CN110034699B - 一种逆变电源及控制方法 - Google Patents

一种逆变电源及控制方法 Download PDF

Info

Publication number
CN110034699B
CN110034699B CN201910421703.4A CN201910421703A CN110034699B CN 110034699 B CN110034699 B CN 110034699B CN 201910421703 A CN201910421703 A CN 201910421703A CN 110034699 B CN110034699 B CN 110034699B
Authority
CN
China
Prior art keywords
phase
inverter
voltage
power supply
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910421703.4A
Other languages
English (en)
Other versions
CN110034699A (zh
Inventor
林永清
程利军
焦道海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Hewangyuan Electric Co ltd
Original Assignee
Jiangsu Hewangyuan Electric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Hewangyuan Electric Co ltd filed Critical Jiangsu Hewangyuan Electric Co ltd
Priority to CN201910421703.4A priority Critical patent/CN110034699B/zh
Publication of CN110034699A publication Critical patent/CN110034699A/zh
Application granted granted Critical
Publication of CN110034699B publication Critical patent/CN110034699B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提供了一种逆变电源及控制方法;此逆变电源包括稳压直流电源、三相VSC逆变器、滤波器、无源网络负载、检测装置和DSP控制装置;所述稳压直流电源为三相VSC逆变器的直流输入;所述三相VSC逆变器的交流侧与滤波器一端连接;所述滤波器的另一端与无源网络负载连接,为无源网络负载供电;所述检测装置位于无源网络负载的三相电输入端,用于检测三相交流输出的电压、电流、PLL和谐波信号;所述DSP控制装置与检测装置信号连接,根据输出的三相交流电压、电流和PLL,向三相VSC逆变器输出PWM阀控信号;本发明可以采用“交流电压”单环控制和“外环电压‑内环电流”双闭环控制满足不同无源网络负载的供电需求。

Description

一种逆变电源及控制方法
技术领域
本发明涉及电气设计领域,尤其涉及一种逆变电源及控制方法。
背景技术
当前电子工业和数学电路不断发展,各种具备不同功能的电子产品正在不断走入人们的生活。逆变电源可以将直流电制变换为交流电制,提供具有良好品质的各种交流用电。随着微网以及智能电网技术的发展,微网的容量需求逐步扩大,逆变电源在各种场合的需求也在不断增多,客户对于逆变电源的技术要求也在不断增强。
在现有的DC-AC逆变控制技术中,大多控制策略都需要借助于PID控制器加以实现,PID控制器使用范围广泛。其优点在于使用可靠性高、鲁棒性能好,且容易实现。但是PID控制器对于系统的动态性能调节过多地依赖于参数的整定,如果参数整定不理想,其输出电压往往会出现大幅度的超调和振荡,甚至会超过其安全运行极限,对系统造成损坏。然而由于PID控制策略过于简单,如果无源网络负载是三相不对称的,逆变电源向负载供电时导致输出电压不对称,进而造成控制效果不理想的问题。
发明内容
为了解决上述现有技术的不足之处,本发明的目的在于提供一种逆变电源及控制方法,以满足电子电路的发展趋势。
为了实现上述目的,本发明提供了一种逆变电源,所述逆变电源包括稳压直流电源(1)、三相VSC逆变器(2)、滤波器(3)、无源网络负载(4)、检测装置(5)和DSP控制装置(6);其中,所述稳压直流电源(1)与三相VSC逆变器(2)的直流侧连接,作为所述三相VSC逆变器(2)的输入;所述三相VSC逆变器(2)的交流侧与滤波器(3)一端连接,作为三相交流输出;所述滤波器(3)的另一端与无源网络负载(4)连接,为无源网络负载(4)供电;所述检测装置(5)位于无源网络负载(4)的三相电输入端,用于检测三相交流输出的电压、电流、PLL和谐波信号;所述DSP控制装置(6)与检测装置(5)信号连接,根据输出的三相交流电压、电流和PLL,向三相VSC逆变器(2)输出PWM阀控信号;
所述逆变电源采用以下逆变供电控制方法,逆变供电控制方法具体包括如下步骤:
9)测量三相负载的三相供电电压uabc的值;
10)检测三相负载的不平衡度;
11)若负载为三相平衡负载,则将uabc三相静止坐标系下的值ua、ub和uc进行Park变换和Clark变换,得到d/q两相旋转坐标系下的usd和usq的值;
12)将三相交流供电电压参考值uref进行Park变换和Clark变换,得到d/q两相旋转坐标系下的urefd和urefq的值;
13)分别将urefd和usd、urefq和usq的值进行比较做差,经过PI调节器,得到ud、uq、u0,然后分别经过前馈耦合项ωLiq、ωLid和PI控制器,即通过“单环交流电压”控制得出产生PWM控制信号udq0,对换流器进行PWM控制调节;
14)若负载为三相不平衡负载,则将uabc三相静止坐标系下的值ua、ub和uc,只进行Park变换,得到α/β两相静止坐标系下的uα和uβ的值;
15)将三相交流供电电压参考值uref进行Park变换,得到α/β两相静止坐标系下的和/>的值;
16)分别将和uα、/>和uβ的值进行比较做差,经过PR调节器,得到ud、uq和u0的值,即外环电压控制;得出的值分别经过前馈耦合项ωLiq、ωLid和PI调节器,即内环电流控制;通过“外环电压-内环电流”双闭环控制得出产生PWM控制信号udq0,对换流器进行PWM控制调节。
优选的,所述滤波器(3)为三相LC滤波器,LC的值可以根据系统谐波THD的要求进行调值。
优选的,所述DSP控制装置(6)采用“外环电压-内环电流”双闭环控制工作方式。
优选的,所述PR调节器利用谐振增大对所控信号某一特定频率的增益,使输出信号很好地跟踪参考三相正弦信号,从而实现无静差跟踪;所述PR调节器是由比例环节和广义积分(GI)环节所组成的,其传递函数为:
其中,kp为比例增益;ki为积分增益;ω0为谐振频率,在谐振频率处,PR调节器增益为无穷大;在非谐振频率处,其增益几乎为零。
优选的,所述步骤8中PR调节器改进的电压环设计,其总的传递函数以电压环α轴为例的数学分析为:三相供电电压uabc和给定三相电压通过Park变换,得到uα和/>两者做差,其差值Δuα依次通过PR调节器的传递函数GPR(s)、PWM环节的传递函数GPWM(s)、谐振环节的传递函数Go(s),Go(s)包括负载阻抗,得到给定输出;设Ks为PWM装置的放大系数,TS、T分别为PWM装置的延迟时间和开关周期,且Ts<T;通常情况下PWM开关频率大于1MHz,时间常数TS小于1.5s,将PWM装置简化为一阶惯性环节,则有/>可以得到,谐振环节的传递函数为/>整个电压流控制环α轴的传递函数为:
其中,Ls、Cs、Zr1分别为谐振环节的等效电感值、等效电容值和等效阻抗,由上式分析可得:当逆变器工作在指定的功率GPR(s)GPWM(s)G0(s)谐振点时,Go(s)近似于无穷大,远大于1,从而得出:
同现有技术相比,本发明的有益效果体现在:
(1)本发明的LC滤波器可以根据交流侧的谐波信号和系统THD的需求,调节其LC的值,扩大了逆变电源的应用范围和供电质量的可靠性。
(2)本发明利用基于PI调节器的“交流电压”单环控制,实现了当无源网络负载为三相平衡负载时,逆变电源向无源负载的稳定供电。
(3)本发明利用基于PR调节器的“外环定交流电压-内环电流解耦”双闭环控制,利用PR控制器可以无静差跟踪正弦信号的特点,纠正当无源网络负载三相不平衡时三相交流输出的畸变,实现逆变侧三相交流电压的对称和稳定。
附图说明
图1为本发明的一种逆变电源的结构示意图;
图2为本发明的一种逆变供电控制方法的流程图;
图3为无源网络负载三相平衡时的控制结构图;
图4为无源网络负载三相不平衡时的控制结构图。
具体实施方式
为了能够进一步了解本发明的结构、特征及其他目的,现结合所附较佳实施例附以附图详细说明如下,本附图所说明的实施例仅用于说明本发明的技术方案,并非限定本发明。
首先,如图1所示,图1是本发明的一种逆变电源的结构示意图;所述逆变电源包括稳压直流电源1、三相VSC逆变器2、滤波器3、无源网络负载4、检测装置5和DSP控制装置6;所述稳压直流电源1与三相VSC逆变器2的直流侧连接,作为所述三相VSC逆变器2的输入;所述三相VSC逆变器2的交流侧与滤波器3一端连接,作为三相交流输出;所述滤波器3的另一端与无源网络负载4连接,为无源网络负载4供电;所述检测装置5位于无源网络负载4的三相电输入端,用于检测三相交流输出的电压、电流、PLL和谐波信号;所述DSP控制装置6与检测装置5信号连接,根据输出的三相交流电压、电流和PLL,向三相VSC逆变器2输出PWM阀控信号。
所述滤波器3为三相LC类型的滤波器,电感L和电容C的值可以根据系统谐波THD的要求进行调值。
进一步地,请参看图2,图2为本发明的一种逆变供电控制方法的流程图;所述方法主要包括以下步骤:
1)测量三相负载的三相供电电压uabc的值;
2)检测三相负载的不平衡度;
3)若负载为三相平衡负载,则将uabc三相静止坐标系下的值ua、ub和uc进行Park变换和Clark变换,得到d/q两相旋转坐标系下的usd和usq的值;
4)将三相交流供电电压参考值uref进行Park变换和Clark变换,得到d/q两相旋转坐标系下的urefd和urefq的值;
5)分别将urefd和usd、urefq和usq的值进行比较做差,经过PI调节器,得到ud、uq、u0,然后分别经过前馈耦合项ωLiq、ωLid和PI控制器,即通过“单环交流电压”控制得出产生PWM控制信号udq0,对换流器进行PWM控制调节;
6)若负载为三相不平衡负载,则将uabc三相静止坐标系下的值ua、ub和uc只进行Park变换,得到α/β两相静止坐标系下的uα和uβ的值;
7)将三相交流供电电压参考值uref进行Park变换,得到α/β两相静止坐标系下的和/>的值;
8)分别将和uα、/>和uβ的值进行比较做差,经过PR调节器,得到ud、uq、u0的值,即外环电压控制;得出的值分别经过前馈耦合项ωLiq、ωLid和PI调节器,即内环电流控制;通过“外环电压-内环电流”双闭环控制得出产生PWM控制信号udq0,对换流器进行PWM控制调节。
另外,请参见图3,图3为无源网络负载三相平衡时的控制结构图;依据实际的工程运行经验,逆变电源如果与无源网络负载连接,保证交流侧电压稳定输出是必须的。一般情况下,采用单环的定交流电压控制:将逆变器三相交流电压测量值uabc经过dq0坐标变换得到的量,分别与交流电压参考值uref在dq0坐标系下的值进行比较,经过PI调节器,得到ud和uq,再经过前馈耦合项,产生PWM控制信号,对换流器进行调节。
此外,请参见图4,图4为无源网络负载三相不平衡时的控制结构图;三相不平衡条件下,畸变的三相交流电压可以用正序电动势负序电动势/>零序电动势/>三个量进行表示。由于三相逆变器一般无中线连接,零序电动势可忽略不计,即/>则我们可以得到以下式子:
由上式可以看出,当交流电三相畸变,就必须在正序和负序两个方面同时考虑交流电压的基波量。同时,分析PR控制器的特点可以看出,PR控制在ω0处有高增益,理论上当系统在频率点ω0处增益趋近于无穷大,此时可以实现无静差跟踪;可以利用PR控制器的这一特点,利用PR控制对三相畸变交流输出进行正弦信号的无静差调节,实现三相交流输出的对称和稳定。
最后,本发明的一种逆变电源及控制方法,其具体的技术特点如下:
(1)本发明的LC滤波器可以根据交流侧的谐波信号和系统THD的需求,调节其LC的值,扩大了逆变电源的应用范围和供电质量的可靠性。
(2)本发明利用基于PI调节器的“交流电压”单环控制,实现了当无源网络负载为三相平衡负载时,逆变电源向无源负载的稳定供电。
(3)本发明利用基于PR调节器的“外环定交流电压-内环电流解耦”双闭环控制,利用PR控制器可以无静差跟踪正弦信号的特点,纠正当无源网络负载三相不平衡时三相交流输出的畸变,实现逆变侧三相交流电压的对称和稳定。
需要声明的是,上述发明内容及具体实施方式意在证明本发明所提供技术方案的实际应用,不应解释为对本发明保护范围的限定。本领域技术人员在本发明的精神和原理内,当可作各种修改、等同替换或改进。本发明的保护范围以所附权利要求书为准。

Claims (5)

1.一种逆变电源,其特征在于,所述逆变电源包括稳压直流电源(1)、三相VSC逆变器(2)、滤波器(3)、无源网络负载(4)、检测装置(5)和DSP控制装置(6);其中,所述稳压直流电源(1)与三相VSC逆变器(2)的直流侧连接,作为所述三相VSC逆变器(2)的输入;所述三相VSC逆变器(2)的交流侧与滤波器(3)一端连接,作为三相交流输出;所述滤波器(3)的另一端与无源网络负载(4)连接,为无源网络负载(4)供电;所述检测装置(5)位于无源网络负载(4)的三相电输入端,用于检测三相交流输出的电压、电流、PLL和谐波信号;所述DSP控制装置(6)与检测装置(5)信号连接,根据输出的三相交流电压、电流和PLL,向三相VSC逆变器(2)输出PWM阀控信号;
所述逆变电源采用以下逆变供电控制方法,逆变供电控制方法具体包括如下步骤:
1)测量三相负载的三相供电电压uabc的值;
2)检测三相负载的不平衡度;
3)若负载为三相平衡负载,则将uabc三相静止坐标系下的值ua、ub和uc进行Park变换和Clark变换,得到d/q两相旋转坐标系下的usd和usq的值;
4)将三相交流供电电压参考值uref进行Park变换和Clark变换,得到d/q两相旋转坐标系下的urefd和urefq的值;
5)分别将urefd和usd、urefq和usq的值进行比较做差,经过PI调节器,得到ud、uq、u0,然后分别经过前馈耦合项ωLiq、ωLid和PI控制器,即通过“单环交流电压”控制得出产生PWM控制信号udq0,对换流器进行PWM控制调节;
6)若负载为三相不平衡负载,则将uabc三相静止坐标系下的值ua、ub和uc,只进行Park变换,得到α/β两相静止坐标系下的uα和uβ的值;
7)将三相交流供电电压参考值uref进行Park变换,得到α/β两相静止坐标系下的和/>的值;
8)分别将和uα、/>和uβ的值进行比较做差,经过PR调节器,得到ud、uq和u0的值,即外环电压控制;得出的值分别经过前馈耦合项ωLiq、ωLid和PI调节器,即内环电流控制;通过“外环电压-内环电流”双闭环控制得出产生PWM控制信号udq0,对换流器进行PWM控制调节。
2.根据权利要求1所述的逆变电源,其特征在于,所述滤波器(3)为三相LC滤波器,LC的值可以根据系统谐波THD的要求进行调值。
3.根据权利要求1所述的逆变电源,其特征在于,所述DSP控制装置(6)采用“外环电压-内环电流”双闭环控制工作方式。
4.根据权利要求1所述的逆变电源,其特征在于,所述PR调节器利用谐振增大对所控信号某一特定频率的增益,使输出信号很好地跟踪参考三相正弦信号,从而实现无静差跟踪;所述PR调节器是由比例环节和广义积分(GI)环节所组成的,其传递函数为:
其中,kp为比例增益;ki为积分增益;ω0为谐振频率,在谐振频率处,PR调节器增益为无穷大;在非谐振频率处,其增益几乎为零。
5.根据权利要求1所述的逆变电源,其特征在于,所述步骤8中PR调节器改进的电压环设计,其总的传递函数以电压环α轴为例的数学分析为:三相供电电压uabc和给定三相电压通过Park变换,得到uα和/>两者做差,其差值Δuα依次通过PR调节器的传递函数GPR(s)、PWM环节的传递函数GPWM(s)、谐振环节的传递函数Go(s),Go(s)包括负载阻抗,得到给定输出;设Ks为PWM装置的放大系数,TS、T分别为PWM装置的延迟时间和开关周期,且Ts<T;通常情况下PWM开关频率大于1MHz,时间常数TS小于1.5s,将PWM装置简化为一阶惯性环节,则有可以得到,谐振环节的传递函数为/>整个电压流控制环α轴的传递函数为:
其中,Ls、Cs、Zr1分别为谐振环节的等效电感值、等效电容值和等效阻抗,由上式分析可得:当逆变器工作在指定的功率GPR(s)GPWM(s)G0(s)谐振点时,Go(s)近似于无穷大,远大于1,从而得出:
CN201910421703.4A 2019-05-21 2019-05-21 一种逆变电源及控制方法 Active CN110034699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910421703.4A CN110034699B (zh) 2019-05-21 2019-05-21 一种逆变电源及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910421703.4A CN110034699B (zh) 2019-05-21 2019-05-21 一种逆变电源及控制方法

Publications (2)

Publication Number Publication Date
CN110034699A CN110034699A (zh) 2019-07-19
CN110034699B true CN110034699B (zh) 2023-10-10

Family

ID=67242785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910421703.4A Active CN110034699B (zh) 2019-05-21 2019-05-21 一种逆变电源及控制方法

Country Status (1)

Country Link
CN (1) CN110034699B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865142B (zh) * 2020-12-31 2022-06-21 大禹电气科技股份有限公司 一种逆变电源控制三相不对称负载电流平衡的方法
CN114142760B (zh) * 2021-12-15 2023-04-28 西南交通大学 一种三相全桥逆变器的离散控制方法及装置
CN116566178B (zh) * 2023-04-07 2024-03-22 惠州华智新能源科技有限公司 一种双闭环的逆变控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317352A (zh) * 2017-06-22 2017-11-03 南京工程学院 具有三相不平衡治理功能的微型光伏逆变器控制方法
CN107896071A (zh) * 2017-11-24 2018-04-10 哈尔滨理工大学 一种基于神经网络的三相组合式逆变电源
CN108493967A (zh) * 2018-05-09 2018-09-04 合肥工业大学 不平衡负载条件下微网逆变器的电压平衡控制方法
CN208623392U (zh) * 2018-08-13 2019-03-19 浙江百固电气科技股份有限公司 一种复合电能质量综合治理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317352A (zh) * 2017-06-22 2017-11-03 南京工程学院 具有三相不平衡治理功能的微型光伏逆变器控制方法
CN107896071A (zh) * 2017-11-24 2018-04-10 哈尔滨理工大学 一种基于神经网络的三相组合式逆变电源
CN108493967A (zh) * 2018-05-09 2018-09-04 合肥工业大学 不平衡负载条件下微网逆变器的电压平衡控制方法
CN208623392U (zh) * 2018-08-13 2019-03-19 浙江百固电气科技股份有限公司 一种复合电能质量综合治理装置

Also Published As

Publication number Publication date
CN110034699A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
CN110034699B (zh) 一种逆变电源及控制方法
US11289910B2 (en) Method and apparatus for impedance matching in virtual impedance droop controlled power conditioning units
CN110739678B (zh) 一种并网换流器串联虚拟阻抗的控制方法
CN104953882A (zh) 电力转换装置、发电系统、控制装置及电力转换方法
CN107688722B (zh) 电压源型变流器的导纳模型和阻抗模型获取方法及装置
CN103904654B (zh) 组合式三相逆变电路并联运行控制方法
CN103780107A (zh) 一种三相电压源型pwm整流器的电流控制方法
Zou et al. Generalized Clarke transformation and enhanced dual-loop control scheme for three-phase PWM converters under the unbalanced utility grid
CN105071390A (zh) 一种h桥三电平有源电力滤波器的控制方法及系统
CN104143837B (zh) 具有参数自适应特性的逆变器无交流电压传感器控制方法
CN109193793B (zh) 一种变流器免电压检测的并网控制系统和方法
CN103117562A (zh) 一种高压级联能量回馈变频器功率模块的控制方法
Zou et al. Optimized harmonic detecting and repetitive control scheme for shunt active power filter in synchronous reference frame
Tang et al. Grid-current-sensorless control of grid-forming inverter with LCL filter
CN104541222A (zh) 静止型无功功率补偿装置和电压控制方法
He et al. Direct microgrid harmonic current compensation and seamless operation mode transfer using coordinated triple-loop current-voltage-current controller
CN115579901A (zh) 一种lcc-hvdc受端电网静态电压稳定性分析方法及系统
Callegari et al. Selective pqd power control strategy for single-phase grid-following inverters
da Fonseca et al. Three-phase phase-locked loop algorithm and application to a static synchronous compensator
CN109378847B (zh) 一种微电网储能pcs控制系统和方法
CN110988485B (zh) 直流微电网阻抗检测系统及阻抗检测方法
CN113437855A (zh) 一种广义Clarke坐标变换和三相控制电路
CN110034580B (zh) 电网电压不平衡下逆变器的比例降阶谐振控制策略方法
Djabali et al. Enhanced Sensorless Predictive Direct Power Control for PWM Rectifier with Constant Switching Frequency under Grid Disturbances
Maknouninejad et al. Single phase and three phase P+ Resonant based grid connected inverters with reactive power and harmonic compensation capabilities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant