CN110038138B - 一种靶向Aβ老年斑的普鲁士蓝纳米颗粒及其制备方法 - Google Patents

一种靶向Aβ老年斑的普鲁士蓝纳米颗粒及其制备方法 Download PDF

Info

Publication number
CN110038138B
CN110038138B CN201910217120.XA CN201910217120A CN110038138B CN 110038138 B CN110038138 B CN 110038138B CN 201910217120 A CN201910217120 A CN 201910217120A CN 110038138 B CN110038138 B CN 110038138B
Authority
CN
China
Prior art keywords
prussian blue
solution
mmol
polyethylene glycol
targeting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910217120.XA
Other languages
English (en)
Other versions
CN110038138A (zh
Inventor
常津
赵冬菊
窦妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910217120.XA priority Critical patent/CN110038138B/zh
Publication of CN110038138A publication Critical patent/CN110038138A/zh
Application granted granted Critical
Publication of CN110038138B publication Critical patent/CN110038138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1866Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle the nanoparticle having a (super)(para)magnetic core coated or functionalised with a peptide, e.g. protein, polyamino acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及生物医学领域的纳米材料,特别涉及一种靶向Aβ老年斑的普鲁士蓝纳米颗粒的制备方法。通过对普鲁士蓝纳米颗粒进行功能化修饰,可以负载具有穿过血脑屏障功能的转铁蛋白和靶向Aβ老年斑的刚果红分子,所制备的纳米颗粒具有良好的r1纵向弛豫率和r2横向弛豫率,可以实现对Aβ老年斑的MRI(T1/T2)同时成像。

