CN110021771B - Preparation method of Schottky junction fuel cell based on SnO2-SDC semiconductor-ion conductor - Google Patents
Preparation method of Schottky junction fuel cell based on SnO2-SDC semiconductor-ion conductor Download PDFInfo
- Publication number
- CN110021771B CN110021771B CN201910326245.6A CN201910326245A CN110021771B CN 110021771 B CN110021771 B CN 110021771B CN 201910326245 A CN201910326245 A CN 201910326245A CN 110021771 B CN110021771 B CN 110021771B
- Authority
- CN
- China
- Prior art keywords
- sdc
- sno
- nca
- semiconductor
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 40
- 239000010416 ion conductor Substances 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 239000002131 composite material Substances 0.000 claims abstract description 28
- XOLBLPGZBRYERU-UHFFFAOYSA-N SnO2 Inorganic materials O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000001035 drying Methods 0.000 claims abstract description 10
- 239000002002 slurry Substances 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 238000000227 grinding Methods 0.000 claims abstract 3
- 238000002156 mixing Methods 0.000 claims abstract 3
- 239000011248 coating agent Substances 0.000 claims abstract 2
- 238000000576 coating method Methods 0.000 claims abstract 2
- 239000002244 precipitate Substances 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910021645 metal ion Inorganic materials 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 6
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims description 4
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 claims description 4
- 229940116411 terpineol Drugs 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000000047 product Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 238000003786 synthesis reaction Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 239000007787 solid Substances 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 28
- 239000010410 layer Substances 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 7
- 239000002001 electrolyte material Substances 0.000 description 5
- 238000011056 performance test Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910002437 Ce0.8Sm0.2O2−δ Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910004631 Ce(NO3)3.6H2O Inorganic materials 0.000 description 1
- 229910002434 Ce0.8Gd0.2O2−δ–CoFe2O4 Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910017018 Ni0.8Co0.15Al0.05 Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910021116 Sm(NO3)3.6H2O Inorganic materials 0.000 description 1
- 229910002852 Sm(NO3)3·6H2O Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000755 effect on ion Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/881—Electrolytic membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
技术领域technical field
本发明属于固体氧化物燃料电池领域,具体的基于SnO2-SDC半导体-离子导体的肖特基结燃料电池的制备方法。The invention belongs to the field of solid oxide fuel cells, in particular to a preparation method of a Schottky junction fuel cell based on SnO 2 -SDC semiconductor-ion conductor.
背景技术Background technique
固体氧化物燃料电池(Solid Oxide Fuel Cell,简称SOFC)属于第三代燃料电池,是一种在中高温下直接将储存在燃料和氧化剂中的化学能高效、环境友好地转化成电能的全固态化学发电装置。具有高的能量转化效率(可达到50%至80%),传统的燃料电池由三个部件构成:电解质、阴极、阳极,其中电解质是燃料电池的核心,它的特性对于确定燃料电池的特定领域至关重要,甚至能决定特定温度下的能量转化效率。从电解质的研发过程来看,自从钇稳定氧化锆(YSZ)被发现并首次应用以来,由于具有较高的离子导电率和良好的电极匹配性,而且在氢氧气氛下具有很好的化学稳定性,因此被视为最成功的电解质材料,一直主导着电解质材料的发展。然而为了利用YSZ作为电解质,SOFC需要高达1000℃的工作温度来获得足够高的离子导电性,但电池在高温下工作容易造成对电池配套的材料要求高、电池封接困难,容易导致电极烧结、电解质和电极发生界面扩散以及热膨胀不匹配,进而降低电池寿命。目前,只有极少数的电解质材料能够在低温(<600℃)下以所需的导电率运行,因此为了在低温下操作SOFC,强烈要求发展和开发新的电解质材料。Solid oxide fuel cell (Solid Oxide Fuel Cell, SOFC for short) belongs to the third-generation fuel cell, which is an all-solid-state fuel cell that directly converts chemical energy stored in fuel and oxidant into electrical energy efficiently and environmentally friendly at medium and high temperature. Chemical power plant. With high energy conversion efficiency (up to 50% to 80%), traditional fuel cells consist of three components: electrolyte, cathode, and anode, where the electrolyte is the core of the fuel cell, and its characteristics are important to determine the specific field of the fuel cell crucial, even determining the energy conversion efficiency at a specific temperature. From the research and development process of the electrolyte, since yttrium-stabilized zirconia (YSZ) was discovered and applied for the first time, due to its high ionic conductivity, good electrode matching, and good chemical stability in a hydrogen-oxygen atmosphere Therefore, it is regarded as the most successful electrolyte material and has been dominating the development of electrolyte materials. However, in order to use YSZ as the electrolyte, SOFC needs a working temperature as high as 1000 °C to obtain sufficiently high ionic conductivity, but the battery operating at high temperature will easily lead to high requirements for battery supporting materials and difficult battery sealing, which may easily lead to electrode sintering, Interfacial diffusion and thermal expansion mismatches between the electrolyte and electrodes reduce battery life. Currently, only very few electrolyte materials are capable of operating at low temperatures (<600 °C) with the desired electrical conductivity, so the development and development of new electrolyte materials is strongly demanded in order to operate SOFCs at low temperatures.
研发中低温(500-800℃)下具有高离子导电率的电解质材料,并且将其应用到燃料电池领域当中,是实现SOFC低温下工作的有效途径。复合两相或者三相材料可以极大的提高材料的离子导电率,并且可以有效降低活化能。最近研究表明半导体-离子导体复合异质结构在中低温区具有高的离子电导率。J.Garcia-Barriocanal等人报道YSZ/SrTiO3多层膜组成的异质结构相对于纯的YSZ,离子电导率提高了8个量级[J.G.Barriocanal,A.R.Calzada,M.Varela, Z.Sefrioui,E.Iborra,C.Leon,S.J.Pennycook,S.Santamaria.Science,2008,321,676-680.]。 Lin等人报道Ce0.8Gd0.2O2-δ–CoFe2O4组成的体异质结复合材料中晶界离子电导率相对于单相材料有明显提升[Y.Lin,S.M.Fang,D.Su,K.S.Brinkman,F.L.Chen.Nature Communications.6(2015)6824.]。由此可见半导体-离子导体复合异质结构对离子传导具有增强效应是不可争辩的事实。虽然半导体-离子导体异质结复合材料相对于纯离子导体离子电导率有大幅度提高,但很少有文献报道把该材料作为电解质隔膜组装SOFC,这主要是因为按照传统的电化学理论只要中间电解质层具有电子导电性,电池开路电压和功率输出会大幅度下降,因此想要把半导体-离子导体异质结复合材料应用到燃料电池中,传统的电池结构必须做出相应的改进。肖特基燃料电池是把这种复合材料应用到燃料电池中的一个成功案例。Zhu 报道利用离子导体材料NSDC(钐掺杂氧化铈-碳酸钠复合材料)和半导体LCN(钴锂共掺杂 NiO),组成Ni/LCN-NSDC/Ag单部件燃料电池,其中LCN在还原气氛H2的作用下还原成金属Ni,与没有还原的LCN形成肖特基结,组成肖特基燃料电池。该种新型结构的电池其性能是传统三部件燃料电池的2倍[B.Zhu,P.D.Lund,R.Raza,Y.Ma,L.D.Fan,M.Afzal,J. Patakangas,Y.J.He,Y.F.Zhao,W.Y.Tan,Q.A.Huang,J.Zhang,H.Wang.Advanced Energy Materials 5(2015)1401895.]。The development of electrolyte materials with high ionic conductivity at medium and low temperature (500-800 °C) and their application in the field of fuel cells is an effective way to realize SOFC low temperature operation. The composite two-phase or three-phase material can greatly improve the ionic conductivity of the material, and can effectively reduce the activation energy. Recent studies have shown that semiconductor-ion-conductor composite heterostructures have high ionic conductivity in the mid-low temperature region. J.Garcia-Barriocanal et al. reported that the heterostructure composed of YSZ/SrTiO 3 multilayer films improved the ionic conductivity by 8 orders of magnitude relative to pure YSZ [JG Arriocanal, ARCalzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, SJ Pennycook, S. Santamaria. Science, 2008, 321, 676-680.]. Lin et al. reported that the ionic conductivity of grain boundaries in bulk heterojunction composites composed of Ce 0.8 Gd 0.2 O 2-δ –CoFe 2 O 4 was significantly improved compared with single-phase materials [Y.Lin, SMFang, D.Su, KSBrinkman, FL Chen. Nature Communications. 6(2015) 6824.]. It can be seen that it is an indisputable fact that the semiconductor-ion conductor composite heterostructure has an enhanced effect on ion conduction. Although semiconductor-ion conductor heterojunction composites have a large improvement in ionic conductivity compared to pure ion conductors, few literatures report using this material as an electrolyte separator to assemble SOFCs, mainly because according to traditional electrochemical theory, only the intermediate The electrolyte layer has electronic conductivity, and the open-circuit voltage and power output of the battery will be greatly reduced. Therefore, if the semiconductor-ion conductor heterojunction composite material is to be applied to the fuel cell, the traditional cell structure must be improved accordingly. The Schottky fuel cell is a successful case of applying this composite material to a fuel cell. Zhu reported the use of ionic conductor material NSDC (samarium-doped ceria-sodium carbonate composite material) and semiconductor LCN (cobalt-lithium co-doped NiO) to form a Ni/LCN-NSDC/Ag single-component fuel cell, in which LCN was in a reducing atmosphere H Under the action of 2 , it is reduced to metallic Ni, and forms a Schottky junction with LCN that is not reduced to form a Schottky fuel cell. The performance of the battery with this new structure is twice that of the traditional three-component fuel cell [B.Zhu,PDLund,R.Raza,Y.Ma,LDFan,M.Afzal,J. Patakangas,YJHe,YFZhao,WYTan,QAHuang, J. Zhang, H. Wang. Advanced Energy Materials 5 (2015) 1401895.].
发明内容SUMMARY OF THE INVENTION
本发明的主要目的是研发出在中低温下(500-800℃)具有高离子电导率的SDC-SnO2新型半导体-离子导体复合材料,并成功将其用作离子传输层,构筑肖特基燃料电池,旨在实现电池在低温下也能表现出优异的性能输出。The main purpose of the present invention is to develop a new SDC- SnO2 semiconductor-ion conductor composite material with high ionic conductivity at medium and low temperature (500-800°C), and successfully use it as an ion transport layer to construct a Schottky Fuel cells are designed to achieve excellent performance output even at low temperatures.
本发明的SDC-SnO2半导体-离子导体复合材料制备步骤如下:The preparation steps of the SDC-SnO 2 semiconductor-ion conductor composite material of the present invention are as follows:
基于SnO2-SDC半导体-离子导体的肖特基结燃料电池的制备方法,包括以下步骤:The preparation method of the Schottky junction fuel cell based on SnO 2 -SDC semiconductor-ion conductor includes the following steps:
1)合成离子导体材料Sm掺杂的Ce0.8Sm0.2O2-δ即SDC;1) Synthesize ion conductor material Sm-doped Ce 0.8 Sm 0.2 O 2-δ , namely SDC;
2)将制得的SDC与SnO2按照不同比例充分研磨,得到不同SnO2含量的SDC/SnO2复合材料;SDC/SnO2复合材料的SnO2质量含量为10%-60%。2) Fully grind the prepared SDC and SnO 2 according to different proportions to obtain SDC/SnO 2 composite materials with different SnO 2 contents; the SnO 2 mass content of the SDC/SnO 2 composite material is 10%-60%.
3)按照以下重量比例,把2g的NCAL粉末加入到5mL的松油醇中,研磨10min使两者充分均匀混合,制备NCAL浆料;把NCAL浆料涂在厚度为2mm的泡沫镍上,然后在干燥箱中120℃干燥1h,制成Ni-NCAL电极;3) According to the following weight ratio, add 2g of NCAL powder to 5mL of terpineol, grind for 10min to make the two fully and evenly mix, and prepare NCAL slurry; apply the NCAL slurry on the nickel foam with a thickness of 2mm, then Dry in a drying oven at 120 °C for 1 h to make Ni-NCAL electrodes;
4)称取0.35g的SDC-SnO2半导体-离子导体复合材料,把Ni-NCAL层、SDC-SnO2复合粉末、Ni-NCAL层依次放入到模具中,利用液压机施加9MPa压力,将三层结构压制成电池坯片。4) Weigh 0.35g of SDC-SnO 2 semiconductor-ion conductor composite material, put the Ni-NCAL layer, SDC-SnO 2 composite powder, and Ni-NCAL layer into the mold in turn, apply a pressure of 9 MPa by a hydraulic press, and put the three The layered structure is pressed into a cell blank.
其中,合成SDC,包括以下步骤:Wherein, synthesizing SDC includes the following steps:
a)按照SDC分子式中Ce3+:Sm3+摩尔比4:1,等比例的称取相应质量的Ce(NO3)3·6H2O 和Sm(NO3)3·6H2O,并将溶解到适量的去离子水中,搅拌均匀制成1mol/L的金属离子混合溶液;a) According to the Ce 3+ :Sm 3+ molar ratio of 4:1 in the SDC molecular formula, weigh Ce(NO 3 ) 3 .6H 2 O and Sm(NO 3 ) 3 .6H 2 O in equal proportions, and Dissolve in an appropriate amount of deionized water and stir to make a 1mol/L metal ion mixed solution;
b)按照碳酸氢根离子:金属离子摩尔比为3:1的比例称取适量的NH4HCO3粉末,然后溶解到去离子水中制成1mol/L的NH4HCO3溶液;b) According to the ratio of bicarbonate ion: metal ion molar ratio of 3:1, weigh an appropriate amount of NH 4 HCO 3 powder, and then dissolve it into deionized water to make 1 mol/L NH 4 HCO 3 solution;
c)用胶头滴管将NH4HCO3溶液缓慢的滴加到金属离子混合溶液中,此过程持续搅拌,形成白色沉淀,将沉淀过滤并用去离子水多次洗涤,然后将白色沉淀物放入干燥箱中120℃干燥12h;c) Slowly add the NH 4 HCO 3 solution into the metal ion mixed solution dropwise with a plastic-tip dropper. During this process, keep stirring to form a white precipitate. The precipitate is filtered and washed with deionized water for many times, and then the white precipitate is placed Dry in a drying oven at 120°C for 12h;
d)最后将干燥产物放入马弗炉800℃下烧结4h以获得SDC粉末。d) Finally, the dried product was put into a muffle furnace for sintering at 800° C. for 4 h to obtain SDC powder.
本发明提供的基于SnO2-SDC半导体-离子导体的肖特基结燃料电池的制备方法,具有的技术优势:The preparation method of the Schottky junction fuel cell based on SnO 2 -SDC semiconductor-ion conductor provided by the present invention has the following technical advantages:
(1)本发明中选用的SDC和SnO2两种材料,具有价格低廉,制备方法简单等优点。且将SDC离子导体和SnO2半导体复合后,能在较低温度下获得高的离子电导率,这是该种电池能够在低温区获得较好电池性能输出的根本原因。(1) The two materials, SDC and SnO 2 selected in the present invention, have the advantages of low price and simple preparation method. And after the composite of SDC ionic conductor and SnO 2 semiconductor, high ionic conductivity can be obtained at lower temperature, which is the fundamental reason why this kind of battery can obtain better battery performance output in low temperature region.
(2)肖特基结燃料电池是迄今为止最简单的燃料电池技术,具有低成本的材料和简单的制造工艺,只需要一种由(P或N)半导体-离子材料制成的复合材料。肖特基结燃料电池也是物理和电化学过程以协同方式结合的新的先进技术,以实现卓越的器件性能。(2) Schottky junction fuel cells are by far the simplest fuel cell technology with low-cost materials and simple fabrication processes, requiring only a composite material made of (P or N) semiconductor-ionic materials. Schottky junction fuel cells are also new advanced technologies where physical and electrochemical processes are combined in a synergistic manner to achieve superior device performance.
(3)在550℃和500℃温度下测试,电池表现出良好的功率输出。电池在中低温区,具有较高的功率输出,将SOFC的操作温度成功降低到600度以下。(3) Tested at 550°C and 500°C, the battery showed good power output. The battery has a high power output in the medium and low temperature region, and successfully lowered the operating temperature of the SOFC to below 600 degrees.
(4)此外,尽管肖特基结在这里特别适用于燃料电池情况,其他潜在的能源应用也可能被设想。该发明和科学原理的揭示,为燃料电池和创新能源技术提供了一条新的道路,加快了燃料电池的商业化进程。(4) Furthermore, although Schottky junctions are particularly suitable for the fuel cell case here, other potential energy applications may also be envisaged. The invention and the revealing of scientific principles provide a new path for fuel cells and innovative energy technologies, and accelerate the commercialization of fuel cells.
附图说明Description of drawings
图1为实施例用不同SDC含量燃料电池在550℃下性能测试结果;Figure 1 shows the performance test results of fuel cells with different SDC contents at 550°C in the embodiment;
图2为实施例SDC-SnO2最佳比例制备的电池在500℃下性能测试结果;Figure 2 shows the performance test results of the battery prepared with the best ratio of SDC-SnO 2 at 500 °C;
图3为实施例所得的肖特基燃料电池的SEM截面图;3 is a SEM cross-sectional view of the Schottky fuel cell obtained in the embodiment;
图4为实施例所得的肖特基结燃料池两端施加扫描电压所得到的整流曲线图。FIG. 4 is a rectification curve diagram obtained by applying a scan voltage across the Schottky junction fuel cell obtained in the embodiment.
具体实施方式Detailed ways
结合实施例说明本发明的具体技术方案。The specific technical solutions of the present invention are described with reference to the embodiments.
(1)合成离子导体材料Sm掺杂的Ce0.8Sm0.2O2-δ即SDC,所使用的方法是共沉淀法:(1) Synthesize Ce 0.8 Sm 0.2 O 2-δ doped with ionic conductor material Sm, namely SDC, and the method used is co-precipitation method:
a、按照SDC分子式中各元素(Ce和Sm)的化学计量比即Ce3+:Sm3+为4:1等比例的称取相应质量的Ce(NO3)3·6H2O和Sm(NO3)3·6H2O,并将上述两种样品溶解到适量的去离子水中,充分搅拌后,制成均匀的、浓度为1mol/L的混合溶液;a. According to the stoichiometric ratio of each element (Ce and Sm) in the SDC molecular formula, that is, Ce 3+ : Sm 3+ is 4:1 and equal proportions of Ce(NO 3 ) 3 6H 2 O and Sm ( NO 3 ) 3 ·6H 2 O, and the above two samples were dissolved in an appropriate amount of deionized water, and after fully stirring, a uniform mixed solution with a concentration of 1 mol/L was prepared;
b、按照碳酸氢根离子:金属离子为3:1的比例称取适量的NH4HCO3粉末,然后将其溶解于去离子水,制成1mol/L的NH4HCO3溶液;b. Weigh an appropriate amount of NH 4 HCO 3 powder according to the ratio of bicarbonate ion: metal ion to 3:1, and then dissolve it in deionized water to make 1 mol/L NH 4 HCO 3 solution;
c、用胶头滴管将NH4HCO3溶液缓慢的滴加到步骤2合成的金属离子混合溶液中(此过程要持续搅拌)形成白色沉淀。经过充分搅拌后,将沉淀过滤并用去离子水多次洗涤,然后将白色沉淀物放入干燥箱中120℃干燥12h;c. Slowly add the NH 4 HCO 3 solution dropwise to the metal ion mixed solution synthesized in
d、最后将干燥产物放入马弗炉800℃下烧结4h以获得SDC粉末。d. Finally, the dried product was put into a muffle furnace for sintering at 800° C. for 4 hours to obtain SDC powder.
SnO2购买于国药集团化学试剂有限公司;SnO 2 was purchased from Sinopharm Chemical Reagent Co., Ltd.;
(2)将制得的SDC与SnO2按照不同比例充分研磨,得到不同SnO2含量(10%,20%,30%,40%,50%,60%)的SDC-SnO2半导体-离子导体复合材料。(2) Fully grind the prepared SDC and SnO 2 according to different proportions to obtain SDC-SnO 2 semiconductor-ion conductors with different SnO 2 contents (10%, 20%, 30%, 40%, 50%, 60%) composite material.
(3)燃料电池制作过程:(3) Manufacturing process of fuel cell:
a电池制备:aBattery preparation:
(a)把2g的NCAL粉末加入到5mL的松油醇中,研磨10min使两者充分均匀混合,制备NCAL浆料。把制备好的浆料涂在厚度为2mm的泡沫镍上,然后在干燥箱中120℃干燥1h,完成Ni-NCAL电极的制备;(a) Add 2 g of NCAL powder to 5 mL of terpineol, grind for 10 min to make the two fully and uniformly mixed to prepare NCAL slurry. The prepared slurry was coated on nickel foam with a thickness of 2 mm, and then dried in a drying oven at 120 °C for 1 h to complete the preparation of Ni-NCAL electrodes;
Ni0.8Co0.15Al0.05LiOδ(NCAL)购买于天津宝摩联合高科技公司,Ni 0.8 Co 0.15 Al 0.05 LiO δ (NCAL) was purchased from Tianjin Baomo United High-Tech Company,
(b)称取0.35gSDC-SnO2半导体-离子导体复合材料,把Ni-NCAL层、SDC-SnO2复合粉末、Ni-NCAL层依次放入到模具中,利用液压机施加9MPa压力,将三层结构压制成电池坯片。(b) Weigh 0.35g of SDC-SnO 2 semiconductor-ion conductor composite material, put the Ni-NCAL layer, SDC-SnO 2 composite powder, and Ni-NCAL layer into the mold in turn, and apply a pressure of 9 MPa by a hydraulic press to make the three layers The structure is pressed into a battery blank.
b电池测试:bBattery test:
将压制好的坯片放入测试炉中,在550℃预烧结35min。烧结完成后,在550℃测试温度下,通入H2为燃料,空气为氧化剂,氢气流量控制为120ml/min进行电池性能测试,电池表现出良好的功率输出和较高的开路电压;改变SDC/SnO2的重量百分比,获得不同SnO2含量的复合材料,组装成电池,测试电池性能。获得最优的SnO2含量。The pressed green sheets were put into the test furnace and pre-sintered at 550°C for 35 minutes. After the sintering is completed, at the test temperature of 550 °C, the battery performance test is carried out by feeding H 2 as fuel, air as oxidant, and hydrogen flow control as 120 ml/min. The battery shows good power output and high open circuit voltage; change SDC /SnO 2 weight percentage, obtained composite materials with
图1为实施例用不同SDC含量的SDC-SnO2复合材料组成燃料电池,在550℃下性能测试结果。如图1所示,电池性能随着SnO2含量的增多开始在逐渐增大,然后再减小。当SnO2含量为20%时,电池性能达到最大值1059mW/cm2。随着SnO2的含量进一步增加,电池内部的电子浓度增加,SnO2形成了连续的电子导电通道,发生一定程度的短路,因此电池性能降低。Fig. 1 shows the fuel cell composed of SDC-SnO 2 composite materials with different SDC contents in the example, and the performance test results at 550°C. As shown in Figure 1, the battery performance starts to increase gradually with the increase of SnO2 content, and then decreases. When the SnO2 content is 20%, the battery performance reaches the maximum value of 1059 mW/cm 2 . As the content of SnO 2 further increases, the electron concentration inside the battery increases, SnO 2 forms a continuous electron conduction channel, and a short circuit occurs to a certain extent, so the battery performance decreases.
降低测试温度到500℃,测试电池性能输出。验证电池的低温工作性能。Lower the test temperature to 500°C to test the battery performance output. Verify the low temperature operating performance of the battery.
如图2为实施例SDC-SnO2最佳比例制备的电池在500℃下性能测试结果,电池在低温操作(500℃)仍具有很好的性能,可以达到500mW/cm2。Figure 2 shows the performance test results of the battery prepared with the optimum ratio of SDC-SnO 2 at 500°C. The battery still has good performance at low temperature (500°C), and can reach 500mW/cm 2 .
如图3为基于SDC-SnO2半导体-离子导体复合材料组装成的肖特基燃料电池的SEM截面图。该电池具有很明显的三层结构,两边是对称的涂有NCAL的泡沫镍电极,两电极层厚度都为200μm。中间是SDC-SnO2复合材料功能层,厚度为500μm。如图4为对SnO2-SDC 半导体-离子导体构筑的肖特基结燃料池两端施加扫描电压所得到的整流曲线图。Figure 3 is a SEM cross-sectional view of the Schottky fuel cell assembled based on the SDC-SnO 2 semiconductor-ion conductor composite material. The battery has an obvious three-layer structure, with symmetrical nickel foam electrodes coated with NCAL on both sides, and the thickness of both electrode layers is 200 μm. In the middle is the SDC- SnO2 composite functional layer with a thickness of 500 μm. FIG. 4 is a rectification curve diagram obtained by applying a scanning voltage to both ends of the Schottky junction fuel cell constructed by SnO 2 -SDC semiconductor-ion conductor.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910326245.6A CN110021771B (en) | 2019-04-23 | 2019-04-23 | Preparation method of Schottky junction fuel cell based on SnO2-SDC semiconductor-ion conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910326245.6A CN110021771B (en) | 2019-04-23 | 2019-04-23 | Preparation method of Schottky junction fuel cell based on SnO2-SDC semiconductor-ion conductor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110021771A CN110021771A (en) | 2019-07-16 |
CN110021771B true CN110021771B (en) | 2020-07-28 |
Family
ID=67192168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910326245.6A Active CN110021771B (en) | 2019-04-23 | 2019-04-23 | Preparation method of Schottky junction fuel cell based on SnO2-SDC semiconductor-ion conductor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110021771B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113571750B (en) * | 2021-07-14 | 2023-03-17 | 湖北大学 | Wide bandgap semiconductor electrolyte and preparation method thereof, wide bandgap semiconductor electrolyte fuel cell and assembly method thereof |
CN114824326A (en) * | 2022-04-28 | 2022-07-29 | 武汉软件工程职业学院 | Novel symmetrical electrode material, fuel cell and preparation method thereof |
CN115188975B (en) * | 2022-06-23 | 2023-04-07 | 苏州科技大学 | High-activity anti-carbon deposition solid oxide fuel cell anode material and preparation method and application thereof |
CN114976167A (en) * | 2022-07-01 | 2022-08-30 | 燕山大学 | Solid oxide fuel cell based on p-n heterojunction double-layer electrolyte and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3068264B2 (en) * | 1991-07-31 | 2000-07-24 | 三菱重工業株式会社 | Solid electrolyte fuel cell |
CN104103842B (en) * | 2014-07-02 | 2017-01-04 | 湖北大学 | A kind of electroless matter barrier film single part fuel cell with Schottky junction type |
CN105576252B (en) * | 2016-03-21 | 2018-02-27 | 吉林大学 | SOFC based on semiconductor junction effect and preparation method thereof |
CN106602114A (en) * | 2017-01-22 | 2017-04-26 | 河北博威集成电路有限公司 | Fuel cell electrolyte and PIN configuration solid oxide fuel cell |
CN107768690B (en) * | 2017-08-29 | 2021-05-07 | 湖北大学 | A kind of semiconductor thin film electrolyte fuel cell and its production method |
CN107994234B (en) * | 2017-11-06 | 2020-05-22 | 深圳大学 | Ceramic fuel cell and preparation method thereof |
-
2019
- 2019-04-23 CN CN201910326245.6A patent/CN110021771B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110021771A (en) | 2019-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Development of novel low-temperature SOFCs with co-ionic conducting SDC-carbonate composite electrolytes | |
CN110021771B (en) | Preparation method of Schottky junction fuel cell based on SnO2-SDC semiconductor-ion conductor | |
CN101359746B (en) | Large size tubular solid oxide fuel cell and preparation thereof | |
Chen et al. | Fabrication and performance of anode-supported proton conducting solid oxide fuel cells based on BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3-δ electrolyte by multi-layer aqueous-based co-tape casting | |
CN103390739B (en) | A kind of Solid Oxide Fuel Cell ceria-based electrolyte interlayer and preparation thereof | |
CN102569786B (en) | Perovskite Co-based composite negative electrode material as well as preparation and application thereof | |
CN103208634B (en) | For the composite cathode material of middle low-temperature protonic transmission Solid Oxide Fuel Cell | |
CN1913208B (en) | A kind of intermediate temperature solid oxide fuel cell system material and its battery and preparation method | |
CN106848358A (en) | A kind of doped cerium oxide base SOFC and preparation method thereof | |
CN104103842B (en) | A kind of electroless matter barrier film single part fuel cell with Schottky junction type | |
CN109802161A (en) | A kind of low-temperature solid oxide fuel cell | |
CN102942364A (en) | Zinc oxide-carbonate co-doped cerium barium zirconate proton conductor material and preparation method thereof | |
CN107768690A (en) | A kind of semiconductive thin film Electrolyte type fuel cell and preparation method thereof | |
CN109742430B (en) | Low-temperature solid oxide fuel cell based on barium stannate/zinc oxide composite material | |
CN109786795B (en) | A low temperature solid oxide fuel cell based on strontium stannate/lanthanum strontium cobalt iron composite | |
CN108808047A (en) | LSCF/Na2CO3Nanocomposite is the preparation method of fuel cell ion transport layer | |
CN109687006B (en) | A low temperature solid oxide fuel cell based on ceria/nickel oxide composite | |
CN109818021B (en) | Low-temperature solid oxide fuel cell based on cerium oxide/ferroferric oxide composite material | |
CN111416138A (en) | Proton ceramic membrane fuel cell and preparation method thereof | |
CN113782794A (en) | Fuel cell based on metal ion battery material and manufacturing method thereof | |
CN115172833B (en) | Electrolyte of lithium compound electrode ceramic fuel cell, preparation method and application | |
US10283799B2 (en) | Membrane electrode assembly structure of fuel cell and the method of fabricating the same | |
CN113285084B (en) | Method for preparing solid oxide fuel cells in one step | |
CN111370713B (en) | Forming method of solid oxide fuel cell substrate | |
CN111244515B (en) | Composite electrolyte containing perovskite LaNiO3, fuel cell and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |