymes and Mn-etched dendritic mesoporous silicon for MRI-guided synergistic therapy
CN113577276B (zh) 一种离子掺杂聚多巴胺包覆过氧化钙复合纳米粒子及其制备方法与应用
Liu et al. Degradable calcium phosphate-coated upconversion nanoparticles for highly efficient chemo-photodynamic therapy
Chen et al. Open-source and reduced-expenditure nanosystem with ROS self-amplification and glutathione depletion for simultaneous augmented chemodynamic/photodynamic therapy
Zhang et al. High stability au nps: From design to application in nanomedicine
Jana et al. Hybrid carbon dot assembly as a reactive oxygen species nanogenerator for ultrasound-assisted tumor ablation
Liu et al. Surface Plasmonic Enhanced Imaging-Guided Photothermal/Photodynamic Therapy Based on Lanthanide–Metal Nanocomposites under Single 808 nm Laser
Ji et al. Recent advances in nanoscale metal organic frameworks for cancer chemodynamic therapy
Luo et al. Surface engineering of lanthanide nanoparticles for oncotherapy
Shao et al. Intelligent nanoplatform with multi therapeutic modalities for synergistic cancer therapy
Feng et al. Nanococktail based on supramolecular glyco-assembly for eradicating tumors in vivo

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190726

WD01 Invention patent application deemed withdrawn after publication