Description

一种靶向Aβ老年斑的普鲁士蓝纳米颗粒及其制备方法
技术领域
本发明涉及生物医学领域的纳米材料,特别涉及一种靶向Aβ老年斑的普鲁士蓝纳米颗粒及其制备方法。
背景技术
阿尔茨海默症(Alzheimer's disease,AD)是一种神经退行性疾病,主要临床表现为记忆力和认知能力下降、日常生活能力下降等,典型的病理特征是β淀粉样蛋白(amyloidβpeptide,Aβ)在细胞外沉积、细胞内tau蛋白过度磷酸化形成神经纤维缠结和神经元缺失。其中Aβ沉积造成的老年斑会引起脑组织中的一系列病变,如炎症、氧化应激、线粒体功能障碍等,在AD病程中发挥着重要作用,被普遍认为是AD诊断的理想靶点。MRI具有无放射性、空间分辨率高、适用范围广等优点,但现有MRI示踪剂对Aβ老年斑缺乏特异性和靶向性,限制了AD的MRI临床诊断。
普鲁士蓝是一种古老的蓝色染料,具有良好的生物相容性及生物安全性,已被美国食品药品监督局认证临床治疗铊等放射性元素中毒的解毒剂。普鲁士蓝制备过程简单、反应条件温和且易于表面修饰,由于本身独特的电子自旋特性具有MRI的T1成像和T2成像能力,近年来其在生物医学诊断领域的应用已成为研究热点。但是,普鲁士蓝纳米颗粒很难进行靶向性修饰,难以精确聚集到病变部位,且目前大部分合成的颗粒多用于肿瘤诊断。因此,制备一种具有靶向Aβ老年斑功能的普鲁士蓝纳米颗粒对于AD精准诊断具有重要意义。
据报道,转铁蛋白受体在血脑屏障中呈高表达,以转铁蛋白为主动靶向分子特异性结合转铁蛋白受体,能够使纳米材料有效穿过血脑屏障,可作为跨血脑屏障的有效靶向剂。刚果红是一种长线状酸性偶氮染色剂,以氢键的方式将其氨基和淀粉样蛋白的羟基结合,从而嵌入两个毗邻的淀粉样纤维间,平行地附着到淀粉样纤维上,因此,刚果红与淀粉样纤维具有很强的亲和力,可作为Aβ老年斑的靶向剂。
发明内容
本发明的目的旨在提供一种靶向Aβ老年斑的普鲁士蓝纳米颗粒的制备方法,该纳米颗粒可主动穿过血脑屏障并靶向Aβ沉积的老年斑,从而实现AD的精确诊断。
本发明的技术方案是一种靶向Aβ老年斑的普鲁士蓝纳米颗粒的制备方法,包括如下步骤:
1)将亚铁氰化钾与羧基化聚乙二醇分别溶于去离子水中,充分混匀得到澄清溶液A;
将氯化铁溶于去离子水中,充分溶解得到澄清溶液B;
将溶液B逐滴加入溶液A中,亚铁氰化钾与氯化铁摩尔比为1:1,40~80℃下反应0.5~2h;
2)待反应体系降至室温,反应0.5~2h,离心洗涤,得到含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C;
3)将含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C与1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶于去离子水中,室温反应10~30min,得到溶液D;
4)将N-羟基琥珀酰亚胺、转铁蛋白、刚果红按照一定浓度加入到溶液D中,N-羟基琥珀酰亚胺溶液与所述步骤3)中1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶液的摩尔比为1:(1~10),转铁蛋白溶液浓度为0.5~2.5μg/mL,刚果红溶液浓度为0.004~0.06mmol/L室温反应12~36h,离心洗涤,所得沉淀用去离子水重悬,得到靶向Aβ老年斑的普鲁士蓝纳米颗粒。
所述步骤1)中亚铁氰化钾水溶液浓度为1~5mmol/L。
所述步骤1)中氯化铁水溶液浓度为1~5mmol/L。
所述步骤1)中羧基化聚乙二醇包括单羧基聚乙二醇(mPEG-COOH)、二羧基聚乙二醇(COOH-PEG-COOH)、多臂聚乙二醇羧基(nARM-PEG-COOH,n=3,4,5……);所述的羧基化聚乙二醇水溶液浓度为0.1~2mmol/L。
所述步骤3)中1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶液浓度为1~20mmol/L。
所述步骤4)中N-羟基琥珀酰亚胺溶液浓度为1~20mmol/L。
本发明的第二个技术方案是在普鲁士蓝纳米颗粒的基础上对其进行功能化修饰,利用合成的普鲁士蓝纳米颗粒上的羧基基团与转铁蛋白和刚果红分子上的氨基相结合,制备出一种靶向Aβ老年斑的普鲁士蓝纳米颗粒,粒径在150~250nm,紫外吸收光谱在260~300nm、450~530nm、650~800nm具有最大紫外吸收峰。
本发明与现有技术相比优点如下:
1.制备的纳米颗粒具有良好的生物相容性及生物安全性,稳定性好;
2.通过对普鲁士蓝纳米颗粒进行功能化修饰,可以负载具有穿过血脑屏障功能的转铁蛋白和靶向Aβ老年斑的刚果红分子,所制备的纳米颗粒具有良好的r1纵向弛豫率和r2横向弛豫率,可以实现对Aβ老年斑的MRI(T1/T2)同时成像。
3.提供了一种靶向Aβ老年斑的普鲁士蓝纳米颗粒的制备方法,该方法可重复性高,操作简单,绿色环保。
附图说明
图1:实施例1中制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒的粒径分布图。
图2:实施例1中制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒的透射电镜照片(形貌分析)。
图3:实施例1中制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒的紫外可见吸收光谱图。
图4:实施例2中制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒的核磁纵向弛豫率图(MRI造影剂成像效果分析)。
图5:实施例2中制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒的核磁横向弛豫率图(MRI造影剂成像效果分析)。
具体实施方式
下面的实施例中将对本发明做进一步的阐述,但本发明范围不限于此。
实施例1:
1)将0.01毫摩尔亚铁氰化钾与0.001毫摩尔mPEG-COOH分别溶于5毫升去离子水中,充分混匀得到澄清溶液A;将0.01毫摩尔氯化铁溶于5毫升去离子水中,充分溶解得到澄清溶液B;将溶液B逐滴加入溶液A中,60℃下反应0.5h;
2)待反应体系降至室温,反应0.5h,离心洗涤,得到含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C;
3)将含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C、0.1毫摩尔1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶于10毫升去离子水中,室温反应15min,得到溶液D;
4)将0.1毫摩尔N-羟基琥珀酰亚胺、0.01毫克转铁蛋白、0.4微摩尔刚果红加入到溶液D中,室温反应24h,离心洗涤,所得沉淀用去离子水重悬,得到靶向Aβ老年斑的普鲁士蓝纳米颗粒。
所制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒其粒径约为180nm,如图1所示为制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒的粒径分布图;如图2所示为制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒的透射电镜图;如图3紫外吸收图谱所示,所制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒在288nm、495nm、710nm处显示出最大紫外吸收峰,说明转铁蛋白和刚果红成功连接到普鲁士蓝纳米颗粒上。
实施例2:
1)将0.005毫摩尔亚铁氰化钾与0.005毫摩尔mPEG-COOH分别溶于5毫升去离子水中,充分混匀得到澄清溶液A;将0.005毫摩尔氯化铁溶于5毫升去离子水中,充分溶解得到澄清溶液B;将溶液B逐滴加入溶液A中,55℃下反应0.5h;
2)待反应体系降至室温,反应1h,离心洗涤,得到含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C;
3)将含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C、0.05毫摩尔1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶于10毫升去离子水中,室温反应10min,得到溶液D;
4)将0.04毫摩尔N-羟基琥珀酰亚胺、0.005毫克转铁蛋白、0.48微摩尔刚果红加入到溶液D中,室温反应24h,离心洗涤,所得沉淀用去离子水重悬,得到靶向Aβ老年斑的普鲁士蓝纳米颗粒。
所制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒其粒径约为210nm,紫外吸收光谱在285.5nm、500nm、715nm具有最大紫外吸收峰。如图4核磁纵向驰豫率测试结果所示,所制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒的纵向弛豫率r1为6.84mM-1·s-1;如图5核磁横向弛豫率测试结果所示,横向弛豫率r2为5.93mM-1·s-1,说明此纳米颗粒具有良好的MRI(T1/T2)成像能力。
实施例3:
1)将0.0195毫摩尔亚铁氰化钾与0.003毫摩尔COOH-PEG-COOH分别溶于5毫升去离子水中,充分混匀得到澄清溶液A;将0.0195毫摩尔氯化铁溶于5毫升去离子水中,充分溶解得到澄清溶液B;将溶液B逐滴加入溶液A中,60℃下反应1h;
2)待反应体系降至室温,反应0.5h,离心洗涤,得到含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C;
3)将含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C、0.12毫摩尔1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶于10毫升去离子水中,室温反应25min,得到溶液D;
4)将0.02毫摩尔N-羟基琥珀酰亚胺、0.02毫克转铁蛋白、0.6微摩尔刚果红加入到溶液D中,室温反应12h,离心洗涤,所得沉淀用去离子水重悬,得到靶向Aβ老年斑的普鲁士蓝纳米颗粒。
所制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒其粒径约为245nm,紫外吸收光谱在292nm、507nm、692.5nm具有最大紫外吸收峰。
实施例4:
1)将0.013毫摩尔亚铁氰化钾与0.004毫摩尔4ARM-PEG-COOH分别溶于5毫升去离子水中,充分混匀得到澄清溶液A;将0.013毫摩尔氯化铁溶于5毫升去离子水中,充分溶解得到澄清溶液B;将溶液B逐滴加入溶液A中,70℃下反应2h;
2)待反应体系降至室温,反应1h,离心洗涤,得到含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C;
3)将含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C、0.18毫摩尔1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶于10毫升去离子水中,室温反应10min,得到溶液D;
4)将0.06毫摩尔N-羟基琥珀酰亚胺、0.023毫克转铁蛋白、0.2微摩尔刚果红加入到溶液D中,室温反应12h,离心洗涤,所得沉淀用去离子水重悬,得到靶向Aβ老年斑的普鲁士蓝纳米颗粒。
所制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒其粒径约为195nm,紫外吸收光谱在280.5nm、483nm、720nm具有最大紫外吸收峰。
实施例5:
1)将0.022毫摩尔亚铁氰化钾与0.007毫摩尔mPEG-COOH分别溶于5毫升去离子水中,充分混匀得到澄清溶液A;将0.022毫摩尔氯化铁溶于5毫升去离子水中,充分溶解得到澄清溶液B;将溶液B逐滴加入溶液A中,65℃下反应1h;
2)待反应体系降至室温,反应1h,离心洗涤,得到含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C;
3)将含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C、0.08毫摩尔1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶于10毫升去离子水中,室温反应15min,得到溶液D;
4)将0.08毫摩尔N-羟基琥珀酰亚胺、0.019毫克转铁蛋白、0.32微摩尔刚果红加入到溶液D中,室温反应18h,离心洗涤,所得沉淀用去离子水重悬,得到靶向Aβ老年斑的普鲁士蓝纳米颗粒。
所制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒其粒径约为160nm,紫外吸收光谱在283nm、493.5nm、717nm具有最大紫外吸收峰。
实施例6:
1)将0.0095毫摩尔亚铁氰化钾与0.0095毫摩尔COOH-PEG-COOH分别溶于5毫升去离子水中,充分混匀得到澄清溶液A;将0.0095毫摩尔氯化铁溶于5毫升去离子水中,充分溶解得到澄清溶液B;将溶液B逐滴加入溶液A中,60℃下反应1h;
2)待反应体系降至室温,反应1.5h,离心洗涤,得到含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C;
3)将含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C、0.13毫摩尔1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶于10毫升去离子水中,室温反应15min,得到溶液D;
4)将0.1毫摩尔N-羟基琥珀酰亚胺、0.009毫克转铁蛋白、0.52微摩尔刚果红加入到溶液D中,室温反应24h,离心洗涤,所得沉淀用去离子水重悬,得到靶向Aβ老年斑的普鲁士蓝纳米颗粒。
所制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒其粒径约为170nm,紫外吸收光谱在278nm、502nm、687.5nm具有最大紫外吸收峰。
实施例7:
1)将0.0175毫摩尔亚铁氰化钾与0.0025毫摩尔8ARM-PEG-COOH分别溶于5毫升去离子水中,充分混匀得到澄清溶液A;将0.0175毫摩尔氯化铁溶于5毫升去离子水中,充分溶解得到澄清溶液B;将溶液B逐滴加入溶液A中,60℃下反应0.5h;
2)待反应体系降至室温,反应2h,离心洗涤,得到含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C;
3)将含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C、0.2毫摩尔1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶于10毫升去离子水中,室温反应20min,得到溶液D;
4)将0.1毫摩尔N-羟基琥珀酰亚胺、0.015毫克转铁蛋白、0.24微摩尔刚果红加入到溶液D中,室温反应36h,离心洗涤,所得沉淀用去离子水重悬,得到靶向Aβ老年斑的普鲁士蓝纳米颗粒。
所制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒其粒径约为225nm,紫外吸收光谱在276.5nm、508.5nm、705.5nm具有最大紫外吸收峰。
实施例8:
1)将0.014毫摩尔亚铁氰化钾与0.008毫摩尔mPEG-COOH分别溶于5毫升去离子水中,充分混匀得到澄清溶液A;将0.014毫摩尔氯化铁溶于5毫升去离子水中,充分溶解得到澄清溶液B;将溶液B逐滴加入溶液A中,60℃下反应1.5h;
2)待反应体系降至室温,反应1h,离心洗涤,得到含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C;
3)将含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C、0.15毫摩尔1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶于10毫升去离子水中,室温反应10min,得到溶液D;
4)将0.03毫摩尔N-羟基琥珀酰亚胺、0.012毫克转铁蛋白、0.08微摩尔刚果红加入到溶液D中,室温反应24h,离心洗涤,所得沉淀用去离子水重悬,得到靶向Aβ老年斑的普鲁士蓝纳米颗粒。
所制备的靶向Aβ老年斑的普鲁士蓝纳米颗粒其粒径约为175nm,紫外吸收光谱在284nm、504nm、709nm具有最大紫外吸收峰。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种靶向Aβ老年斑的普鲁士蓝纳米颗粒的制备方法,其特征在于,包括如下步骤:
1)将亚铁氰化钾与羧基化聚乙二醇分别溶于去离子水中,充分混匀得到澄清溶液A;
将氯化铁溶于去离子水中,充分溶解得到澄清溶液B;
将溶液B逐滴加入溶液A中,亚铁氰化钾与氯化铁摩尔比为1:1,40~80℃下反应0.5~2h;
2)待反应体系降至室温,反应0.5~2h,离心洗涤,得到含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C;
3)将含有羧基的聚乙二醇修饰的普鲁士蓝纳米颗粒的沉淀C与1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶于去离子水中,室温反应10~30min,得到溶液D;
4)将N-羟基琥珀酰亚胺、转铁蛋白、刚果红按照一定浓度加入到溶液D中,N-羟基琥珀酰亚胺溶液与所述步骤3)中1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶液的摩尔比为1:(1~10),转铁蛋白溶液浓度为0.5~2.5μg/mL,刚果红溶液浓度为0.004~0.06mmol/L,室温反应12~36h,离心洗涤,所得沉淀用去离子水重悬,得到靶向Aβ老年斑的普鲁士蓝纳米颗粒。
2.根据权利要求1所述的一种靶向Aβ老年斑的普鲁士蓝纳米颗粒的制备方法,其特征在于,所述步骤1)中亚铁氰化钾水溶液浓度为1~5mmol/L。
3.根据权利要求1所述的一种靶向Aβ老年斑的普鲁士蓝纳米颗粒的制备方法,其特征在于,所述步骤1)中氯化铁水溶液浓度为1~5mmol/L。
4.根据权利要求1所述的一种靶向Aβ老年斑的普鲁士蓝纳米颗粒的制备方法,其特征在于,所述步骤1)中羧基化聚乙二醇包括单羧基聚乙二醇、二羧基聚乙二醇、多臂聚乙二醇羧基;所述的羧基化聚乙二醇水溶液浓度为0.1~2mmol/L。
5.根据权利要求1所述的一种靶向Aβ老年斑的普鲁士蓝纳米颗粒的制备方法,其特征在于,所述步骤3)中1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐溶液浓度为1~20mmol/L。
6.根据权利要求1所述的一种靶向Aβ老年斑的普鲁士蓝纳米颗粒的制备方法,其特征在于,所述步骤4)中N-羟基琥珀酰亚胺溶液浓度为1~20mmol/L。
7.一种靶向Aβ老年斑的普鲁士蓝纳米颗粒,采用权利要求1至6中任一项所述的制备方法制备得到,其特征在于,粒径在150~250nm,紫外吸收光谱在260~300nm、450~530nm、650~800nm具有最大紫外吸收峰。
CN201910217120.XA 2019-03-21 2019-03-21 一种靶向Aβ老年斑的普鲁士蓝纳米颗粒及其制备方法 Active CN110038138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910217120.XA CN110038138B (zh) 2019-03-21 2019-03-21 一种靶向Aβ老年斑的普鲁士蓝纳米颗粒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910217120.XA CN110038138B (zh) 2019-03-21 2019-03-21 一种靶向Aβ老年斑的普鲁士蓝纳米颗粒及其制备方法

Publications (2)

Publication Number Publication Date
CN110038138A CN110038138A (zh) 2019-07-23
CN110038138B true CN110038138B (zh) 2021-07-20

Family

ID=67274918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910217120.XA Active CN110038138B (zh) 2019-03-21 2019-03-21 一种靶向Aβ老年斑的普鲁士蓝纳米颗粒及其制备方法

Country Status (1)

Country Link
CN (1) CN110038138B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111529547B (zh) * 2020-04-30 2021-07-13 天津大学 普鲁士蓝纳米颗粒在制备预防、延缓或治疗神经系统退行性疾病药物中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105288665A (zh) * 2015-11-26 2016-02-03 中国科学院深圳先进技术研究院 一种普鲁士蓝纳米颗粒造影剂及其制备方法与应用
WO2016090359A3 (en) * 2014-12-05 2016-09-15 Augusta University Research Institute, Inc. Glass composites for tissue augmentation, biomedical and cosmetic applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090359A3 (en) * 2014-12-05 2016-09-15 Augusta University Research Institute, Inc. Glass composites for tissue augmentation, biomedical and cosmetic applications
CN105288665A (zh) * 2015-11-26 2016-02-03 中国科学院深圳先进技术研究院 一种普鲁士蓝纳米颗粒造影剂及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Transition of transferrin from native to fibrillar state: An implicationfor amyloid-linked diseases;Samreen Amani et al;《Biochemical Engineering Journal》;20140810;第91卷;第120-128页 *
阿尔茨海默病磁共振探针前体BSA-(Gd-DTPA)n-CR 的合成、表征及初步评价;李树平 等;《功能与分子医学影像学(电子版)》;20120731;第1卷(第3期);摘要、第173页第1-2段 *

Also Published As

Publication number Publication date
CN110038138A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
Shevtsov et al. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs)
Hilger et al. Iron oxide-based nanostructures for MRI and magnetic hyperthermia
Faucher et al. Ultra‐small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI
Faucher et al. Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI
Tada et al. Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy
Huang et al. Long-term multimodal imaging of tumor draining sentinel lymph nodes using mesoporous silica-based nanoprobes
Chan et al. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum
Sharma et al. Gadolinium‐doped silica nanoparticles encapsulating indocyanine green for near infrared and magnetic resonance imaging
US10987436B2 (en) Superparamagnetic nanoparticles as a contrast agent for magnetic resonance imaging (MRI) of magnetic susceptibility (T2*)
Liu et al. ScFv-conjugated superparamagnetic iron oxide nanoparticles for MRI-based diagnosis in transgenic mouse models of Parkinson’s and Huntington’s diseases
Kong et al. Biomimetic multifunctional persistent luminescence nanoprobes for long-term near-infrared imaging and therapy of cerebral and cerebellar gliomas
Wang et al. Magneto-fluorescent nanoparticles with high-intensity NIR emission, T 1-and T 2-weighted MR for multimodal specific tumor imaging
Zhang et al. Paramagnetic albumin decorated CuInS 2/ZnS QDs for CD133+ glioma bimodal MR/fluorescence targeted imaging
Liu et al. A concise review of magnetic resonance molecular imaging of tumor angiogenesis by targeting integrin αvβ3 with magnetic probes
He et al. Polymeric nanoparticles for therapy and imaging
CN104436220B (zh) 一种壳聚糖磁性纳米微球的制备方法及其用途
Zhang et al. Gadolinium‐conjugated FA‐PEG‐PAMAM‐COOH nanoparticles as potential tumor‐targeted circulation‐prolonged macromolecular MRI contrast agents
CN110038138B (zh) 一种靶向Aβ老年斑的普鲁士蓝纳米颗粒及其制备方法
Yin et al. In vivo high-efficiency targeted photodynamic therapy of ultra-small Fe3O4@ polymer-NPO/PEG-Glc@ Ce6 nanoprobes based on small size effect
CN108514642B (zh) 一种树状大分子稳定的超小四氧化三铁/金纳米花的制备方法
Yang et al. Multidimensional theranostics for tumor fluorescence imaging, photoacoustic imaging and photothermal treatment based on manganese doped carbon dots
Mehravi et al. Conjugation of glucosamine with Gd3+-based nanoporous silica using a heterobifunctional ANB-NOS crosslinker for imaging of cancer cells
Corsi et al. Towards ideal magnetofluorescent nanoparticles for bimodal detection of breast‐cancer cells
He et al. Magnetic nanoparticles for imaging technology
Luo et al. Quantitative Detection of In Vivo Aggregation Degree for Enhanced M2 Macrophage MR Imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant