CN110033125B - 一种基于模糊逻辑Petri网的业务流程分析方法 - Google Patents

一种基于模糊逻辑Petri网的业务流程分析方法 Download PDF

Info

Publication number
CN110033125B
CN110033125B CN201910191368.3A CN201910191368A CN110033125B CN 110033125 B CN110033125 B CN 110033125B CN 201910191368 A CN201910191368 A CN 201910191368A CN 110033125 B CN110033125 B CN 110033125B
Authority
CN
China
Prior art keywords
transition
fuzzy logic
library
order
logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910191368.3A
Other languages
English (en)
Other versions
CN110033125A (zh
Inventor
刘伟
蔺茂
闫春
杜玉越
冯新
张志豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201910191368.3A priority Critical patent/CN110033125B/zh
Publication of CN110033125A publication Critical patent/CN110033125A/zh
Application granted granted Critical
Publication of CN110033125B publication Critical patent/CN110033125B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0633Workflow analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0633Lists, e.g. purchase orders, compilation or processing
    • G06Q30/0635Processing of requisition or of purchase orders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Educational Administration (AREA)
  • Devices For Executing Special Programs (AREA)

Abstract

本发明公开了一种基于模糊逻辑Petri网的业务流程分析方法,属于模糊逻辑Petri网业务流程分析领域,包括如下步骤:首先提出模糊逻辑Petri网理论;其次对商家处理订单问题进行建模;再次根据可达图生成算法,做出基于模糊逻辑Petri网的订单处理模型的可达标识图;最后通过前向推理算法,推理得出基于模糊逻辑Petri网的订单处理模型每一步决策的可信度,得出商家为订单发货的可能性,进而得出商家处理订单的最优决策,达到过程优化的目标。本发明模糊逻辑Petri网不仅可以进行模糊推理,还具备批处理和传值不确定性特点,在建模过程中用托肯与命题相对应,使Petri网具备更强的表现力,简化了模型的复杂性。

Description

一种基于模糊逻辑Petri网的业务流程分析方法
技术领域
本发明属于模糊逻辑Petri网的业务流程分析领域,具体涉及一种基于模糊逻辑Petri网的业务流程分析方法。
背景技术
Petri网是对离散并行系统的数学表示。Petri网是20世纪60年代由卡尔·A·佩特里发明的,适合于描述异步的、并发的计算机系统模型。Petri网既有严格的数学表述方式,也有直观的图形表达方式,既有丰富的系统描述手段和系统行为分析技术,又为计算机科学提供坚实的概念基础。同其他的网系统模型相比较,Petri网的突出优点之一是更便于描述并发和冲突。
简单Petri网是描述过程的模型,由库所,变迁,流关系,以及托肯等元素组成的。随着Petri网在各种系统和流程的建模和分析的过程中日益广泛的应用,各种具备不同特点的Petri网的扩展网应运而生,目前比较成熟的几种高级Petri网有颜色Petri网、时间Petri网、逻辑Petri网、随机Petri网、层次Petri网等。
自从Petri网的概念被提出以来,它已广泛应用于离散事件动态系统以及任务规划和业务流程管理等领域。Petri网适于对离散事件动态系统建模,它可以描述制造系统框架,系统的随机过程,也可以描述一些非系统特定的形式特征。在故障检测和诊断领域,Petri网可用于表达系统逻辑关系,完成知识表示和诊断推理;也可对被诊断对象建立行为模型,利用Petri网属性进行基于模型的诊断推理。模糊Petri网是Petri网与知识表达的结合,它在开始的时候最容易用来描述不清晰的生成规则。逻辑Petri网是抑制弧Petri网的一个高级抽象,在逻辑Petri网中,逻辑变迁的输入/输出受逻辑输入/输出表达式fO/fI的限制,将这种受限制的变迁称为逻辑变迁。
模糊Petri网是在普通Petri网的基础上扩充模糊处理能力而得到的。它与普通Petri网相比较主要有以下几个方面的不同:变迁节点具有启动阈限,FPN中的有向边分为输入弧和输出弧。模糊Petri网由于更符合人类的思维和认知方式,在描述和分析系统的并行和并发行为时有广泛的意义。FPN不仅使基于规则的知识库结构直观、清晰,还可以以数学分析的方法动态描述基于规则的系统。
一个逻辑Petri网(Logical Petri Net)是抑制弧PN的一个高级抽象,LPN中变迁的输入和输出分别受逻辑输入表达式fI和逻辑输出表达式fO的限制。具备批处理和传值不确定性的特点。
逻辑Petri网,体现了批处理和传值的不确定性的特点。模糊Petri网的概念,体现了其模糊推理和处理不确定过程的优点。但是逻辑Petri网缺乏模糊推理的能力,模糊Petri网用产生式规则进行推理,但其只用来处理一件不确定的事情或者一个完整得流程。为了克服这些问题,合理而且高效地同时分析多个含有不确定因素的业务流程。
发明内容
针对现有技术中存在的上述技术问题,本发明提出了一种基于模糊逻辑Petri网的业务流程分析方法,设计合理,克服了现有技术的不足,具有良好的效果。
为了实现上述目的,本发明采用如下技术方案:
一种基于模糊逻辑Petri网的业务流程分析方法,包括以下步骤:
步骤1:提出模糊逻辑Petri网理论,给出相关形式化定义、图形化表示、动态性质;
步骤2:利用模糊逻辑Petri网理论,对商家处理订单的流程进行建模;
步骤3:根据可达图生成算法,做出基于模糊逻辑Petri网的订单处理模型的可达标识图;
步骤4:通过前向推理算法,推理得出基于模糊逻辑Petri网的订单处理模型的每一步决策的可信度,得出商家为订单发货的可能性,进而得出商家处理订单的最优决策。
优选地,在步骤1中,模糊逻辑Petri网理论如下:
定义6模糊逻辑Petri网
一个模糊逻辑Petri网FLPN为一个十一元组∑=(P,T;F,I,O,D,ɑ,λ,C,W,M),其中
(1)P={P1,P2,...,Pn}是有限个库所的集合;
(2)F=(P×T)∪(T×P)包含了输入函数和输出函数,也称流关系;
(3)T={TC∪TI∪To},
Figure GDA0002040808420000021
其中:
①T表示普通的变迁集合,TC={t1∪t2∪...∪tn},t1,t2...tn代表普通变迁;
②TI表示T的逻辑输入变迁集,且
Figure GDA0002040808420000022
的所有输入库所受一个逻辑输入表达式fI的限制;
Figure GDA0002040808420000023
pi1表示模糊逻辑变迁Ti的后集库所中序号较小的库所,pi2则表示另一个库所即变迁Ti后集库所中序号较大的库所;
④TO表示T的逻辑输出变迁集,且
Figure GDA0002040808420000024
tOi的每个输出库所受一个逻辑输出表达式fO的限制;TI={tI1∪tI2∪...∪tIn}表示逻辑输入变迁;TO={tO1∪tO2∪...∪tOn}表示逻辑输入变迁;
(4)库所pi中包含着j个托肯,每个托肯与命题集合中的一个命题相对应;命题集合di中包含着j个命题;
(5)ɑ(pi)=di,ɑ表示库所与命题集合之间的映射,即库所pi与命题集合di对应;
(6)C表示命题的置信度集合,C={c1(pi),c2(pi)...cn(pi)},cj(pi)表示库所pi中第j个托肯所对应的命题的置信度,且cj(pi)→(0,1];
(7)I为逻辑限制输入函数,使对
Figure GDA0002040808420000031
I(tIi)=fI是一个逻辑输入表达式;
(8)O为逻辑限制输出函数,使对
Figure GDA0002040808420000032
O(toi)=fO是一个逻辑输出表达式集合,fO={fO1∪fO2∪...∪fOn}表示n个逻辑输出表达式;对
Figure GDA0002040808420000033
fO1,fO2...fOn表示逻辑输出变迁集合To到库所集合P的映射;
(9)λ:TI,To→(0,1]为变迁到阈值范围的映射,λi={λi1i2,...λin}表示模糊逻辑变迁TI的阈值,λi→(0,1];
(10)W表示库所中托肯的权值,W={w1(pi),w2(pi)...wn(pi)},wj(pi)表示库所pi中第j个托肯表示的属性对变迁发生的影响程度,wj(pi)→[0,1];
定义7模糊逻辑变迁集T
在模糊逻辑Petri网FLPN中,T={TC∪TI∪To},其中,
(1)TC表示普通的变迁集合,TC={t1∪t2∪...∪tn},t1,t2...tn代表普通变迁;
(2)TI表示T的逻辑输入变迁集,且
Figure GDA0002040808420000034
的所有输入库所受一个逻辑输入表达式fI的限制;
(3)
Figure GDA0002040808420000035
P={pi1∪pi2};pi1表示模糊逻辑变迁Ti的后集库所中序号较小的库所,pi2则表示另一个库所即变迁Ti后集库所中序号较大的库所;
(4)TO表示T的逻辑输出变迁集,且
Figure GDA0002040808420000036
tOi的每个输出库所受一个逻辑输出表达式fO的限制;TI={tI1∪tI2∪...∪tIn}表示逻辑输入变迁;TO={tO1∪tO2∪...∪tOn}表示逻辑输入变迁;
定义8逻辑函数I和O
在模糊逻辑Petri网FLPN中,逻辑函数的定义如下:
(1)I为逻辑限制输入函数,对
Figure GDA0002040808420000037
I(tIi)=fI是一个逻辑输入表达式;
(2)O为逻辑限制输出函数,对
Figure GDA0002040808420000038
O(toi)=fO是一个逻辑输出表达式集合,fO={fO1∪fO2∪...∪fOn}表示n个逻辑输出表达式;对
Figure GDA0002040808420000039
fO1,fO2...fOn表示逻辑输出变迁集合To到库所集合P的映射;
定义9阈值函数λ
在模糊逻辑Petri网FLPN中,λ:TI,To→(0,1]为变迁到阈值范围的映射,λi={λi1i2,...λin}表示模糊逻辑变迁TI的阈值,λi→(0,1];
定义10命题集合D
(1)在模糊逻辑Petri网FLPN中,D表示所有命题的集合,D={d1∪d2∪...∪dn}表示命题集合的有限并集,d1,d2...dn表示n个命题集合;
定义11命题的置信度集合C
C表示命题的置信度集合,C={c1(pi),c2(pi)...cn(pi)},cj(pi)表示库所pi中第j个托肯所对应的命题的置信度,且cj(pi)→(0,1];
定义12FLPN中的权值集合W
在模糊逻辑Petri网FLPN中,W表示库所中托肯的权值,W={w1(pi),w2(pi)...wn(pi)},wj(pi)表示库所pi中第j个托肯表示的属性对变迁发生的影响程度,wj(pi)→[0,1];
定义13记录变迁集合Told
Told表示已经发生过的变迁集合,初始状态下Told为空集;变迁TI或者To发生后,
Told=Told+{TI/To}
Told集合既能够防止模糊逻辑变迁的重复发生,又能够记录由FLPN建模的系统的推理过程,变迁TI/To发生后,其前集库所中的托肯不发生变化;
定义14置信度计算规则
(1)
Figure GDA0002040808420000041
P∈·tIi,且pi满足tIi上的模糊逻辑变迁表达式fI
那么变迁tIi具有发生权,变迁tIi发生后,后集库所pi1中产生新的托肯,库所pi1中每个新的托肯对应命题的置信度为前集库所pi中托肯的对应命题的可信度与其对应权值的乘积之和:ci(pi1)=c1(pi)*w11+c2(pi)*w12+...+cn(pi)*w1n
(2)
Figure GDA0002040808420000042
P∈·tIi,且pj不满足tIi上的模糊逻辑变迁表达式fI,那么变迁tIi具有发生权,变迁tIi发生后,后集库所pi2中产生新的托肯,库所pi2中每个新的托肯对应命题的置信度为前集库所pj中托肯的对应命题的可信度与其对应权值的乘积之和,即cj(pi2)=c1(pj)*w11+c2(pj)*w12+...+cn(pj)*w1n
定义15模糊逻辑Petri网的输入变迁引发规则
在模糊逻辑Petri网FLPN中,模糊逻辑输入变迁发生规则是多对二的推理模式:
(1)模糊逻辑输入变迁引发规则模式
Figure GDA0002040808420000043
TI={T1,T2...,Tn},I(tIi)=fI;模糊逻辑变迁表达式fI由命题集合的可信度c(pi)、权值w(pi)和阈值λi组成;
模糊逻辑输入变迁的引发规则:在状态标识M下,对于变迁tIi∈TI
Figure GDA0002040808420000044
如果
Figure GDA0002040808420000045
则认为变迁tIi在标识M有发生权,即M[tIi>;
(2)如果M[tIi>,在标识M下,
Figure GDA0002040808420000046
满足模糊逻辑变迁表达式fI,变迁tIi能够发生;变迁tIi发生后,状态标识M到达一个新的状态M′,对
Figure GDA0002040808420000047
Figure GDA0002040808420000051
(3)在标识M下,
Figure GDA0002040808420000052
且M(pj)>0,pj·tIi不满足模糊逻辑变迁表达式fI,变迁tIi能够发生,从状态标识M发生变迁tIi达到一个新的状态M′,对
Figure GDA0002040808420000053
Figure GDA0002040808420000054
(4)在状态标识M下,
Figure GDA0002040808420000055
且M(pj)>0,pj·tIi不满足模糊逻辑变迁表达式fI,|PN|=n;
Figure GDA0002040808420000056
pk·tIi满足模糊逻辑变迁表达式fI,|PY|=m,变迁tIi能够发生,那么在新的状态标识M′下,托肯的个数M′(p)的变化如下:
Figure GDA0002040808420000057
定义16模糊逻辑Petri网的输出变迁引发规则
在模糊逻辑Petri网FLPN中,模糊逻辑变迁的输出模式是一对多的推理模式;
Figure GDA0002040808420000058
TO={tO1,tO2...tOm};
Figure GDA0002040808420000059
M(p)>0且
Figure GDA00020408084200000510
则逻辑输出变迁tOi能够发生;若变迁tOi使能,则它能够引发演变到新的标识M′;
(1)标识M′下标识个数的变化:
Figure GDA00020408084200000511
(2)
Figure GDA00020408084200000512
P={p1,p2...pn},在M′满足逻辑输出变迁表达式fO1,fO2,...fOn,fO1,fO2,...fOn是由库所中的托肯以及托肯所对应命题的的置信度组成;
(3)模糊逻辑变迁tOi发生后,系统到达新的状态标识M′,在新的状态标识M′下,后集库所中托肯的个数M′(p)以及属性满足其弧上的变迁表达式fO1,fO2,...fOn,并且后集库所中托肯对应命题的置信度不发生变化。
优选地,在步骤2中,商家处理订单的流程具体包括如下步骤:
输入:∑=(P,T;F,I,O,D,ɑ,λ,C,W,M);
步骤1:确定系统的初始状态:客户A和客户B同时提交订单;
命题集合包含客户提交订单号、客户交易成功、客户按时归还贷款、库存量满足订单商品要求、商品是畅销款、商品生产日期符合要求、订单商品的合格率以及运输商品的费用;
步骤2:检查客户的信誉度,若客户交易成功或者客户按时归还贷款的可信度符合标准,则转到步骤3;
步骤3:检查订单,若订单商品的合格率以及生产日期达到标准,则转到步骤4;若不满足,则转到步骤7;
步骤4:验货,检查库存是否满足订单的数量,核查订单商品是否为热销款;若检查合格,则转入步骤5;
步骤5:商家进行成本核算,若满足盈利要求,则变迁发生,然后转到步骤6;若不满足,则转到步骤7;
步骤6:得出商家为订单发货的概率,准备发货;
步骤7:得出商家为订单发货的概率,取消订单;
输出:商家对订单的处理结果。
优选地,在步骤3中,其中,可达标识图的具体定义如下:
定义17模糊逻辑Petri网的可达标识图
设∑=FLPN(P,T;F,I,O,D,ɑ,λ,C,W,M)为一个有界Petri网,则∑的可达标志图定义为一个三元组RG(∑)=(R(M0),E,P);其中:
E={(Mi,Mj)|Mi,Mj∈R(M0),
Figure GDA0002040808420000061
P:E→T,P(Mi.Mj)=ti
当且仅当Mi[ti>Mj,R(M0)为RG(∑)的弧集;若p(Mi,Mj)=ti,则ti为弧(Mi,Mj)的旁标;
定义18可达图生成算法
输入:FLPN=(P,T;F,I,O,D,ɑ,λ,C,W,M);
输出:FLPN的可达图RG(FLPN);
Step 0:M0作为可达图RG(FLPN)的根节点,并标之以“新”;
Step 1:如果存在标注为“新”的节点,则任选一个标注为“新”节点,并标记为M,令集合Told=φ;
Step 2:如果从Mo到M的有向路上有一个节点的标识等于M,则将M的标注改为“旧”,返回Step 1;
Step 3:如果
Figure GDA0002040808420000062
则将M的标注改为“端点”,返回Step 1;
Step 4:对
Figure GDA0002040808420000063
并且M[tIi>,M[tOi>对每个tIi/tOi,根据变迁引发规则,得到M',令Told=Told+{tIi/tOi},并在RG(FLPN)中将其标注为“新”,从M到M'画一条有向弧,并将此弧旁标以t,并标注出新状态标识M'下各个库所的托肯的个数,然后删除节点M的“新”标注,返回Step 1。
优选地,在步骤4中,具体包括如下步骤:
步骤4.1:根据前向推理算法和初始条件,检查客户的信誉度,得出客户信誉的达标的可信度;
步骤4.2:检查订单,若订单商品的合格率以及生产日期达到标准、库存是否重组、订单商品是否为热销款,由前向推理算法得出订单满足要求的概率;
步骤4.3:商家进行成本核算,最后推理得出商家为订单发货的可信度。
本发明所带来的有益技术效果:
模糊Petri网具备一定的知识表示和推理能力,可以对系统进行建模并推测事件发生的概率;逻辑Petri网可以对同时处理多个不确定条件的系统进行建模,能体现其批处理和传值的不确定性的特征,为了增加模糊Petri网的知识表示和推理能力,使其可以描述同时处理多个事件的系统,本发明将逻辑Petri网和模糊Petri网进行结合,将模糊Petri网库所中的托肯与命题及命题的可信度相对应,一个托肯对应一个命题及其置信度,一个库所可以对应多个命题,并将托肯对应命题的置信度与逻辑输入/输出变迁相结合,形成模糊逻辑变迁,将模糊元素加入到逻辑变迁表达式中,定义新的命题置信度的计算规则,提出了模糊逻辑Petri网;并且FLPN模型,既能够体现出逻辑Petri网的传值的不确定性及并行处理的特点,又能在逻辑变迁表达式中体现模糊推理的原则,旨在为企业得出相应的处理决策,使商家更好的管理商品发货;使用模糊逻辑Petri网的业务流程分析方法,简化系统设计的复杂性,提高了决策的精准性,加快了决策速度,并且提高了决策的稳定性。使用模糊逻辑Petri网分析业务流程,既能够准确描述业务流程,又能够进行模糊推理,精确得出决策。
附图说明
图1为本发明一种基于模糊逻辑Petri网的过程分析方法的流程图。
具体实施方式
下面结合附图以及具体实施方式对本发明作进一步详细说明:
1、Petri网是对离散并行系统的数学表示。Petri网是20世纪60年代由卡尔·A·佩特里发明的,适合于描述异步的、并发的计算机系统模型。Petri网既有严格的数学表述方式,也有直观的图形表达方式,既有丰富的系统描述手段和系统行为分析技术,又为计算机科学提供了坚实的概念基础。Petri网模型自然、直观、简单易懂的描述了在分析并行系统的状态行为技术,主要用于计算机协议模型、柔性系统模型、计算机集成制造、人工智能、系统分析等领域。
本发明提出一种基于模糊逻辑Petri网的业务流程分析方法,其流程如图1所示,包括以下步骤:
步骤1:提出模糊逻辑Petri网理论,给出相关形式化定义、图形化表示、动态性质;
步骤2:利用模糊逻辑Petri网理论,对商家处理订单的流程进行建模;
步骤3:根据可达图生成算法,做出基于模糊逻辑Petri网的订单处理模型的可达标识图;
步骤4:通过前向推理算法,推理得出基于模糊逻辑Petri网的订单处理模型的每一步决策的可信度,得出商家为订单发货的可能性,进而得出商家处理订单的最优决策。
定义1满足下列条件的三元组N=(P,T;F)称作一个网;
(1)
Figure GDA0002040808420000081
(2)
Figure GDA0002040808420000082
(3)
Figure GDA0002040808420000083
定义2N=(P,T;F)为一个网,对于x∈P∪T,记
·x={y|y∈P∪T∧(y,x)∈F};
x·={y|y∈P∪T∧(y,x)∈F};
称·x为x前集或输入集,x·为x后集和输出集;
定义3设N=(P,T;F)为一个网。映射M:S→{0,1,2…}成为网的一个标识(marking)。二元组(N,M)(也即四元组(P,T;F,M))称为一个标识网(marked net)。
定义4一个网系统(net system)是一个标识网∑=(P,T;F,M),并具有下面的变迁发生规则(transition firing fule):
(1)对于变迁t∈T,如果
Figure GDA0002040808420000084
则说明变迁t在标识M有发生权(enabled),记为M[t>。
(2)若M[t>,则在标识M下,变迁t可以发生(fire),从标识M发生变迁t得到一个新的标识M’(记为M[t>M’),对
Figure GDA0002040808420000085
Figure GDA0002040808420000086
定义5模糊Petri网
模糊Petri网是一个六元组N=(S,T;F,W,D,M0)
(1)(S,T;F)是一个网,满足条件
(a)
Figure GDA0002040808420000087
(b)
Figure GDA0002040808420000088
(c)s∈S:·s=∧s∈S:s·=
(2)W:f→(0,1]
(3)D:T→(0,1]
(4)M0:S→(0,1],满足条件
Figure GDA0002040808420000091
(5)模糊Petri网的变迁发生规则:对
Figure GDA0002040808420000092
T={t1,t2,…tn},Min{s1*w1,s2*w2,...,sn*wn}>λi,则变迁ti可以使能;变迁使能后:s0(pi+1)=Min{s1*w1,s2*w2,...sn*wn}*w(ti,si+1).
随着Petri网在各种系统和流程中日益广泛的应用,对Petri网进行扩展,目前比较成熟的几种高级Petri网有模糊Petri网、随机Petri网、逻辑Petri网、颜色Petri网等。
逻辑Petri网具备批处理和传值不确定性的特点,通过变迁上的逻辑表达式控制输入和输出。模糊Petri网是普通Petri网的模糊化,结合了Petri网的图形描述能力,是基于模糊产生式规则的知识库系统有力的建模工具,具有强大的可视化知识建模、并行计算、模糊推理等能力,可以对系统进行建模并推测事件发生的概率。将模糊Petri网和模糊Petri网结合,构建模糊逻辑Petri网的形式化模型。既能够发挥逻辑Petri网对批处理和传值不确定性的优势,又发挥了模糊Petri网的知识表示和推理能力,更好的对业务流程进行处理。
2、模糊逻辑Petri网
提出模糊逻辑Petri网,给出相关形式化定义、图形化表示及分析方法。
2.1、形式化定义
对模糊逻辑Petri网进行形式化定义。
定义6模糊逻辑Petri网
一个模糊逻辑Petri网FLPN为一个十一元组∑=(P,T;F,I,O,D,ɑ,λ,C,W,M),其中
(1)P={P1,P2,...,Pn}是有限个库所的集合;
(2)F=(P×T)∪(T×P)包含了输入函数和输出函数,也称流关系;
(3)T={TC∪TI∪To},
Figure GDA0002040808420000093
其中:
①T表示普通的变迁集合,TC={t1∪t2∪...∪tn},t1,t2...tn代表普通变迁;
②TI表示T的逻辑输入变迁集,且
Figure GDA0002040808420000094
Ti的所有输入库所受一个逻辑输入表达式fI的限制;
Figure GDA0002040808420000095
pi1表示模糊逻辑变迁Ti的后集库所中序号较小的库所,pi2则表示另一个库所(即变迁Ti后集库所中序号较大的库所);
④TO表示T的逻辑输出变迁集,且
Figure GDA0002040808420000096
tOi的每个输出库所受一个逻辑输出表达式fO的限制。TI={tI1∪tI2∪...∪tIn}表示逻辑输入变迁;TO={tO1∪tO2∪...∪tOn}表示逻辑输入变迁;
(4)库所pi中包含着j个托肯,每个托肯与命题集合中的一个命题相对应。命题集合di中包含着j个命题。
(5)ɑ(pi)=di,ɑ表示库所与命题集合之间的映射,即库所pi与命题集合di对应;
(6)C表示命题的置信度集合,C={c1(pi),c2(pi)...cn(pi)},cj(pi)表示库所pi中第j个托肯所对应的命题的置信度,且cj(pi)→(0,1];
(7)I为逻辑限制输入函数,使对
Figure GDA0002040808420000101
I(tIi)=fI是一个逻辑输入表达式;
(8)O为逻辑限制输出函数,使对
Figure GDA0002040808420000102
O(toi)=fO是一个逻辑输出表达式集合,fO={fO1∪fO2∪...∪fOn}表示n个逻辑输出表达式。对
Figure GDA0002040808420000103
fO1,fO2...fOn表示逻辑输出变迁集合To到库所集合P的映射;
(9)λ:TI,To→(0,1]为变迁到阈值范围的映射,λi={λi1i2,...λin}表示模糊逻辑变迁TI的阈值,λi→(0,1];
(10)W表示库所中托肯的权值,W={w1(pi),w2(pi)...wn(pi)}。wj(pi)表示库所pi中第j个托肯表示的属性对变迁发生的影响程度。wj(pi)→[0,1];
定义7模糊逻辑变迁集T
在模糊逻辑Petri网FLPN中,T={TC∪TI∪To},其中,
(1)TC表示普通的变迁集合,TC={t1∪t2∪...∪tn},t1,t2...tn代表普通变迁;
(2)TI表示T的逻辑输入变迁集,且
Figure GDA0002040808420000104
的所有输入库所受一个逻辑输入表达式fI的限制;
(3)
Figure GDA0002040808420000105
pi1表示模糊逻辑变迁Ti的后集库所中序号较小的库所,pi2则表示另一个库所(即变迁Ti后集库所中序号较大的库所);
(4)TO表示T的逻辑输出变迁集,且
Figure GDA0002040808420000106
tOi的每个输出库所受一个逻辑输出表达式fO的限制。TI={tI1∪tI2∪...∪tIn}表示逻辑输入变迁;TO={tO1∪tO2∪...∪tOn}表示逻辑输入变迁;
定义8逻辑函数I和O
在模糊逻辑Petri网FLPN中,逻辑函数的定义如下:
(1)I为逻辑限制输入函数,使对
Figure GDA0002040808420000107
I(tIi)=fI是一个逻辑输入表达式;
(2)O为逻辑限制输出函数,使对
Figure GDA0002040808420000108
O(toi)=fO是一个逻辑输出表达式集合,fO={fO1∪fO2∪...∪fOn}表示n个逻辑输出表达式。对
Figure GDA0002040808420000109
fO1,fO2...fOn表示逻辑输出变迁集合To到库所集合P的映射;
定义9阈值函数λ
在模糊逻辑Petri网FLPN中,λ:TI,To→(0,1]为变迁到阈值范围的映射,λi={λi1i2,...λin}表示模糊逻辑变迁TI的阈值,λi→(0,1];
定义10命题集合D
(1)在模糊逻辑Petri网FLPN中,D表示所有命题的集合,D={d1∪d2∪...∪dn}表示命题集合的有限并集,d1,d2...dn表示n个命题集合;
定义11命题的置信度集合C
C表示命题的置信度集合,C={c1(pi),c2(pi)...cn(pi)},cj(pi)表示库所pi中第j个托肯所对应的命题的置信度,且cj(pi)→(0,1];
定义12FLPN中的权值集合W
在模糊逻辑Petri网FLPN中,W表示库所中托肯的权值,W={w1(pi),w2(pi)...wn(pi)}。wj(pi)表示库所pi中第j个托肯表示的属性对变迁发生的影响程度。wj(pi)→[0,1];
定义13记录变迁集合Told
Told表示已经发生过的变迁集合,初始状态下Told为空集。变迁TI或者To发生后,
Told=Told+{TI/To}
Told集合既可以防止模糊逻辑变迁的重复发生,又可以记录由FLPN建模的系统的推理过程。变迁TI/To发生后,其前集库所中的托肯不发生变化。
定义14置信度计算规则
(1)
Figure GDA0002040808420000111
P∈·tIi且pi满足tIi上的模糊逻辑变迁表达式fI
那么变迁tIi具有发生权,变迁tIi发生后,后集库所pi1中产生新的托肯,库所pi1中每个新的托肯对应命题的置信度为前集库所pi中托肯的对应命题的可信度与其对应权值的乘积之和:ci(pi1)=c1(pi)*w11+c2(pi)*w12+...+cn(pi)*w1n
(2)
Figure GDA0002040808420000112
P∈·tIi且pj不满足tIi上的模糊逻辑变迁表达式fI,那么变迁tIi具有发生权,变迁tIi发生后,后集库所pi2中产生新的托肯,库所pi2中每个新的托肯对应命题的置信度为前集库所pj中托肯的对应命题的可信度与其对应权值的乘积之和,即cj(pi2)=c1(pj)*w11+c2(pj)*w12+...+cn(pj)*w1n
定义15模糊逻辑Petri网的输入变迁引发规则
在模糊逻辑Petri网FLPN中,模糊逻辑输入变迁发生规则是“多对二”的推理模式:
(1)模糊逻辑输入变迁引发(规则)模式
Figure GDA0002040808420000113
TI={T1,T2...,Tn},I(tIi)=fI;模糊逻辑变迁表达式fI由命题集合的可信度c(pi),权值w(pi),阈值λi组成。
模糊逻辑输入变迁的引发规则:在状态标识M下,对于变迁tIi∈TI
Figure GDA0002040808420000114
如果
Figure GDA0002040808420000115
则认为变迁tIi在标识M有发生权,即M[tIi>。
(2)如果M[tIi>,在标识M下,
Figure GDA0002040808420000116
|PY|=m,pj·tIi满足模糊逻辑变迁表达式fI,变迁tIi可以发生。变迁tIi发生后,状态标识M到达一个新的状态M′,对
Figure GDA0002040808420000121
Figure GDA0002040808420000122
(3)在标识M下,
Figure GDA0002040808420000123
且M(pj)>0,pj·tIi不满足模糊逻辑变迁表达式fI,变迁tIi可以发生,从状态标识M发生变迁tIi达到一个新的状态M′,对
Figure GDA0002040808420000124
Figure GDA0002040808420000125
(4)在状态标识M下,
Figure GDA0002040808420000126
且M(pj)>0,pj·tIi不满足模糊逻辑变迁表达式fI,|PN|=n。
Figure GDA0002040808420000127
pk∈·tIi满足模糊逻辑变迁表达式fI,|PY|=m,变迁tIi可以发生,那么在新的状态标识M′下托肯的个数M′(p)的变化如下:
Figure GDA0002040808420000128
定义16模糊逻辑Petri网的输出变迁引发规则
在模糊逻辑Petri网FLPN中,模糊逻辑变迁的输出模式是“一对多”的推理模式,
Figure GDA0002040808420000129
TO={tO1,tO2...tOm};
Figure GDA00020408084200001210
M(p)>0且
Figure GDA00020408084200001211
则逻辑输出变迁tOi可以发生。若变迁tOi使能,则它可以引发演变到新的标识M′。
(1)标识M′下标识个数的变化:
Figure GDA00020408084200001212
(2)
Figure GDA00020408084200001213
P={p1,p2...pn},在M′应该满足逻辑输出变迁表达式fO1,fO2,...fOn,fO1,fO2,...fOn是由库所中的托肯以及托肯所对应命题的的置信度组成。
(3)模糊逻辑变迁tOi发生后,系统到达新的状态标识M′,在新的状态标识M′下,后集库所中托肯的个数M′(p)以及属性应当满足其弧上的变迁表达式fO1,fO2,...fOn,并且后集库所中托肯对应命题的置信度不发生变化。
2.2图形化表示
在模糊逻辑Petri网FLPN中,椭圆形表示库所,矩形表示变迁,商品发货流程中的命题用表示token,带箭头的线段表示有向弧,模糊逻辑Petri网理论的具体图形化表示如表1所示。
表1模糊逻辑Petri网元素图形化表示
Figure GDA0002040808420000131
2.3分析方法
模糊逻辑Petri网的相关分析方法,包括可达标识图,前向推理算法。
2.3.1可达标识图
可达标识图的具体定义如下所示。
定义17模糊逻辑Petri网的可达标识图
设∑=FLPN(P,T;F,I,O,D,ɑ,λ,C,W,M)为一个有界Petri网。则∑的可达标志图定义为一个三元组RG(∑)=(R(M0),E,P),其中:
E={(Mi,Mj)|Mi,Mj∈R(M0),
Figure GDA0002040808420000132
P:E→T,P(Mi.Mj)=ti当且仅当Mi[ti>Mj
称R(M0)为RG(∑)的弧集;若p(Mi,Mj)=ti则称ti为弧(Mi,Mj)的旁标。
定义18可达图生成算法
输入:FLPN=(P,T;F,I,O,D,ɑ,λ,C,W,M);
输出:FLPN的可达图RG(FLPN)
Step 0:M0作为可达图RG(FLPN)的根节点,并标之以”新”:
Step 1:while存在标注为“新”的节点,Do
任选一个标注为“新”节点,并标记为M,令集合Told=φ;
Step 2:If从Mo到M的有向路上有一个节点的标识等于M,Then把M的标注改为“旧”,返回Step 1
Step 3:If
Figure GDA0002040808420000133
Then
把M的标注改为“端点”,返回Step 1;
Step 4:对
Figure GDA0002040808420000134
并且M[tIi>,M[tOi>对每个tIi/tOi,Do
根据变迁引发规则,得到M',令Told=Told+{tIi/tOi},并在RG(FLPN)中将其标注为“新”,从M到M'画一条有向弧,并把此弧旁标以t,并标注出新状态标识M'下各个库所的托肯的个数,然后删除节点M的“新”标注,返回Step 1。
2.3.2前向推理算法
Step 1:给出流程的初始条件、目标状态(即所能达到的所有状态)和命题集合;
Step 2:确定FLPN的初始标识M0,即初始库所及初始库所中的托肯,以及托肯所对应的命题的可信度和初始已发生变迁集合Told
Step3:在状态标识M下,由变迁发生规则得出具有发生权的变迁的发生结果,并计算新状态M'下托肯及其所对应命题的置信度的变化和更新集合Told
Step 4:重复Step 3,直到没有变迁可以发生为止,则此状态为终态;根据目标库所中托肯所对应的命题的可信度来表示系统推理的结果,即为FLPN对此流程建模推理的最终结果,由Told集合中的变迁可以得出推理的过程。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (1)

1.一种基于模糊逻辑Petri网的业务流程分析方法,其特征在于:包括以下步骤:
步骤1:提出模糊逻辑Petri网理论,给出相关形式化定义、图形化表示、动态性质;
步骤2:利用模糊逻辑Petri网理论,对商家处理订单的流程进行建模;
步骤3:根据可达图生成算法,做出基于模糊逻辑Petri网的订单处理模型的可达标识图;
步骤4:通过前向推理算法,推理得出基于模糊逻辑Petri网的订单处理模型的每一步决策的可信度,得出商家为订单发货的可能性,进而得出商家处理订单的最优决策;
在步骤1中,模糊逻辑Petri网理论如下:
定义6模糊逻辑Petri网
一个模糊逻辑Petri网FLPN为一个十一元组∑=(P,T;F,I,O,D,ɑ,λ,C,W,M),其中
(1)P={P1,P2,...,Pn}是有限个库所的集合;
(2)F=(P×T)∪(T×P)包含了输入函数和输出函数,也称流关系;
(3)T={TC∪TI∪To},
Figure FDA0004041254680000011
其中:
①T表示变迁集合,TC={t1∪t2∪...∪tn},t1,t2...tn代表普通变迁;
②TI表示T的逻辑输入变迁集,且
Figure FDA0004041254680000012
的所有输入库所受一个模糊逻辑变迁表达式fI的限制;
Figure FDA0004041254680000013
pi1表示模糊逻辑变迁Ti的后集库所中序号较小的库所,pi2则表示另一个库所即变迁Ti后集库所中序号较大的库所;
④TO表示T的逻辑输出变迁集,且
Figure FDA0004041254680000014
tOi的每个输出库所受一个逻辑输出表达式fO的限制;TI={tI1∪tI2∪...∪tIn}表示逻辑输入变迁;TO={tO1∪tO2∪...∪tOn}表示逻辑输出变迁;
(4)库所pi中包含着j个托肯,每个托肯与命题集合中的一个命题相对应;命题集合di中包含着j个命题;
(5)ɑ(pi)=di,ɑ表示库所与命题集合之间的映射,即库所pi与命题集合di对应;
(6)C表示命题的置信度集合,C={c1(pi),c2(pi)...cn(pi)},cj(pi)表示库所pi中第j个托肯所对应的命题的置信度,且cj(pi)→(0,1];
(7)I为逻辑限制输入函数,使对
Figure FDA0004041254680000015
I(tIi)=fI是一个模糊逻辑变迁表达式;
(8)O为逻辑限制输出函数,使对
Figure FDA0004041254680000016
O(toi)=fO是一个逻辑输出表达式集合,fO={fO1∪fO2∪...∪fOn}表示n个逻辑输出表达式;对
Figure FDA0004041254680000017
fO1,fO2...fOn表示逻辑输出变迁集合TO到库所集合P的映射;
(9)λ:TI,TO→(0,1]为变迁到阈值范围的映射,λi={λi1i2,...λin}表示模糊逻辑变迁TI的阈值,λi→(0,1];
(10)W表示库所中托肯的权值,W={w1(pi),w2(pi)...wn(pi)},wj(pi)表示库所pi中第j个托肯表示的属性对变迁发生的影响程度,wj(pi)→[0,1];
定义7变迁集合T
在模糊逻辑Petri网FLPN中,T={TC∪TI∪To},其中,
(1)TC表示普通的变迁集合,TC={t1∪t2∪...∪tn},t1,t2...tn代表普通变迁;
(2)TI表示T的逻辑输入变迁集,且
Figure FDA0004041254680000021
Ti的所有输入库所受一个模糊逻辑变迁表达式fI的限制;
(3)
Figure FDA0004041254680000022
pi1表示模糊逻辑变迁Ti的后集库所中序号较小的库所,pi2则表示另一个库所即变迁Ti后集库所中序号较大的库所;
(4)TO表示T的逻辑输出变迁集,且
Figure FDA0004041254680000023
tOi的每个输出库所受一个逻辑输出表达式fO的限制;TI={tI1∪tI2∪...∪tIn}表示逻辑输入变迁;TO={tO1∪tO2∪...∪tOn}表示逻辑输出变迁;
定义8逻辑函数I和O
在模糊逻辑Petri网FLPN中,逻辑函数的定义如下:
(1)I为逻辑限制输入函数,对
Figure FDA0004041254680000024
I(tIi)=fI是一个模糊逻辑变迁表达式;
(2)O为逻辑限制输出函数,对
Figure FDA0004041254680000025
O(toi)=fO是一个逻辑输出表达式集合,fO={fO1∪fO2∪...∪fOn}表示n个逻辑输出表达式;对
Figure FDA0004041254680000026
fO1,fO2...fOn表示逻辑输出变迁集合To到库所集合P的映射;
定义9阈值函数λ
在模糊逻辑Petri网FLPN中,λ:TI,To→(0,1]为变迁到阈值范围的映射,λi={λi1i2,...λin}表示模糊逻辑变迁TI的阈值,λi→(0,1];
定义10命题集合D
(1)在模糊逻辑Petri网FLPN中,D表示所有命题的集合,D={d1∪d2∪...∪dn}表示命题集合的有限并集,d1,d2...dn表示n个命题集合;
定义11命题的置信度集合C
C表示命题的置信度集合,C={c1(pi),c2(pi)...cn(pi)},cj(pi)表示库所pi中第j个托肯所对应的命题的置信度,且cj(pi)→(0,1];
定义12FLPN中的权值集合W
在模糊逻辑Petri网FLPN中,W表示库所中托肯的权值,W={w1(pi),w2(pi)...wn(pi)},wj(pi)表示库所pi中第j个托肯表示的属性对变迁发生的影响程度,wj(pi)→[0,1];
定义13记录变迁集合Told
Told表示已经发生过的变迁集合,初始状态下Told为空集;变迁TI或者To发生后,
Told=Told+{TI/To}
Told集合既能够防止模糊逻辑变迁的重复发生,又能够记录由FLPN建模的系统的推理过程,变迁TI/To发生后,其前集库所中的托肯不发生变化;
定义14置信度计算规则
(1)
Figure FDA0004041254680000031
P∈·tIi,且pi满足tIi上的模糊逻辑变迁表达式fI
那么变迁tIi具有发生权,变迁tIi发生后,后集库所pi1中产生新的托肯,库所pi1中每个新的托肯对应命题的置信度为前集库所pi中托肯的对应命题的可信度与其对应权值的乘积之和:ci(pi1)=c1(pi)*w11+c2(pi)*w12+...+cn(pi)*w1n
(2)
Figure FDA0004041254680000032
P∈·tIi,且pj不满足tIi上的模糊逻辑变迁表达式fI,那么变迁tIi具有发生权,变迁tIi发生后,后集库所pi2中产生新的托肯,库所pi2中每个新的托肯对应命题的置信度为前集库所pj中托肯的对应命题的可信度与其对应权值的乘积之和,即cj(pi2)=c1(pj)*w11+c2(pj)*w12+...+cn(pj)*w1n
定义15模糊逻辑Petri网的输入变迁引发规则
在模糊逻辑Petri网FLPN中,模糊逻辑输入变迁发生规则是多对二的推理模式:
(1)模糊逻辑输入变迁引发规则模式
Figure FDA00040412546800000311
TI={T1,T2...,Tn},I(tIi)=fI;模糊逻辑变迁表达式fI由命题集合的可信度c(pi)、权值w(pi)和阈值λi组成;
模糊逻辑输入变迁的引发规则:在状态标识M下,对于变迁tIi∈TI
Figure FDA00040412546800000312
如果
Figure FDA0004041254680000033
则认为变迁tIi在标识M有发生权,即M[tIi>;
(2)如果M[tIi>,在标识M下,
Figure FDA0004041254680000034
满足模糊逻辑变迁表达式fI,变迁tIi能够发生;变迁tIi发生后,状态标识M到达一个新的状态M′,对
Figure FDA0004041254680000035
Figure FDA0004041254680000036
(3)在标识M下,
Figure FDA0004041254680000037
且M(pj)>0,pj∈·tIi不满足模糊逻辑变迁表达式fI,变迁tIi能够发生,从状态标识M发生变迁tIi达到一个新的状态M′,对
Figure FDA0004041254680000038
Figure FDA0004041254680000039
(4)在状态标识M下,
Figure FDA00040412546800000310
且M(pj)>0,pj∈·tIi不满足模糊逻辑变迁表达式fI,|PN|=n;
Figure FDA0004041254680000041
pk∈·tIi满足模糊逻辑变迁表达式fI,|PY|=m,变迁tIi能够发生,那么在新的状态标识M′下,托肯的个数M′(p)的变化如下:
Figure FDA0004041254680000042
定义16模糊逻辑Petri网的输出变迁引发规则
在模糊逻辑Petri网FLPN中,模糊逻辑变迁的输出模式是一对多的推理模式;
Figure FDA0004041254680000043
TO={tO1,tO2...tOm};
Figure FDA0004041254680000044
M(p)>0且
Figure FDA0004041254680000045
则逻辑输出变迁tOi能够发生;若变迁tOi使能,则它能够引发演变到新的标识M′;
(1)标识M′下标识个数的变化:
Figure FDA0004041254680000046
(2)
Figure FDA0004041254680000047
P={p1,p2...pn},在M′满足逻辑输出变迁表达式fO1,fO2,...fOn,fO1,fO2,...fOn是由库所中的托肯以及托肯所对应命题的的置信度组成;
(3)模糊逻辑变迁tOi发生后,系统到达新的状态标识M′,在新的状态标识M′下,后集库所中托肯的个数M′(p)以及属性满足其弧上的变迁表达式fO1,fO2,...fOn,并且后集库所中托肯对应命题的置信度不发生变化;
在步骤2中,商家处理订单的流程具体包括如下步骤:
输入:∑=(P,T;F,I,O,D,ɑ,λ,C,W,M);
步骤1:确定系统的初始状态:客户A和客户B同时提交订单;
命题集合包含客户提交订单号、客户交易成功、客户按时归还贷款、库存量满足订单商品要求、商品是畅销款、商品生产日期符合要求、订单商品的合格率以及运输商品的费用;
步骤2:检查客户的信誉度,若客户交易成功或者客户按时归还贷款的可信度符合标准,则转到步骤3;
步骤3:检查订单,若订单商品的合格率以及生产日期达到标准,则转到步骤4;若不满足,则转到步骤7;
步骤4:验货,检查库存是否满足订单的数量,核查订单商品是否为热销款;若检查合格,则转入步骤5;
步骤5:商家进行成本核算,若满足盈利要求,则变迁发生,然后转到步骤6;若不满足,则转到步骤7;
步骤6:得出商家为订单发货的概率,准备发货;
步骤7:得出商家为订单发货的概率,取消订单;
输出:商家对订单的处理结果;
在步骤3中,其中,可达标识图的具体定义如下:
定义17模糊逻辑Petri网的可达标识图
设∑=FLPN(P,T;F,I,O,D,ɑ,λ,C,W,M)为一个有界Petri网,则∑的可达标志图定义为一个三元组RG(∑)=(R(M0),E,P);其中:
E={(Mi,Mj)|Mi,Mj∈R(M0),
Figure FDA0004041254680000051
P:E→T,P(Mi.Mj)=ti
当且仅当Mi[ti>Mj,R(M0)为RG(∑)的弧集;若p(Mi,Mj)=ti,则ti为弧(Mi,Mj)的旁标;
定义18可达图生成算法
输入:FLPN=(P,T;F,I,O,D,ɑ,λ,C,W,M);
输出:FLPN的可达图RG(FLPN);
Step 0:M0作为可达图RG(FLPN)的根节点,并标之以“新”;
Step 1:如果存在标注为“新”的节点,则任选一个标注为“新”节点,并标记为M,令集合Told=φ;
Step 2:如果从Mo到M的有向路上有一个节点的标识等于M,则将M的标注改为“旧”,返回Step 1;
Step 3:如果
Figure FDA0004041254680000052
则将M的标注改为“端点”,返回Step 1;
Step 4:对
Figure FDA0004041254680000053
并且M[tIi>,M[tOi>对每个tIi/tOi,根据变迁引发规则,得到M',令Told=Told+{tIi/tOi},并在RG(FLPN)中将其标注为“新”,从M到M'画一条有向弧,并将此弧旁标以t,并标注出新状态标识M'下各个库所的托肯的个数,然后删除节点M的“新”标注,返回Step 1;
在步骤4中,具体包括如下步骤:
步骤4.1:根据前向推理算法和初始条件,检查客户的信誉度,得出客户信誉的达标的可信度;
步骤4.2:检查订单,若订单商品的合格率以及生产日期达到标准、库存是否重组、订单商品是否为热销款,由前向推理算法得出订单满足要求的概率;
步骤4.3:商家进行成本核算,最后推理得出商家为订单发货的可信度。
CN201910191368.3A 2019-03-14 2019-03-14 一种基于模糊逻辑Petri网的业务流程分析方法 Active CN110033125B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910191368.3A CN110033125B (zh) 2019-03-14 2019-03-14 一种基于模糊逻辑Petri网的业务流程分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910191368.3A CN110033125B (zh) 2019-03-14 2019-03-14 一种基于模糊逻辑Petri网的业务流程分析方法

Publications (2)

Publication Number Publication Date
CN110033125A CN110033125A (zh) 2019-07-19
CN110033125B true CN110033125B (zh) 2023-04-18

Family

ID=67236011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910191368.3A Active CN110033125B (zh) 2019-03-14 2019-03-14 一种基于模糊逻辑Petri网的业务流程分析方法

Country Status (1)

Country Link
CN (1) CN110033125B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632901B (zh) * 2019-08-09 2022-06-07 西安电子科技大学 基于析取型广义互斥约束Petri网控制器简化及设计方法
CN112132459B (zh) * 2020-09-22 2023-10-10 山东理工大学 基于Petri网的化学品泄漏事件应急处置流程性能分析方法
CN112766782A (zh) * 2021-01-28 2021-05-07 哈尔滨工业大学(深圳) 政务流程的建模方法、调度方法、智能设备和存储介质
CN113610474B (zh) * 2021-08-16 2023-09-22 傲林科技有限公司 一种基于事件网的库存管理方法和管理系统
CN113902229B (zh) * 2021-12-09 2022-04-15 武汉市胜意科技发展有限公司 一种基于模糊Petri网的航班延误波及预测方法及系统
CN118657366A (zh) * 2024-08-19 2024-09-17 广东电网有限责任公司 业务系统流程与企业架构的遵从度评估方法、装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103699730A (zh) * 2013-12-18 2014-04-02 华侨大学 一种基于Petri网的组合逻辑FPGA系统可达图的生成方法
CN103761387A (zh) * 2014-01-20 2014-04-30 华侨大学 一种fpga组合逻辑系统顺序规范的形式化验证方法
CN108647377A (zh) * 2018-03-28 2018-10-12 山东科技大学 一种基于逻辑博弈petri网的多方协同分析方法
CN109039739A (zh) * 2018-08-01 2018-12-18 南瑞集团有限公司 一种改进模糊Petri的电力通信现场故障诊断方法
CN109145350A (zh) * 2018-06-15 2019-01-04 山东科技大学 一种基于队列逻辑Petri网的过程分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103699730A (zh) * 2013-12-18 2014-04-02 华侨大学 一种基于Petri网的组合逻辑FPGA系统可达图的生成方法
CN103761387A (zh) * 2014-01-20 2014-04-30 华侨大学 一种fpga组合逻辑系统顺序规范的形式化验证方法
CN108647377A (zh) * 2018-03-28 2018-10-12 山东科技大学 一种基于逻辑博弈petri网的多方协同分析方法
CN109145350A (zh) * 2018-06-15 2019-01-04 山东科技大学 一种基于队列逻辑Petri网的过程分析方法
CN109039739A (zh) * 2018-08-01 2018-12-18 南瑞集团有限公司 一种改进模糊Petri的电力通信现场故障诊断方法

Also Published As

Publication number Publication date
CN110033125A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
CN110033125B (zh) 一种基于模糊逻辑Petri网的业务流程分析方法
US20210166151A1 (en) Attributing reasons to predictive model scores
Mousavi et al. Designing a model of intuitionistic fuzzy VIKOR in multi-attribute group decision-making problems
Bahri et al. Implementation of total quality management and its effect on organizational performance of manufacturing industries through organizational culture in South Sulawesi, Indonesia
Hanga et al. A graph-based approach to interpreting recurrent neural networks in process mining
Agami et al. An innovative fuzzy logic based approach for supply chain performance management
Li et al. Three‐way decisions based on some Hamacher aggregation operators under double hierarchy linguistic environment
Vanvuchelen et al. The use of continuous action representations to scale deep reinforcement learning for inventory control
Agarwal et al. Machine learning based explainable financial forecasting
US20120136822A1 (en) Key performance indicator feedback in rule-based system
Redelinghuys et al. A framework for the assessment of the creativity of product design teams
Zhang et al. Constraint-aware policy optimization to solve the vehicle routing problem with time windows
CN115953036A (zh) 基于跨模态分解和深度学习的网络风险预测方法及系统
Satapathy Effort estimation methods in software development using machine learning algorithms
Rahaie et al. Critic learning in multi agent credit assignment problem
Ginters et al. The use of Bayesian acyclic network to assess the impact of digital technology attributes on sustainability pillars
Filipkovska et al. Managerial decision support making in economic systems based on cognitive modeling
Bazarhanova et al. A belief rule-based environmental responsibility assessment for small and medium-sized enterprise
Jalilifard et al. Friendship is all we need: A multi-graph embedding approach for modeling customer behavior
Grzeszczyk Symbolic and non-symbolic project evaluation methods
Kireev et al. Cognitive Model of the Megaproject’s Customer Satisfaction Based on the Factors of Long-term Loyalty Programs
Krasnoproshin et al. DECISION MAKING AND BIG DATA
Wang Establishment of business risk information value assessment model based on RAROC
Uygun et al. A model for measuring institutionalization level of SMEs
US20240202516A1 (en) First-to-saturate single modal latent feature activation for explanation of machine learning models

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant