CN110042303A - 一种400MPa级细晶粒热轧钢筋及其生产工艺 - Google Patents

一种400MPa级细晶粒热轧钢筋及其生产工艺 Download PDF

Info

Publication number
CN110042303A
CN110042303A CN201910279656.4A CN201910279656A CN110042303A CN 110042303 A CN110042303 A CN 110042303A CN 201910279656 A CN201910279656 A CN 201910279656A CN 110042303 A CN110042303 A CN 110042303A
Authority
CN
China
Prior art keywords
fine grain
reinforcing bar
400mpa
inclusion
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910279656.4A
Other languages
English (en)
Other versions
CN110042303B (zh
Inventor
袁国
王超
康健
李振垒
王国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201910279656.4A priority Critical patent/CN110042303B/zh
Priority to PCT/CN2019/084051 priority patent/WO2020206742A1/zh
Publication of CN110042303A publication Critical patent/CN110042303A/zh
Application granted granted Critical
Publication of CN110042303B publication Critical patent/CN110042303B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/08Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

一种400MPa级细晶粒热轧钢筋及其生产工艺,属于热轧钢筋生产领域。钢筋包括的成分及其质量分数为:C0.20~0.25%,Si0.3~0.8%,Mn1.2~1.6%,P0.01~0.04%,S0.01~0.04%,Ti0.005~0.03%,Cr0.001~0.08%,V0.0001~0.008%,Nb0.0001~0.008%,Al0.0001~0.008%,O0.01~0.02%,N0.003~0.01%,余量为Fe和不可避免的杂质;该钢筋还包括锰硅酸盐夹杂物、氧化钛硫化锰复相夹杂物、硫化锰夹杂物和其它不可避免的夹杂物。其制法为:钢水冶炼、连铸、连铸坯加热、轧制钢筋。本方法对成分和夹杂物优化,结合冶炼连铸和轧制改进,利用夹杂物诱导细晶强化机制,提高钢筋强度,减少贵重合金元素添加,实现热轧钢筋低成本高质量生产。

Description

一种400MPa级细晶粒热轧钢筋及其生产工艺
技术领域
本发明属于热轧钢筋生产技术领域,特别涉及一种400MPa级细晶粒热轧钢筋及其生产工艺。
背景技术
随着我国工业化和城镇化的快速发展,基础设施建设和建筑等领域对高质量建筑用钢材的需求显著增加。为了进一步提高建筑钢材的质量、促进节能减排、淘汰落后产能,满足建筑、交通、工程等领域的需求,我国在2018年11月1日起开始实施新的热轧带肋钢筋国家标准GB/T 1499.2-2018。新标准对钢筋生产工艺、金相组织和强度级别提出了新要求。目前,提高钢筋强度主要通过增加合金元素含量的方式来实现,这造成钢筋生产成本的增加以及合金资源的过度消耗,不利于经济和社会的可持续发展。在这一背景下,急需开发出新产品新技术,在提高钢筋质量的同时,实现减合金、低成本、绿色化制造。
专利CN103469064A公开了一种HRB400E高强抗震钢筋及其制备方法,对不同直径的钢筋采取不同的V元素添加量,并采用分档轧制,从而降低成本,提高强度。但是,所述的钢筋需要添加0.030~0.045%含量的V,提高了V微合金化成本,造成了钒资源的消耗。
专利CN105779866A公开了一种HRB400钢筋及其生产方法,在C-Si-Mn的成分基础上添加Cr合金元素,取代了V合金元素,并在生产过程中进行精炼工艺和轧制工艺的严格控制,从而提高钢筋的强度。Cr元素的添加增加了合金成本,并且采用较低的轧制温度增加了轧机负荷,给生产带来困难。
专利CN102400044A公开了一种铌钛复合微合金化热轧带肋钢筋及其生产方法,采用Nb-Ti复合微合金化工艺来降低微合金加入量,达到HRB400强度级别。由于Nb是一种贵重合金资源,并且需要大量进口,因此在钢筋中的大量应用不利于贵重资源的节约。
专利CN103924037A公开了一种HRB400热轧钢筋生产工艺,采用“TiN微合金化处理+控轧控冷”工艺路线,利用Ti微合金化的析出强化作用提高钢筋强度。钢水在精炼站喂氮化钛线工艺不能对Ti、N、O元素的合理配比有效控制并且增加了原料成本,采用控轧控冷工艺提高强度,不利于轧制生产效率的提高。
专利CN102703811A公开了一种钛微合金化400MPa级高强度钢筋及其生产方法,在出钢过程中且脱氧后或在精炼过程中进行Ti的合金化,并采用低的轧制温度,利用Ti的碳氮化物析出强化作用提高钢筋强度。为了提高Ti的收得率,在Ti合金化之前进行脱氧操作或加入钛硅铁合金来减少Ti与氧的结合,因此氧化钛的有益作用不能得到利用。
专利CN107447164A公开了一种抗震钢筋及其生产工艺,通过加入Ti及控制轧制工艺,减少了V的加入量,提高钢筋强度。控制轧制工艺采用较低的轧制温度不利于生产效率的提高,而且Ti与V的复合添加不利于成本的降低。
从上述现有技术来看,为降低合金成本,钢筋的生产技术从单一的V微合金化向复合微合金化或较廉价元素微合金化转变。其中,Ti微合金化成本显著低于其它微合金元素,受到钢筋生产领域的极大关注。但是,现有含Ti钢筋的生产技术方案对钢筋的冶炼和轧制工艺具有较高的限制,不能充分发挥Ti的有益作用,影响了技术推广应用。
发明内容
针对现有技术的不足,本发明提供一种400MPa级细晶粒热轧钢筋及其生产工艺,本发明对钢筋成分和夹杂物进行优化设计,通过冶炼连铸技术和轧制工艺的改进,利用夹杂物诱导细晶强化机制,提高钢筋强度,减少贵重合金元素添加,实现热轧钢筋低成本高质量生产。该方法解决了目前钢筋生产中添加大量贵重合金元素或采用控制轧制生产难度大等问题,在降低合金成本、简化轧制工艺的条件下实现钢筋晶粒尺寸的细化和强度的提高。
本发明采取如下技术方案:
本发明的一种400MPa级细晶粒热轧钢筋,其包括的化学成分及各个化学成分的质量分数为:
C:0.20~0.25%,Si:0.3~0.8%,Mn:1.2~1.6%,P:0.01~0.04%,S:0.01~0.04%,Ti:0.005~0.03%,Cr:0.001~0.08%,V:0.0001~0.008%,Nb:0.0001~0.008%,Al:0.0001~0.008%,O:0.01~0.02%,N:0.003~0.01%,余量为Fe和不可避免的杂质;
其中,Si、Ti、Al、O、N的质量分数为满足关系式:0.002+0.0038×[Si]0.75≤[Ti]≤2×[O]+3.4×[N]-1.78×[Al],式中[]表示相应化学成分的质量分数为,单位为%;
所述的400MPa级细晶粒热轧钢筋,包括锰硅酸盐夹杂物、氧化钛硫化锰复相夹杂物、硫化锰夹杂物和其它不可避免的夹杂物,各个夹杂物弥散分布在400MPa级细晶粒热轧钢筋中;
其中,氧化钛硫化锰复相夹杂物中,当量直径为0.1~2μm、长宽比为1~3的氧化钛硫化锰复相夹杂物的数量为1500~4000个/mm2
氧化钛硫化锰复相夹杂物颗粒的平均间距为5~45μm;
锰硅酸盐夹杂物数量占全部夹杂物数量的0.1~20%,氧化钛硫化锰复相夹杂物数量占全部夹杂物数量的20~80%,余量为硫化锰夹杂物和不可避免的夹杂物。
所述的氧化钛硫化锰复相夹杂物,包括不含氮化钛的氧化钛硫化锰夹杂物和氧化钛硫化锰氮化钛夹杂物,按数量百分比,氧化钛硫化锰氮化钛夹杂物为10~80%,余量为不含氮化钛的氧化钛硫化锰夹杂物;其中,氧化钛硫化锰氮化钛夹杂物为氧化钛硫化锰夹杂物上析出氮化钛得到的。
所述的400MPa级细晶粒热轧钢筋,还包括的化学成分及各个成分的质量分数为:Ca:0.001~0.005%、Mg:0.001~0.005%、RE:0.001~0.015%、Zr:0.001~0.015%中的一种或几种。
所述的400MPa级细晶粒热轧钢筋,还包括氧化钛硫化锰为基相的多相夹杂物,所述的氧化钛硫化锰为基相的多相夹杂物,根据加入的化学成分形成其氧化物或硫化物,在氧化钛硫化锰基相上析出得到的。
所述的400MPa级细晶粒热轧钢筋,其横截面为圆形,带有横肋和纵肋,公称直径为22~50mm。
所述的400MPa级细晶粒热轧钢筋,其显微组织为铁素体珠光体组织,晶粒度≥10级。
所述的400MPa级细晶粒热轧钢筋屈服强度为400~520MPa,抗拉强度为550~700MPa,断后伸长率为18~35%,最大力总延伸率为9~18%,强屈比为1.25~1.45。
本发明的一种400MPa级细晶粒热轧钢筋的生产工艺,包括以下步骤:
步骤1:钢水冶炼
将铁水和/或废钢料,熔炼,得到钢水;当满足条件:温度为1620~1680℃、碳的质量分数为0.06~0.18%,氧的质量分数为0.02~0.07%,磷的质量分数为0.01~0.04%、硫的质量分数为0.01~0.04%,出钢;
当出钢量为1/3~3/4时,加入硅和锰,出钢后,根据400MPa级细晶粒热轧钢筋的化学成分,调整钢水中C、Si、Mn元素含量;
步骤2:连铸
调整钢水中溶解氧的质量分数为0.001~0.01%、全氧的质量分数为0.01~0.03%后,进行连铸,连铸过程中,向中间包或结晶器中,喂入含钛包芯线,调整钢水中钛的质量分数为0.01~0.03%、溶解氧的质量分数为0.0001~0.003%、全氧的质量分数为0.01~0.02%;连铸后,得到满足所述的400MPa级细晶粒热轧钢筋的成分和夹杂物要求的连铸坯;
步骤3:连铸坯加热
对连铸坯进行加热,加热温度为1100~1220℃,加热时间15~150min,得到加热后的连铸坯;
步骤4:轧制钢筋
对加热后的连铸坯进行连续轧制,开轧温度1050~1200℃,终轧温度980~1150℃,得到轧制后的钢筋,将轧制钢筋在空气中自然冷却,得到400MPa级细晶粒热轧钢筋。
所述的步骤1中,铁水和/或废钢料中含有铬质量分数为<0.08%,钒质量分数为<0.008%,铌质量分数为<0.008%。
所述的步骤2中,生成的夹杂物中,锰硅酸盐夹杂物数量占全部夹杂物数量的0.1~20%;
氧化钛硫化锰复相夹杂物数量占全部夹杂物数量的20~80%;
所述的氧化钛硫化锰复相夹杂物中当量直径为0.1~2μm、长宽比为1~3的氧化钛硫化锰复相夹杂物的数量为1500~4000个/mm2
氧化钛硫化锰复相夹杂物颗粒的平均间距为5~45μm。
所述的步骤2中,根据400MPa级细晶粒热轧钢筋的成分和成分质量分数为,向钢水中,加入含钛包芯线中还含有钙、镁、稀土、锆元素中的一种或几种。
所述的步骤2中,加入的钙、镁、稀土、锆元素中的一种或几种,形成其氧化物或硫化物,以氧化钛硫化锰为基相形成氧化钛硫化锰为基相的多相夹杂物。
所述的400MPa级细晶粒热轧钢筋的生产工艺,在钢水冶炼和连铸之间对钢水进行精炼,精炼手段为LF、RH或VD精炼中的一种,精炼时间10~40min。
所述的步骤3中,对连铸坯进行加热,采用热送热装或冷坯再加热。
所述的步骤4中,轧制钢筋的公称直径为22~50mm。
所述的步骤4中,轧制钢筋在空气中自然冷却之前,先风冷、水冷或气雾加速冷却至800~1000℃。
本发明的400MPa级细晶粒热轧钢筋及其生产工艺,其技术方案的设计思想为:
热轧钢筋的生产具有以下特点:由于钢筋对钢质洁净度要求较低,因此钢水不需要深度脱氧脱硫处理,造成大量氧化物硫化物保留在钢中,成为对钢材性能不利的夹杂物,其夹杂物数量显著高于其它钢材;钢筋从连铸坯到成品变形量大,轧制速度快,导致其轧制变形在很高的温度下完成,较难实现低温控制轧制,难以通过奥氏体低温再结晶区变形或未再结晶区变形实现组织细化;另外,钢筋的冷却方式简单,而且对钢筋显微组织有严格限制,因此相变强化机制难以发挥作用,通常通过添加合金元素达到析出强化的目的。本发明针对钢筋中夹杂物多、轧制温度高等特点,通过原理和技术的创新,将不利因素转化为有利条件,使夹杂物在高温轧制条件下起到晶粒细化的作用,发挥细晶强化效果,从而减少贵重合金元素添加,并避免低温下控制轧制,降低了生产成本和难度。
为了实现这一目标,本发明对钢筋的化学成分和夹杂物进行了优化设计:一方面,提高较廉价的C、Si、Mn固溶强化元素含量,降低较贵重的Cr、Nb、V元素含量;另一方面,对夹杂物形成元素Si、Ti、Al、O、S、N的含量进行合理设计,以生成所预期的夹杂物;特别对钢中夹杂物类型及分布进行控制,以发挥晶粒细化的有益作用。本发明通过研究发现,当量直径在0.1~2μm、长宽比为1~3的氧化钛硫化锰氮化钛复相夹杂物能够促进晶内铁素体相变形核,在粗化的奥氏体晶粒条件下促进细晶粒铁素体组织转变,在达到本发明方案中所规定的元素含量及夹杂物分布条件时,就能在钢筋轧制中起到明显的细晶强化效果。这需要在钢筋的生产过程中进行特殊的控制,在常规的钢筋生产工艺中,氧、硫通常作为杂质元素而去除掉,而本方案中对整个冶炼连铸过程的氧含量进行有目的的控制,并且在适当的时机添加氧化物形成元素,生成大量有益氧化物保留在钢中,进一步和硫化物与氮化物结合形成复相夹杂物。在高温轧制的条件下,通过特殊的夹杂物促进奥氏体晶粒内部的相变形核达到晶粒细化的效果。
本发明所述的化学成分和夹杂物含量以及冶炼轧制方法优选地适用于公称直径22~50mm规格的钢筋,虽然根据本发明的设计思想可将实施范围进一步扩大,但若化学成分和夹杂物含量或者钢筋的直径规格超出所述范围时,容易对钢筋质量带来不利影响。对于公称直径≤20mm的钢筋,化学成分和夹杂物含量过高时容易在钢筋表面或内部产生质量缺陷;对于公称直径≥22mm的钢筋,化学成分和夹杂物含量过低时容易导致钢筋力学性能无法满足要求。因此,本发明通过化学成分及冶炼工艺的特殊控制可获得有利的夹杂物分布,能优先地提高22~50mm规格钢筋的质量和性能。
本发明的一种400MPa级细晶粒热轧钢筋及其生产工艺,其优点及有益效果是:
1、本发明充分利用了钢筋中夹杂物多的这一特点,通过成分和工艺控制将无用的夹杂物转变成有益的形核粒子,使通常情况下被认为杂质元素的氧、硫、氮成为有利于钢材性能提高的有益元素;
2、本发明通过细晶强化方式来提高钢筋强度,比通常采用的析出强化等其它强化方式更能提高钢材的综合性能;
3、本发明不采用低温控制轧制,而且优先推荐采用高温轧制,简化了钢筋轧制工艺,降低了生产操作难度,可提高生产效率;
4、本发明采用具有丰富储量的价格较低廉的合金元素,降低了生产成本,减少了贵重合金资源的消耗,有利于可持续发展。
附图说明
图1为本发明实施例1制备的400MPa级细晶粒热轧钢筋的光学显微组织图。
图2为本发明实施例1制备的400MPa级细晶粒热轧钢筋的夹杂物分布扫描电镜组织图。
图3为本发明实施例1制备的400MPa级细晶粒热轧钢筋的氧化钛硫化锰氮化钛复相夹杂物能谱。
具体实施方式
下面通过实施例详细介绍本发明方案的具体实施方式,但本发明的保护范围不局限于实施例。
实施例1
一种400MPa级细晶粒热轧钢筋,其包括的化学成分及各个化学成分的质量分数还有各个元素满足的关系式见表1。其夹杂物数量见表2。
一种400MPa级细晶粒热轧钢筋的生产工艺,包括以下步骤:
(1)将铁水在转炉中熔炼成钢水,出钢温度为1665℃、碳质量分数为0.15%、氧质量分数为0.035%、磷质量分数为0.04%、硫质量分数为0.03%,出钢1/3~3/4过程中加入硅、锰,根据400MPa级细晶粒热轧钢筋的化学成分,出钢后调整钢水C、Si、Mn元素成分;
(2)钢水达到溶解氧质量分数为0.005%、全氧质量分数为0.023%后进行连铸,连铸过程中向中间包内喂入含钛包芯线,使钢水钛质量分数为0.02%、溶解氧质量分数为0.002%、全氧质量分数为0.013%,连铸后得到满足所述400MPa级细晶粒热轧钢筋的成分和夹杂物要求的连铸坯;
(3)将连铸坯采用热送热装加热到1220℃,加热时间50min,得到加热后的连铸坯;
(4)将加热后的连铸坯进行连续轧制,开轧温度1180℃,终轧温度1040℃,钢筋直径40mm,将轧后钢筋在空气中冷却,得到实施例1热轧钢筋。
本实施例制备的400MPa级细晶粒热轧钢筋的光学显微组织图见图1,400MPa级细晶粒热轧钢筋的夹杂物分布扫描电镜组织图见图2,400MPa级细晶粒热轧钢筋的氧化钛硫化锰氮化钛复相夹杂物能谱见图3,图中表明,钢筋中的夹杂物弥散分布于基体中,典型的夹杂物类型为含有氧化钛硫化锰碳化钛的复相夹杂物,能够有效促进铁素体相变形核,在不增加贵重合金元素的条件下获得细晶粒的铁素体珠光体组织,提高了钢筋强度。
实施例2
一种400MPa级细晶粒热轧钢筋,其包括的化学成分及各个化学成分的质量分数还有各个元素满足的关系式见表1。其夹杂物数量见表2。
一种400MPa级细晶粒热轧钢筋的生产工艺,包括以下步骤:
(1)将铁水和废钢在转炉中熔炼成钢水,出钢温度1670℃、碳质量分数为0.13%、氧质量分数为0.05%、磷质量分数为0.023%、硫质量分数为0.025%,出钢1/3~3/4过程中加入硅、锰,根据400MPa级细晶粒热轧钢筋的化学成分,出钢后调整钢水C、Si、Mn元素成分;
(2)钢水达到溶解氧质量分数为0.006%、全氧质量分数为0.02%后进行连铸,连铸过程中向结晶器内喂入含钛包芯线,使钢水钛质量分数为0.015%、溶解氧质量分数为0.001%、全氧质量分数为0.015%,连铸后得到满足所述400MPa级细晶粒热轧钢筋的成分和夹杂物要求的连铸坯;
(3)将连铸坯采用冷坯再加热,加热到1180℃,加热时间30min,得到加热后的连铸坯;
(4)将加热后的连铸坯进行连续轧制,开轧温度1120℃,终轧温度1000℃,钢筋直径50mm,将轧后钢筋水冷到890℃之后在空气中冷却,得到实施例2热轧钢筋。
实施例3
一种400MPa级细晶粒热轧钢筋,其包括的化学成分及各个化学成分的质量分数还有各个元素满足的关系式见表1。其夹杂物数量见表2。
一种400MPa级细晶粒热轧钢筋的生产工艺,包括以下步骤:
(1)将铁水和废钢在电炉中熔炼成钢水,出钢温度1646℃、碳质量分数为0.12%、氧质量分数为0.035%、磷质量分数为0.028%、硫质量分数为0.015%,出钢1/3~3/4过程中加入硅、锰,根据400MPa级细晶粒热轧钢筋的化学成分,出钢后调整钢水C、Si、Mn元素成分;
(2)钢水达到溶解氧质量分数为0.003%、全氧质量分数为0.015%后进行连铸,连铸过程中向中间包内喂入含钛33wt.%、含钙15wt.%的钛钙包芯线,使钢水钛质量分数为0.005%、钙质量分数为0.001%、溶解氧质量分数为0.001%、全氧质量分数为0.011%,连铸后得到满足所述400MPa级细晶粒热轧钢筋的成分和夹杂物要求的连铸坯;
(3)将连铸坯采用热送热装加热到1200℃,加热时间20min,得到加热后的连铸坯;
(4)将加热后的连铸坯进行连续轧制,开轧温度1160℃,终轧温度1040℃,钢筋直径28mm,轧后钢筋在空气中冷却,得到实施例3热轧钢筋。
实施例4
一种400MPa级细晶粒热轧钢筋,其包括的化学成分及各个化学成分的质量分数还有各个元素满足的关系式见表1。其夹杂物数量见表2。
一种400MPa级细晶粒热轧钢筋的生产工艺,包括以下步骤:
(1)将铁水在转炉中熔炼成钢水,出钢温度1670℃、碳质量分数为0.06%、氧质量分数为0.06%、磷质量分数为0.031%、硫质量分数为0.039%,出钢1/3~3/4过程中加入硅、锰,根据400MPa级细晶粒热轧钢筋的化学成分,出钢后调整钢水C、Si、Mn元素成分;
(2)钢水达到溶解氧质量分数为0.005%、全氧质量分数为0.02%后进行连铸,连铸过程中向中间包内喂入含钛35wt.%、含镁9wt.%的钛镁包芯线,使钢水钛质量分数为0.016%、镁质量分数为0.002%、溶解氧质量分数为0.002%、全氧质量分数为0.01%,连铸后得到满足所述400MPa级细晶粒热轧钢筋的成分和夹杂物要求的连铸坯;
(3)将连铸坯采用冷坯再加热,加热到1150℃,加热时间100min,得到加热后的连铸坯;
(4)将加热后的连铸坯进行连续轧制,开轧温度1100℃,终轧温度1000℃,钢筋直径36mm,将轧后钢筋在空气中冷却,得到实施例4热轧钢筋。
实施例5
一种400MPa级细晶粒热轧钢筋,其包括的化学成分及各个化学成分的质量分数还有各个元素满足的关系式见表1。其夹杂物数量见表2。
一种400MPa级细晶粒热轧钢筋的生产工艺,包括以下步骤:
(1)将铁水和废钢在转炉中熔炼成钢水,出钢温度1625℃、碳质量分数为0.18%、氧质量分数为0.02%、磷质量分数为0.01%、硫质量分数为0.035%,出钢1/3~3/4过程中加入硅、锰,根据400MPa级细晶粒热轧钢筋的化学成分,出钢后调整钢水C、Si、Mn元素成分;
(2)钢水达到溶解氧质量分数为0.004%、全氧质量分数为0.018%后进行连铸,连铸过程中向结晶器内喂入含钛40wt.%、含锆12wt.%的钛锆包芯线,使钢水钛质量分数为0.008%、锆质量分数为0.006%、溶解氧质量分数为0.001%、全氧质量分数为0.016%,连铸后得到满足所述400MPa级细晶粒热轧钢筋的成分和夹杂物要求的连铸坯;
(3)将连铸坯采用热送热装加热到1120℃,加热时间30min,得到加热后的连铸坯;
(4)将加热后的连铸坯进行连续轧制,开轧温度1100℃,终轧温度1020℃,钢筋直径32mm,轧后钢筋在空气中冷却,得到实施例5热轧钢筋。
实施例6
一种400MPa级细晶粒热轧钢筋,其包括的化学成分及各个化学成分的质量分数还有各个元素满足的关系式见表1。其夹杂物数量见表2。
一种400MPa级细晶粒热轧钢筋的生产工艺,包括以下步骤:
(1)将废钢在电炉中熔炼成钢水,出钢温度1672℃、碳质量分数为0.08%、氧质量分数为0.06%、磷质量分数为0.033%、硫质量分数为0.03%,出钢1/3~3/4过程中加入硅、锰,根据400MPa级细晶粒热轧钢筋的化学成分,出钢后调整钢水C、Si、Mn元素成分;
(2)钢水进行LF精炼15min;钢水达到溶解氧质量分数为0.003%、全氧质量分数为0.025%后进行连铸,连铸过程中向结晶器内喂入含钛46wt.%、含稀土12wt.%的钛稀土包芯线,使钢水钛质量分数为0.027%、稀土元素质量分数为0.008%、溶解氧质量分数为0.002%、全氧质量分数为0.02%,连铸后得到满足所述400MPa级细晶粒热轧钢筋的成分和夹杂物要求的连铸坯;
(3)将连铸坯加热到1130℃,加热时间50min,得到加热后的连铸坯;
(4)将加热后的连铸坯进行连续轧制,开轧温度1100℃,终轧温度980℃,钢筋直径22mm,将轧后钢筋在空气中冷却,得到实施例6热轧钢筋。
上述各实施例钢筋的化学成分和夹杂物特征如表1和表2所示,各实施例钢筋的力学性能如表3所示。
表1各实施例钢筋的化学成分(质量分数为,%)
表2各实施例钢筋中夹杂物特征
表3各实施例钢筋的力学性能
实施例 屈服强度/MPa 抗拉强度/MPa 断后伸长率/% 最大力总延伸率/% 强屈比
1 450 630 23 13.5 1.4
2 450 625 23 14.3 1.39
3 460 635 30 15.7 1.38
4 465 630 26 14.3 1.35
5 470 630 22 13.7 1.34
6 475 645 22 12.6 1.36

Claims (12)

1.一种400MPa级细晶粒热轧钢筋,其特征在于,该400MPa级细晶粒热轧钢筋包括的化学成分及各个化学成分的质量分数为:
C:0.20~0.25%,Si:0.3~0.8%,Mn:1.2~1.6%,P:0.01~0.04%,S:0.01~0.04%,Ti:0.005~0.03%,Cr:0.001~0.08%,V:0.0001~0.008%,Nb:0.0001~0.008%,Al:0.0001~0.008%,O:0.01~0.02%,N:0.003~0.01%,余量为Fe和不可避免的杂质;
其中,Si、Ti、Al、O、N的质量分数为满足关系式:0.002+0.0038×[Si]0.75≤[Ti]≤2×[O]+3.4×[N]-1.78×[Al],式中[]表示相应化学成分的质量分数为,单位为%;
所述的400MPa级细晶粒热轧钢筋,包括锰硅酸盐夹杂物、氧化钛硫化锰复相夹杂物、硫化锰夹杂物和其它不可避免的夹杂物,各个夹杂物弥散分布在400MPa级细晶粒热轧钢筋中;
其中,氧化钛硫化锰复相夹杂物中,当量直径为0.1~2μm、长宽比为1~3的氧化钛硫化锰复相夹杂物的数量为1500~4000个/mm2
氧化钛硫化锰复相夹杂物颗粒的平均间距为5~45μm;
锰硅酸盐夹杂物数量占全部夹杂物数量的0.1~20%,氧化钛硫化锰复相夹杂物数量占全部夹杂物数量的20~80%,余量为硫化锰夹杂物和不可避免的夹杂物。
2.如权利要求1所述的400MPa级细晶粒热轧钢筋,其特征在于,所述的氧化钛硫化锰复相夹杂物,包括不含氮化钛的氧化钛硫化锰夹杂物和氧化钛硫化锰氮化钛夹杂物,按数量百分比,氧化钛硫化锰氮化钛夹杂物为10~80%,余量为不含氮化钛的氧化钛硫化锰夹杂物;其中,氧化钛硫化锰氮化钛夹杂物为氧化钛硫化锰夹杂物上析出氮化钛得到的。
3.如权利要求1所述的400MPa级细晶粒热轧钢筋,其特征在于,所述的400MPa级细晶粒热轧钢筋,还包括的化学成分及各个成分的质量分数为:Ca:0.001~0.005%、Mg:0.001~0.005%、RE:0.001~0.015%、Zr:0.001~0.015%中的一种或几种;
所述的400MPa级细晶粒热轧钢筋,还包括氧化钛硫化锰为基相的多相夹杂物,所述的氧化钛硫化锰为基相的多相夹杂物,根据加入的化学成分形成其氧化物或硫化物,在氧化钛硫化锰基相上析出得到的。
4.如权利要求1所述的400MPa级细晶粒热轧钢筋,其特征在于,所述的400MPa级细晶粒热轧钢筋,其横截面为圆形,带有横肋和纵肋,公称直径为22~50mm。
5.如权利要求1所述的400MPa级细晶粒热轧钢筋,其特征在于,所述的400MPa级细晶粒热轧钢筋,其显微组织为铁素体珠光体组织,晶粒度≥10级;所述的400MPa级细晶粒热轧钢筋屈服强度为400~520MPa,抗拉强度为550~700MPa,断后伸长率为18~35%,最大力总延伸率为9~18%,强屈比为1.25~1.45。
6.权利要求1或3所述的400MPa级细晶粒热轧钢筋的生产工艺,其特征在于,包括以下步骤:
步骤1:钢水冶炼
将铁水和/或废钢料,熔炼,得到钢水;当满足条件:温度为1620~1680℃、碳的质量分数为0.06~0.18%,氧的质量分数为0.02~0.07%,磷的质量分数为0.01~0.04%、硫的质量分数为0.01~0.04%,出钢;
当出钢量为1/3~3/4时,加入硅和锰,出钢后,根据400MPa级细晶粒热轧钢筋的化学成分,调整钢水中C、Si、Mn元素含量;
步骤2:连铸
调整钢水中溶解氧的质量分数为0.001~0.01%、全氧的质量分数为0.01~0.03%后,进行连铸,连铸过程中,向中间包或结晶器中,喂入含钛包芯线,调整钢水中钛的质量分数为0.01~0.03%、溶解氧的质量分数为0.0001~0.003%、全氧的质量分数为0.01~0.02%;连铸后,得到满足所述的400MPa级细晶粒热轧钢筋的成分和夹杂物要求的连铸坯;
步骤3:连铸坯加热
对连铸坯进行加热,加热温度为1100~1220℃,加热时间15~150min,得到加热后的连铸坯;
步骤4:轧制钢筋
对加热后的连铸坯进行连续轧制,开轧温度1050~1200℃,终轧温度980~1150℃,得到轧制后的钢筋,将轧制钢筋在空气中自然冷却,得到400MPa级细晶粒热轧钢筋。
7.如权利要求6所述的400MPa级细晶粒热轧钢筋的生产工艺,其特征在于,所述的步骤1中,铁水和/或废钢料中含有铬质量分数为<0.08%,钒质量分数为<0.008%,铌质量分数为<0.008%。
8.如权利要求6所述的400MPa级细晶粒热轧钢筋的生产工艺,其特征在于,所述的步骤2中,生成的夹杂物中,锰硅酸盐夹杂物数量占全部夹杂物数量的0.1~20%;
氧化钛硫化锰复相夹杂物数量占全部夹杂物数量的20~80%;
所述的氧化钛硫化锰复相夹杂物中当量直径为0.1~2μm、长宽比为1~3的氧化钛硫化锰复相夹杂物的数量为1500~4000个/mm2
氧化钛硫化锰复相夹杂物颗粒的平均间距为5~45μm。
9.如权利要求6所述的400MPa级细晶粒热轧钢筋的生产工艺,其特征在于,所述的步骤2中,根据400MPa级细晶粒热轧钢筋的成分和成分质量分数为,向钢水中,加入含钛包芯线中还含有钙、镁、稀土、锆元素中的一种或几种;
加入的钙、镁、稀土、锆元素中的一种或几种,形成其氧化物或硫化物,以氧化钛硫化锰为基相形成氧化钛硫化锰为基相的多相夹杂物。
10.如权利要求6所述的400MPa级细晶粒热轧钢筋的生产工艺,其特征在于,所述的400MPa级细晶粒热轧钢筋的生产工艺,在钢水冶炼和连铸之间对钢水进行精炼,精炼手段为LF、RH或VD精炼中的一种,精炼时间10~40min。
11.如权利要求6所述的400MPa级细晶粒热轧钢筋的生产工艺,其特征在于,所述的步骤3中,对连铸坯进行加热,采用热送热装或冷坯再加热。
12.如权利要求6所述的400MPa级细晶粒热轧钢筋的生产工艺,其特征在于,所述的步骤4中,轧制钢筋在空气中自然冷却之前,先风冷、水冷或气雾加速冷却至800~1000℃。
CN201910279656.4A 2019-04-09 2019-04-09 一种400MPa级细晶粒热轧钢筋及其生产工艺 Active CN110042303B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910279656.4A CN110042303B (zh) 2019-04-09 2019-04-09 一种400MPa级细晶粒热轧钢筋及其生产工艺
PCT/CN2019/084051 WO2020206742A1 (zh) 2019-04-09 2019-04-24 一种400MPa级细晶粒热轧钢筋及其生产工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910279656.4A CN110042303B (zh) 2019-04-09 2019-04-09 一种400MPa级细晶粒热轧钢筋及其生产工艺

Publications (2)

Publication Number Publication Date
CN110042303A true CN110042303A (zh) 2019-07-23
CN110042303B CN110042303B (zh) 2020-05-05

Family

ID=67276490

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910279656.4A Active CN110042303B (zh) 2019-04-09 2019-04-09 一种400MPa级细晶粒热轧钢筋及其生产工艺

Country Status (2)

Country Link
CN (1) CN110042303B (zh)
WO (1) WO2020206742A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923585A (zh) * 2019-11-18 2020-03-27 阳春新钢铁有限责任公司 一种500MPa热轧耐火钢筋及其制造方法
CN111020379A (zh) * 2019-11-22 2020-04-17 龙南龙钇重稀土科技股份有限公司 稀土复合增强热轧钢筋及其制备方法
CN111672903A (zh) * 2020-06-29 2020-09-18 盐城市联鑫钢铁有限公司 一种细晶粒低温精轧的生产方法
CN112195308A (zh) * 2020-09-11 2021-01-08 湖南华菱涟源钢铁有限公司 一种钙钛合金包芯线及其在氧化物冶金中的应用
CN112226693A (zh) * 2020-10-10 2021-01-15 桂林理工大学 一种低合金高强度耐蚀钢筋及其制备方法
CN112322978A (zh) * 2020-11-04 2021-02-05 江苏永钢集团有限公司 一种Ti微合金化在400MPa级钢筋生产中的应用工艺
CN112410507A (zh) * 2019-08-23 2021-02-26 江苏集萃冶金技术研究院有限公司 一种资源节约型hrb400高强钢筋的制造方法
CN113025903A (zh) * 2021-03-04 2021-06-25 东北大学 一种细晶粒热轧板带钢及其制备方法
CN114959174A (zh) * 2022-06-07 2022-08-30 西峡县丰业冶金材料有限公司 利用稀土元素生产的高强度热轧带肋钢筋及其生产方法
WO2022183522A1 (zh) * 2021-03-04 2022-09-09 东北大学 一种热轧无缝钢管及其形变相变一体化组织调控方法
CN115537672A (zh) * 2022-07-19 2022-12-30 燕山大学 一种屈服强度大于1000 MPa的低成本奥氏体钢及其温轧制备工艺
CN115976420A (zh) * 2022-12-23 2023-04-18 东北大学 一种低成本的400MPa级螺纹钢筋及其制备方法
US20240077123A1 (en) * 2019-10-16 2024-03-07 Nippon Steel Corporation Valve spring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113122777A (zh) * 2021-04-23 2021-07-16 唐山东华钢铁企业集团有限公司 一种低碳当量Ti微合金化HRB600钢筋及生产工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538677A (zh) * 2009-04-16 2009-09-23 武钢集团昆明钢铁股份有限公司 Hrb500e细晶粒抗震钢筋及其生产方法
US20170121789A1 (en) * 2010-07-07 2017-05-04 Arcelormittal Method for manufacturing austenite-ferrite stainless steel with improved machinability
CN108374126A (zh) * 2018-04-17 2018-08-07 东北大学 一种高强度细晶粒钢筋及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5447278B2 (ja) * 2009-08-17 2014-03-19 新日鐵住金株式会社 内面突起つきスパイラル鋼管およびその製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538677A (zh) * 2009-04-16 2009-09-23 武钢集团昆明钢铁股份有限公司 Hrb500e细晶粒抗震钢筋及其生产方法
US20170121789A1 (en) * 2010-07-07 2017-05-04 Arcelormittal Method for manufacturing austenite-ferrite stainless steel with improved machinability
CN108374126A (zh) * 2018-04-17 2018-08-07 东北大学 一种高强度细晶粒钢筋及其制备方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112410507A (zh) * 2019-08-23 2021-02-26 江苏集萃冶金技术研究院有限公司 一种资源节约型hrb400高强钢筋的制造方法
US20240077123A1 (en) * 2019-10-16 2024-03-07 Nippon Steel Corporation Valve spring
CN110923585A (zh) * 2019-11-18 2020-03-27 阳春新钢铁有限责任公司 一种500MPa热轧耐火钢筋及其制造方法
CN111020379A (zh) * 2019-11-22 2020-04-17 龙南龙钇重稀土科技股份有限公司 稀土复合增强热轧钢筋及其制备方法
CN111672903A (zh) * 2020-06-29 2020-09-18 盐城市联鑫钢铁有限公司 一种细晶粒低温精轧的生产方法
CN112195308A (zh) * 2020-09-11 2021-01-08 湖南华菱涟源钢铁有限公司 一种钙钛合金包芯线及其在氧化物冶金中的应用
CN112226693A (zh) * 2020-10-10 2021-01-15 桂林理工大学 一种低合金高强度耐蚀钢筋及其制备方法
CN112322978A (zh) * 2020-11-04 2021-02-05 江苏永钢集团有限公司 一种Ti微合金化在400MPa级钢筋生产中的应用工艺
CN114032469A (zh) * 2021-03-04 2022-02-11 东北大学 一种含锆细晶粒热轧板带钢及其制备方法
CN114086069A (zh) * 2021-03-04 2022-02-25 东北大学 一种含镁细晶粒热轧板带钢及其制备方法
WO2022183522A1 (zh) * 2021-03-04 2022-09-09 东北大学 一种热轧无缝钢管及其形变相变一体化组织调控方法
CN113025903A (zh) * 2021-03-04 2021-06-25 东北大学 一种细晶粒热轧板带钢及其制备方法
CN114959174A (zh) * 2022-06-07 2022-08-30 西峡县丰业冶金材料有限公司 利用稀土元素生产的高强度热轧带肋钢筋及其生产方法
CN114959174B (zh) * 2022-06-07 2024-01-12 西峡县丰业冶金材料有限公司 利用稀土元素生产的高强度热轧带肋钢筋及其生产方法
CN115537672A (zh) * 2022-07-19 2022-12-30 燕山大学 一种屈服强度大于1000 MPa的低成本奥氏体钢及其温轧制备工艺
CN115537672B (zh) * 2022-07-19 2023-08-18 燕山大学 一种屈服强度大于1000 MPa的低成本奥氏体钢及其温轧制备工艺
CN115976420A (zh) * 2022-12-23 2023-04-18 东北大学 一种低成本的400MPa级螺纹钢筋及其制备方法

Also Published As

Publication number Publication date
WO2020206742A1 (zh) 2020-10-15
CN110042303B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
CN110042303A (zh) 一种400MPa级细晶粒热轧钢筋及其生产工艺
CN109930056A (zh) 一种400MPa级细晶粒螺纹钢筋及其制造方法
CN110565016B (zh) 一种630MPa高强度抗震指标钢筋及其生产方法
CN102703811B (zh) 钛微合金化400MPa级高强度钢筋及其生产方法
CN102703812B (zh) 钛微合金化500MPa级高强度钢筋及其生产方法
CN102703813B (zh) 钒钛复合微合金化钢筋及其生产方法
CN108286008B (zh) 一种低温用高强韧性热轧h型钢及其制备方法
CN103898408B (zh) 一种700MPa级螺纹钢筋及其生产方法
CN103882297B (zh) 具有优异韧性390MPa级低温船用钢及其制造方法
CN110079728B (zh) 一种焊接性良好的高强度螺纹钢筋及其制造方法
CN107460413B (zh) 一种550MPa级超细晶高强耐候钢的制备方法及应用
CN106756560B (zh) 基于esp薄板坯连铸连轧流程生产薄规格re700l钢的方法
CN110029271B (zh) 一种500MPa级含铌螺纹钢筋及其制造方法
CN101348881B (zh) 一种低成本高性能x70管线钢的生产方法
CN110343962A (zh) 一种700Mpa级以上热轧带肋高强钢筋用钢及其生产方法
CN101914725A (zh) 低碳超深冲冷轧钢板及其生产方法
CN111088451A (zh) 一种钢筋混凝土用600MPa级钢筋及其生产方法
CN110144522B (zh) 一种氧化物细晶型螺纹钢筋及其生产工艺
WO2022022040A1 (zh) 一种355MPa级别海洋工程用耐低温热轧H型钢及其制备方法
CN102925799B (zh) 一种超高强钢板的生产方法
CN103160746A (zh) 一种高强度厚壁输水管用钢及其制造方法
CN110066904A (zh) 一种高强度高韧性轻量化工具钢及其制备方法
CN107365940B (zh) 一种700MPa级超细晶高强耐候钢的制备方法及应用
CN105624556B (zh) 一种热轧磁极钢板及其制造方法
CN112779460A (zh) 一种hrb500e细晶高强抗震防锈蚀钢筋的生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant