CN110018135A - 车用柴油、汽油移动实验室综合指标快速检测技术 - Google Patents

车用柴油、汽油移动实验室综合指标快速检测技术 Download PDF

Info

Publication number
CN110018135A
CN110018135A CN201910358725.0A CN201910358725A CN110018135A CN 110018135 A CN110018135 A CN 110018135A CN 201910358725 A CN201910358725 A CN 201910358725A CN 110018135 A CN110018135 A CN 110018135A
Authority
CN
China
Prior art keywords
sample
gasoline
detection technique
overall target
mobile laboratory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910358725.0A
Other languages
English (en)
Inventor
仇士磊
夏攀登
郑金凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ji'nan Fred Scientific Instruments Co Ltd
Original Assignee
Ji'nan Fred Scientific Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ji'nan Fred Scientific Instruments Co Ltd filed Critical Ji'nan Fred Scientific Instruments Co Ltd
Priority to CN201910358725.0A priority Critical patent/CN110018135A/zh
Publication of CN110018135A publication Critical patent/CN110018135A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/10Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using catalysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了车用柴油、汽油移动实验室综合指标快速检测技术,主要涉及检测技术领域,包括紫外荧光硫分析仪、油品综合快速分析仪,利用傅里叶近红外光谱,波长范围700nm~2500nm。紫外荧光硫分析仪采用了催化燃烧的方式,在燃烧管中填充了催化剂,在催化剂的作用下,仅仅依靠空气中O2(或采用合成空气作为载气和助燃气)即可保证样品完全燃烧转化,油品综合快速分析仪利用近红外光谱技术,以透射或反射方式获取在近红外区的吸收光谱,建立光谱与质量指标之间的线性关系,得到待测物质的校正模型,从而实现多种质量指标的快速测定。

Description

车用柴油、汽油移动实验室综合指标快速检测技术
技术领域
本发明主要涉及检测技术领域,具体是车用柴油、汽油移动实验室综合指标快速检测技术。
背景技术
城市的发展离不开交通和原油行业的建设,随着城市居民汽车使用量和相关运输手段的普及,油品中含C有机物含量、硫含量等对环境的保护至关重要,油品好坏对整个社会来说都是不可小觑的,油品的重要性在当今社会已经越发被人们关注,而油品的检测是衡量油品好坏的十分重要的指标。因此,做好油品质量管控、监测工作是非常必要的。
各大城市制定方案、研究根源,试验表明,油品中的硫会增加汽车尾气碳氢化合物(HC)、一氧化碳(CO)、氮化物(NOx)和细微颗粒(PM)的排放,引起环境污染,这些又恰好都是形成雾霾的重要成分。另外,使用过程中石油产品中的硫及硫化物燃烧氧化生成SO2或SO3排放到空气中,它们是生成酸雨的主要成分之一,不仅污染环境,破坏生态平衡,而且对人体产生危害。同时,各区域实施工作日汽车尾号限行、严禁不符合车用柴汽油标准的车辆进入市区,空气质量也略见起色。而汽车限行从源头治理方式是控制车用汽柴油产品的质量,面临每日愈况的生存环境,积极采取有效措施,对油品的重要指标进行监测,车用柴油:硫含量、十六烷值、硫含量、多环芳烃、闪点、冷凝点、馏程、密度等;车用汽油:硫含量、辛烷值、抗爆指数、芳烃、烯烃、苯、氧、MTBE、蒸汽压、馏程、密度等,作为治理环境方式之一。
随着科技的进步,人民生活水平的提高,汽车、轿车使用量直线增长,其直接影响着大气环境,因此对环境保护提出了更高的要求,对执法和检测部门的快速检测能力也提出了更高的要求。根据近年来监测标准的更新,对于车用燃料油的性能指标问题主要集中在硫、芳烃、烯烃、苯、氧、多环芳烃等含量关键指标的变化,但是目前检测实验室常规的“现场采样→实验室分析→执法部门处罚”的方式周期较长,会造成违规油品长时间销售的问题,在此期间不合格的燃油已经加注到机动车中造成环境污染。
发明内容
鉴于现有技术中存在的不足和缺陷,本发明提供了车用柴油、汽油移动实验室综合指标快速检测技术。
为了解决上述技术问题,本发明采用如下技术方案:车用柴油、汽油移动实验室综合指标快速检测技术,其特征在于:包括紫外荧光硫分析仪、油品综合快速分析仪,
紫外荧光硫分析仪采用了催化燃烧的方式,在燃烧管中填充了催化剂,将样品注射到燃烧管内,在催化剂的作用下样品中的硫和空气中的氧充分氧化后转换为二氧化硫,产生的二氧化硫在载气的携带下,经膜式干燥器除水后,到达紫外荧光检测器,荧光强度与样品浓度具有线性相关,待测样品中的总硫含量由预置的标准溶液校准曲线测定并计算得出,
油品综合快速分析仪利用近红外光谱技术,设置近红外光谱仪的光谱测量的测量模式为吸收光谱,光谱范围为4400cm-1~8800cm-1,光谱分辨率2cm-1,波数重复性0.05cm-1 将近红外光谱仪放入样品池,以空气为参比,采集背景光谱,用玻璃滴管吸取样品置入样品池中,并确保充满样品池的三分子二且无气泡存在,样品注入量不应少于1mL,测量样品的光谱,采用PLS法,利用化学计量学软件,建立各项质量指标与光谱数据关系的校正模型,校正模型建立过程中需要检测并删除两类界外点,利用样品的光谱数据和所建立的校正模型,测定样品与校正集样品的马氏距离和各项质量指标。如果样品马氏距离超过了模型的范围,则该样品属于第一类界外点,测定结果不能采用,需要采用参考法测定,如果样品马氏距离在模型范围内,则该项质量指标可以采用,并报告测定结果。
作为本发明的进一步改进,所述燃烧管温度为1050℃。
作为本发明的进一步改进,油品综合快速分析仪,采用电磁式干涉仪、DSP控制、13万次/秒高速动态准直、保证波长的重复性和稳定性。
作为本发明的进一步改进,燃烧管从下往上依次包括石英棉、支撑管、石英棉、氧化钨、石英棉、衬管、石英棉。
作为本发明的进一步改进,为获得良好的信噪比,近红外光谱仪的扫描次数不少于 32次,扫描速度不少于5次/秒。
与现有技术相比,本发明具有的有益效果为:
(1)油品综合快速分析仪采用近红外技术作为一种快速高效的分析方法,配备庞大的基础模型数据库,确保所建立的模型长期准确的出具数据,从而实现1~2min内分析出油品中多项质量参数,可以大大降低检测成本及资源消耗,减少操作人员配置,提高检测效率,从而优化企业资源配置,为抽检提供数据支持。
(2)紫外荧光硫分析仪采用了催化燃烧的方式,在燃烧管中填充了催化剂,在催化剂的作用下,仅仅依靠空气中O2(或采用合成空气作为载气和助燃气)即可保证样品完全燃烧转化,改变了实验室用的紫外荧光硫分析仪通常采用Ar作为载气、O2作为助燃气的操作要求,完美地解决了用气的问题,解决了硫含量在移动实验室的环境下快速检测采用钢瓶气会带来安全、存放、更换等诸多问题。
具体实施方式
为了本发明的技术方案和有益效果更加清楚明白,下面结合具体实施例对本发明进行进一步的详细说明,应当理解,此处所描述的具体实施方式仅用于理解本发明,并不用于限定本发明,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本技术方案依据市场上的移动实验室紫外荧光硫分析仪和油品综合快速分析仪,实现对车用柴油的硫含量、十六烷值、十六烷指数、多环芳烃、闪点、冷凝点、凝点;馏程、密度;车用汽油的硫含量、辛烷值、抗爆指数、芳烃、烯烃、苯、氧、MTBE、蒸气压、馏程、密度多项指标的快速综合检测。
车用柴油、车用汽油中硫含量的检测主要采用移动实验室紫外荧光硫分析仪,反应管温度为1050℃,,工作原理是该设备采用了催化燃烧的方式,在燃烧管中填充了催化剂,将样品注射到燃烧管内,在催化剂的作用下样品中的硫和空气中的氧充分氧化后转换为二氧化硫,产生的二氧化硫在载气的携带下,经膜式干燥器除水后,到达紫外荧光检测器,荧光强度与样品浓度具有线性相关,待测样品中的总硫含量由预置的标准溶液校准曲线测定并计算得出,改变了实验室用的紫外荧光硫分析仪通常采用Ar作为载气、O2作为助燃气的操作要求,完美地解决了用气的问题,解决了硫含量在移动实验室的环境下快速检测采用钢瓶气会带来安全、存放、更换等诸多问题。
车用柴油的十六烷值、十六烷指数、多环芳烃、闪点、冷凝点、凝点;馏程、密度;车用汽油的辛烷值、抗爆指数、芳烃、烯烃、苯、氧、MTBE、蒸汽压、馏程、密度多项指标检测主要采用油品综合快速分析仪,该设备采用美国专利技术电磁式干涉仪,DSP控制,13万次 /秒高速动态准直,保证波长的重复性和稳定性,工作原理是利设置近红外光谱仪的光谱测量的测量模式为吸收光谱,光谱范围为4400cm-1~8800cm-1,光谱分辨率2cm-1,波数重复性0.05cm-1将近红外光谱仪放入样品池,以空气为参比,采集背景光谱,用玻璃滴管吸取样品置入样品池中,并确保充满样品池的三分子二且无气泡存在,样品注入量不应少于1mL,测量样品的光谱,采用PLS法,利用化学计量学软件,建立各项质量指标与光谱数据关系的校正模型,校正模型建立过程中需要检测并删除两类界外点,利用样品的光谱数据和所建立的校正模型,测定样品与校正集样品的马氏距离和各项质量指标。如果样品马氏距离超过了模型的范围,则该样品属于第一类界外点,测定结果不能采用,需要采用参考法测定,如果样品马氏距离在模型范围内,则该项质量指标可以采用,并报告测定结果。
项目检验原理成熟,检测方法效率高,操作便捷,采用专利动态值准技术,工作状态稳定,测试数据准确,一次出具多项检测指标,所检参数只需1-2min完成,运行成本低,能够实现对车用柴油、车用汽油综合指标的快速分析,能够为监管部门及时、准确、全面地提供质量检测数据,有效防止车tyi用柴油、车用汽油流入市场。
柴汽油国标方法与快速分析方法指标测试时间比较,
油品综合快速分析仪一种三位一体的技术,采用美国专利技术电磁式干涉仪,DSP控制, 13万次/秒高速动态准直,保证波长的重复性和稳定性,配备庞大的基础模型数据库,数据库是根据所要检测的样品与基础模型数据之间差异性进行实际样本的校正,确保所建立的模型长期准确的出具数据。工作原理是利用傅里叶近红外光谱,波长范围700nm~2500nm。近红外光谱发利用含有氢基团(X-H,X为:C,O,N等)化学键的伸缩振动的倍频和合频,以透射或反射方式获取在近红外区的吸收光谱,建立光谱与质量指标之间的线性关系,得到待测物质的校正模型,从而实现多种质量指标的快速测定。
移动实验室供电系统采取三套措施,保障成品油快速检测车能够投入现场运行的基本供电;换气系统保持空气流通,减少车内刺激性气体的毒害;出于安全考虑和作业区清洁考虑,车厢铺设防滑、防水、防火阻燃、耐酸碱腐蚀的PVC塑胶地板;实验台所有外表面材料都采用水平、防水(可清洁)、阻燃、防滑、耐腐蚀可冲洗并易于灭菌消毒;设备升降减震缓冲台,由中间层的硬质弹簧起到缓冲减震作用,并起到防撞固定作用。

Claims (5)

1.车用柴油、汽油移动实验室综合指标快速检测技术,其特征在于:包括紫外荧光硫分析仪、油品综合快速分析仪,
紫外荧光硫分析仪采用了催化燃烧的方式,在燃烧管中填充了催化剂,将样品注射到燃烧管内,在催化剂的作用下样品中的硫和空气中的氧充分氧化后转换为二氧化硫,产生的二氧化硫在载气的携带下,经膜式干燥器除水后,到达紫外荧光检测器,荧光强度与样品浓度具有线性相关,待测样品中的总硫含量由预置的标准溶液校准曲线测定并计算得出,
油品综合快速分析仪利用近红外光谱技术,设置近红外光谱仪的光谱测量的测量模式为吸收光谱,光谱范围为4400cm-1~8800cm-1,光谱分辨率2cm-1,波数重复性0.05cm-1将近红外光谱仪放入样品池,以空气为参比,采集背景光谱,用玻璃滴管吸取样品置入样品池中,并确保充满样品池的三分子二且无气泡存在,样品注入量不应少于1mL,测量样品的光谱,采用PLS法,利用化学计量学软件,建立各项质量指标与光谱数据关系的校正模型,校正模型建立过程中需要检测并删除两类界外点,利用样品的光谱数据和所建立的校正模型,测定样品与校正集样品的马氏距离和各项质量指标。如果样品马氏距离超过了模型的范围,则该样品属于第一类界外点,测定结果不能采用,需要采用参考法测定,如果样品马氏距离在模型范围内,则该项质量指标可以采用,并报告测定结果。
2.根据权利要求1所述的车用柴油、汽油移动实验室综合指标快速检测技术,其特征在于:所述燃烧管温度为1050℃。
3.根据权利要求1所述的车用柴油、汽油移动实验室综合指标快速检测技术,其特征在于:油品综合快速分析仪,采用电磁式干涉仪、DSP控制、13万次/秒高速动态准直、保证波长的重复性和稳定性。
4.根据权利要求1所述的车用柴油、汽油移动实验室综合指标快速检测技术,其特征在于:燃烧管从下往上依次包括石英棉、支撑管、石英棉、氧化钨、石英棉、衬管、石英棉。
5.根据权利要求1所述的车用柴油、汽油移动实验室综合指标快速检测技术,其特征在于:为获得良好的信噪比,近红外光谱仪的扫描次数不少于32次,扫描速度不少于5次/秒。
CN201910358725.0A 2019-04-30 2019-04-30 车用柴油、汽油移动实验室综合指标快速检测技术 Pending CN110018135A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910358725.0A CN110018135A (zh) 2019-04-30 2019-04-30 车用柴油、汽油移动实验室综合指标快速检测技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910358725.0A CN110018135A (zh) 2019-04-30 2019-04-30 车用柴油、汽油移动实验室综合指标快速检测技术

Publications (1)

Publication Number Publication Date
CN110018135A true CN110018135A (zh) 2019-07-16

Family

ID=67192929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910358725.0A Pending CN110018135A (zh) 2019-04-30 2019-04-30 车用柴油、汽油移动实验室综合指标快速检测技术

Country Status (1)

Country Link
CN (1) CN110018135A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111598403A (zh) * 2020-04-21 2020-08-28 中国第一汽车股份有限公司 汽车试验结果的确定方法、装置、服务器和存储介质
CN113138180A (zh) * 2021-04-14 2021-07-20 北京化工大学 一种石油产品凝点的荧光检测方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087662A (en) * 1998-05-22 2000-07-11 Marathon Ashland Petroleum Llc Process for analysis of asphaltene content in hydrocarbon mixtures by middle infrared spectroscopy
CN201421433Y (zh) * 2009-03-27 2010-03-10 大连澳科分析仪器有限公司 紫外荧光法测硫专用反应室
CN201707298U (zh) * 2010-06-30 2011-01-12 姜堰市科苑电子仪器有限公司 紫外荧光定硫专用石英管
CN102803949A (zh) * 2010-02-18 2012-11-28 杰富意钢铁株式会社 金属试样中的硫的分析方法和分析装置
CN202869975U (zh) * 2012-10-24 2013-04-10 中国石油化工股份有限公司 一种液体或气体硫含量在线自动测定装置
CN103760131A (zh) * 2014-01-17 2014-04-30 华东理工大学 基于近红外光谱检测的汽油油品属性实时预测方法
CN104155245A (zh) * 2014-07-31 2014-11-19 中国科学院自动化研究所 一种基于模式识别与谱图映射的油品多类性质的检测方法
CN104316642A (zh) * 2014-10-29 2015-01-28 江苏新高科分析仪器有限公司 一种测定痕量总硫的方法
CN204128967U (zh) * 2014-10-29 2015-01-28 江苏新高科分析仪器有限公司 脉冲紫外荧光测硫仪
CN105987886A (zh) * 2015-02-03 2016-10-05 中国石油化工股份有限公司 近红外光谱测定加氢裂化尾油性质的方法
CN208313835U (zh) * 2018-07-11 2019-01-01 北京诺德泰科仪器仪表有限公司 空气催化式紫外荧光法总硫含量测定装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087662A (en) * 1998-05-22 2000-07-11 Marathon Ashland Petroleum Llc Process for analysis of asphaltene content in hydrocarbon mixtures by middle infrared spectroscopy
CN201421433Y (zh) * 2009-03-27 2010-03-10 大连澳科分析仪器有限公司 紫外荧光法测硫专用反应室
CN102803949A (zh) * 2010-02-18 2012-11-28 杰富意钢铁株式会社 金属试样中的硫的分析方法和分析装置
CN201707298U (zh) * 2010-06-30 2011-01-12 姜堰市科苑电子仪器有限公司 紫外荧光定硫专用石英管
CN202869975U (zh) * 2012-10-24 2013-04-10 中国石油化工股份有限公司 一种液体或气体硫含量在线自动测定装置
CN103760131A (zh) * 2014-01-17 2014-04-30 华东理工大学 基于近红外光谱检测的汽油油品属性实时预测方法
CN104155245A (zh) * 2014-07-31 2014-11-19 中国科学院自动化研究所 一种基于模式识别与谱图映射的油品多类性质的检测方法
CN104316642A (zh) * 2014-10-29 2015-01-28 江苏新高科分析仪器有限公司 一种测定痕量总硫的方法
CN204128967U (zh) * 2014-10-29 2015-01-28 江苏新高科分析仪器有限公司 脉冲紫外荧光测硫仪
CN105987886A (zh) * 2015-02-03 2016-10-05 中国石油化工股份有限公司 近红外光谱测定加氢裂化尾油性质的方法
CN208313835U (zh) * 2018-07-11 2019-01-01 北京诺德泰科仪器仪表有限公司 空气催化式紫外荧光法总硫含量测定装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张福东 等: "基于最小二乘支持向量机的油页岩含油率近红外光谱分析", 《高等学校化学学报》 *
段敏伟: "生物柴油检测技术研究与评价体系的建立", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111598403A (zh) * 2020-04-21 2020-08-28 中国第一汽车股份有限公司 汽车试验结果的确定方法、装置、服务器和存储介质
CN113138180A (zh) * 2021-04-14 2021-07-20 北京化工大学 一种石油产品凝点的荧光检测方法

Similar Documents

Publication Publication Date Title
Platt et al. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber
CN105424631A (zh) 一种基于紫外可见波段吸收光谱的超高灵敏度氮氧化物测量系统
CN110018135A (zh) 车用柴油、汽油移动实验室综合指标快速检测技术
Rašić et al. RDE-based assessment of a factory bi-fuel CNG/gasoline light-duty vehicle
Hu et al. Simultaneous measurement of NO and NO 2 by dual-channel cavity ring down spectroscopy technique
CN109724948A (zh) 一种基于单纵模稳频激光器的柴油机排放测试装置及方法
EP2607885A2 (en) Sample gas analyzing device and computer program for the same
Lv et al. Comparison of CO2, NOx, and VOCs emissions between CNG and E10 fueled light-duty vehicles
Vu et al. How well can mPEMS measure gas phase motor vehicle exhaust emissions?
Xi et al. Near-infrared dual-gas sensor system for methane and ethane detection using a compact multipass cell
CN105021569A (zh) 一种同时监测一氧化碳和甲烷的装置
CN202956337U (zh) 基于近红外的甲醇汽油快速检测仪
CN103245622A (zh) 甲醛吸收-盐酸副玫瑰苯胺比色法测定燃油中总硫的方法
Biswas et al. A mid-IR laser absorption diagnostic for measuring formaldehyde at high pressures and its demonstration in shock tubes
CN113029996A (zh) 一种氢气纯度在线检测仪器及其使用方法与应用
Dooly et al. On-board monitoring of vehicle exhaust emissions using an ultraviolet optical fibre based sensor
Lenaers et al. The realisation of an on-board emission measuring system serving as a R&D tool for ultra low emitting vehicles
Kęska The actual toxicity of engine exhaust gases emitted from vehicles: the development and perspectives of biological and chemical measurement methods
Alfheim et al. Determination of formaldehyde with the thermal lens effect
CN101893560B (zh) 一种汽油锰含量快速测定方法
CN100416261C (zh) 检测一氧化碳用的显色剂、检气管及其制作方法和应用
CN204832026U (zh) 一种同时监测一氧化碳和甲烷的装置
JP7335727B2 (ja) 排ガス分析装置、排ガス分析方法、排ガス分析用プログラム及び機械学習装置
Sur et al. Laser-Based In-Exhaust Gas Sensor for On-Road Vehicles
Meinel Detection of nitric oxide by the resonance absorption technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190716