CN110010717A - 嵌入式集成GaN微米线阵列MSM型紫外光探测器 - Google Patents

嵌入式集成GaN微米线阵列MSM型紫外光探测器 Download PDF

Info

Publication number
CN110010717A
CN110010717A CN201910248656.8A CN201910248656A CN110010717A CN 110010717 A CN110010717 A CN 110010717A CN 201910248656 A CN201910248656 A CN 201910248656A CN 110010717 A CN110010717 A CN 110010717A
Authority
CN
China
Prior art keywords
gan
microns
substrate
ultraviolet light
linear arrays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910248656.8A
Other languages
English (en)
Inventor
宋伟东
罗幸君
孙一鸣
李述体
曾庆光
郭月
高妍
陈浩
陈钊
王波
张业龙
张弛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN201910248656.8A priority Critical patent/CN110010717A/zh
Publication of CN110010717A publication Critical patent/CN110010717A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种嵌入式集成GaN微米线阵列MSM型紫外光探测器,包括衬底、嵌入式集成GaN微米线阵列和金属叉指电极,GaN微米线的轴线平行于衬底面。本发明提供的紫外光探测器具有紫外/可见光选择比高、暗电流低、响应速度快且结构简单等优点。同时,大面积可控制备GaN基微米线阵列的特点使得能充分利用微纳材料自身的优点。

Description

嵌入式集成GaN微米线阵列MSM型紫外光探测器
技术领域
本发明属于半导体光电器件技术领域,涉及紫外探测器,具体涉及一种嵌入式集成GaN微米线阵列MSM型紫外光探测器及其制备方法。
背景技术
紫外探测技术是一种新型光电检测技术,由于探测波段属于日盲区,因此具有低窃听率和没有背景信号干扰等优点,在军事和民用等方面应用广泛。目前,半导体材料GaN已实现了高性能商业化的光探测器,然而硅基GaN材料由于其巨大的晶格失配和热失配,使得Si基GaN薄膜存在大量的位错和缺陷,难以获得高质量的GaN材料。而一维材料凭借其特殊的尺寸和独特的应力释放机制,能获得低位错密度,高晶体质量的材料。此外,微纳材料由于大的体表面积比,独特的形貌,进一步增强了探测器的性能。
由于异质外延的困难性,目前大部分GaN微纳米线均是垂直衬底面的微纳米线阵列或杂乱无序的微纳米线网络,在面向实际应用问题上存在局限性。在制作光电器件时,这种三维的微纳结构顶部无法提供承载薄膜电极的平面,与传统的器件平面化的工艺流程不兼容。
发明内容
针对现有技术存在的问题,本发明的目的之一在于提供一种嵌入式集成GaN微米线阵列MSM(金属-半导体-金属)型紫外光探测器。本发明所制作的紫外探测器具有暗电流小、响应度高和工作稳定性好等优点。
本发明的另一目的在于提供上述嵌入式集成GaN微米线阵列MSM型紫外光探测器的制备方法。
基于此,本申请利用MOCVD外延技术,在图案硅衬底上生长出横向排布的微米线阵列,并利用绝缘SiO2材料填充空隙,采用化学机械抛光的方法实现平面化,从而实现大规模微米线阵列MSM型紫外光探测器的制备。
本发明采用以下技术方案:
一种嵌入式集成GaN微米线阵列MSM型紫外光探测器,包括衬底、嵌入式集成GaN微米线阵列和金属叉指电极,GaN微米线的轴线与衬底所处的平面的夹角不超过15°,优选不超过10°,更优选不超过5°,例如,1°、2°、3°、4°。更优选,GaN微米线的轴线平行于衬底所处的平面。
进一步地,所述衬底的电阻率≥10000Ω·cm,或≥100000Ω·cm,所述衬底厚度为300-430μm。
进一步地,所述衬底为晶面为(100)的硅衬底。
进一步地,所述GaN微米线包括300-800nm(可选300nm、350nm、400nm、450nm等)的AlN层和1-3μm(可选1.2μm、1.5μm、1.8μm、2.2μm、2.8μm、3.0μm)的GaN层。
进一步地,所述金属叉指电极与GaN微米线形成肖特基接触。
进一步地,所述金属叉指电极为Ni和Au由下至上依次层叠的Ni/Au金属叉指电极,其中Ni金属层和Au金属层的厚度分别为10~50nm和200~500nm;所述Ni/Au金属叉指电极的长度为200~400μm,宽度为5~20μm,电极间距为5~20μm。
一种嵌入式集成GaN微米线阵列MSM型紫外光探测器的制备方法,包括以下步骤:
(1)在衬底上形成凹槽;
(2)在凹槽的两侧壁上生长GaN微米线阵列;
(3)在所述GaN微米线阵列上沉积绝缘材料,填充GaN微米线间的孔隙;
(4)对绝缘材料进行减薄、化学机械抛光,得到嵌入式集成GaN微米线阵列的平面;
(5)对嵌入式集成GaN微米线阵列的平面进行光刻电极图案,利用蒸发镀膜设备制备金属叉指电极,得到紫外光探测器。
进一步地,所述凹槽的截面呈四边形。
进一步地,所述凹槽的截面的上开口的宽度为3~10μm,凹槽的深度为3~5μm;相邻凹槽的间距为3~10μm。
可选地,所述凹槽的截面为等腰倒梯形;可选地,所述凹槽的截面为矩形。
进一步地,图案化(图形)衬底为上表面为周期性排布、相互平行的凹槽结构。
进一步地,步骤(1)中采用光刻和湿法腐蚀的方法在衬底上形成凹槽;湿法腐蚀的方法可以采用腐蚀液进行腐蚀,腐蚀液可选KOH(30-50wt%,例如40wt%)水溶液、NaOH(30-50wt%,例如40wt%)水溶液中至少一种。
光刻过程为:将清洗好的衬底置于匀胶机,使用移液枪吸取足量的光刻胶,滴在衬底上,静置5-10s,直至光刻胶完全铺展。在衬底置于匀胶机上之后,滴光刻胶之前设置匀胶机参数,匀胶机参数设置:低速、高速的转速、时间分别可以设置为600r/min、12s和4000r/min、50s;
取下匀胶好的衬底并置于80-120℃的热台,进行前烘10-20min;
取下烘烤完的衬底,置于紫外曝光机进行曝光,曝光参数可以为:紫外光功率5-15mW、曝光时间为10-20s;
将曝光完的衬底置于显影液中浸泡,进行显影1-5min;
取出衬底,放置在100℃的热台,进行坚膜10-20min;
配置标准BOE(缓冲氧化物刻蚀液)溶液,将烘烤完的衬底浸入BOE溶液中1-5min。
取出衬底,置入丙酮溶液中超声清洗3-10min,去除光刻胶;
将衬底置于各向异性腐蚀溶液中,腐蚀液可选40wt%的KOH水溶液,保持温度为30-50℃,超声,得到截面为倒梯形、深度为500nm的凹槽图形。
进一步地,步骤(2)中采用金属有机气相外延工艺在衬底的凹槽上依次生长AlN层和GaN层,得到GaN微米线阵列。具体地,所述的GaN微米线阵列依照外延顺序包括300~800nm的AlN缓冲层和1~3μm的非故意掺杂GaN层。
进一步地,步骤(3)中采用等离子体增强化学气相沉积法沉积绝缘材料。
进一步地,PECVD沉积SiO2的参数设置:
压强:50-150pa
SiH4:120-200sccm
N2O:10-30sccm
功率:10-30W
温度:150℃
时间:30-90分钟(40-60nm/min)。
可选地,PECVD沉积SiO2的参数设置:
压强:100pa
SiH4:160sccm
N2O:20sccm
功率:20W
温度:150℃
时间:60分钟(50nm/min)。
进一步地,所述绝缘材料为介电系数小,透光性好的材料,例如包括SiO2、SiNx中的至少一种。
本发明的嵌入式集成GaN微米线阵列MSM型紫外光探测器,自下而上,该探测器包括图案化的硅衬底、嵌入式集成GaN微米线阵列和与GaN微米线阵列形成肖特基接触的Ni/Au金属叉指电极。本发明通过在图案化硅衬底上,采用MOCVD工艺依次生长AlN层、GaN层形成水平排布的微米线阵列,随后采用PECVD沉积介质绝缘层,经过抛光,形成嵌入GaN微米线阵列的平面,通过光刻电极图案,蒸镀Ni/Au金属叉指电极,制备出嵌入集成GaN微米线阵列的MSM型紫外光探测器。本发明将周期性排布有序的GaN微米线阵列平面化,实现大面积微米线阵列紫外光探测器制备。
与现有技术相比,本发明的有益效果:
本发明提供的紫外光探测器具有紫外/可见光选择比高、暗电流低、响应速度快且结构简单等优点。同时,大面积可控制备GaN基微米线阵列的特点使得能充分利用微纳材料自身的优点,使得一维材料走向实用器件具有巨大潜力。
附图说明
图1是本发明图案化衬底(具有凹槽的衬底)的截面示意图;
图2是本发明生长于衬底上的GaN微米线阵列的截面示意图;
图3是本发明单根GaN微米线的外延结构的截面示意图;
图4是本发明平面化后嵌入式集成GaN微米线阵列的截面示意图;
图5为本发明一嵌入式集成GaN微米线阵列MSM型紫外光探测器结构截面示意图;
图6为本发明一嵌入式集成GaN微米线阵列MSM型紫外光探测器结构顶面示意图;
图7为本发明一嵌入式集成GaN微米线阵列MSM型紫外光探测器结构截面示意图;
图8为本发明一嵌入式集成GaN微米线阵列MSM型紫外光探测器结构顶面示意图。
具体实施方式
为了更好的解释本发明,现结合以下具体实施例做进一步说明,但是本发明不限于具体实施例。
实施例1
参考图5和图6,本实施例的嵌入式集成GaN微米线阵列MSM型紫外光探测器,包括图形硅衬底1、GaN微米线阵列2、绝缘层3和Ni/Au金属叉指电极4。
探测器的制备过程包括以下步骤:
(1)采用光刻,湿法腐蚀工艺在平面硅衬底上形成凹槽;
(2)采用金属有机气相沉积工艺在凹槽的两侧壁上生长GaN微米线阵列;
(3)采用等离子体增强化学气相沉积设备,在所述GaN微米线阵列上沉积绝缘材料,填充GaN微米线间的孔隙;
(4)采用化学机械抛光对绝缘材料进行减薄、抛光,得到嵌入式集成GaN微米线阵列的平面;
(5)采用光刻技术对嵌入式集成GaN微米线阵列的平面进行光刻电极图案,利用蒸发镀膜设备制备金属叉指电极,得到紫外光探测器。
结合参考图1,图案化硅衬底1上表面为倒梯形截面的凹槽,凹槽的上开口的宽度为6μm,凹槽的深度为3μm;相邻凹槽的间距为10μm,其中侧壁11为适合GaN生长的硅(111)面。在本实施例中,硅衬底1优选为高阻硅片,电阻率>105Ω·cm。
结合参考图2,GaN微米线阵列2生长于图形硅衬底1的凹槽两侧壁11上。
结合参考图3,GaN微米线外延结构包含AlN层21和GaN层22,其中AlN层21厚度为500nm,GaN层22厚度优选为2.5μm。
结合参考图4,本发明实施例嵌入式集成GaN微米线阵列包括GaN微米线阵列2和PECVD制备的绝缘SiO2层3。该平面化工艺能简化后续芯片制备流程,实现GaN微米线阵列光电器件大面积制备。
本实施例中的叉指电极4包括Ni金属层和Au金属层,叉指长度方向与GaN微米线阵列轴向平行。所述的Ni/Au金属叉指电极厚度分别为30nm和100nm,长度为300μm,叉指宽度为10μm,电极叉指间距为20μm。
实施例2
参考图7和图8,本实施例的嵌入式集成GaN微米线阵列MSM型紫外光探测器,包括图形硅衬底1、GaN微米线阵列2、绝缘层3和Ni/Au金属叉指电极4。制备过程同实施例1。
结合参考图1,图形硅衬底1上表面为倒梯形截面的凹槽,凹槽的上开口的宽度为6μm,凹槽的深度为3μm;相邻凹槽的间距为10μm,其中侧壁11为适合GaN生长的硅(111)面。在本实施例中,硅衬底1优选为高阻硅片,电阻率>105Ω·cm。
结合参考图2,GaN微米线阵列2生长于图形硅衬底1的凹槽两侧壁11上。
结合参考图3,GaN微米线外延结构包含AlN层21和GaN层22,其中AlN层21厚度为450nm,GaN层22厚度优选为2.8μm。
结合参考图4,本发明实施例嵌入式集成GaN微米线阵列包括GaN微米线阵列2和PECVD制备的绝缘SiO2层3,可选SiNx等介电系数小,透光性好的材料。该平面化工艺能简化后续芯片制备流程,实现GaN微米线阵列光电器件大面积制备。
本实施例中的叉指电极4包括Ni金属层和Au金属层,叉指长度方向与GaN微米线阵列轴向垂直。所述的Ni/Au金属叉指电极厚度分别为30nm和100nm,长度为300μm,叉指宽度为10μm,电极叉指间距为20μm。
以上所述仅为本发明的具体实施例,并非因此限制本发明的专利范围,凡是利用本发明作的等效变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围之中。

Claims (10)

1.一种嵌入式集成GaN微米线阵列MSM型紫外光探测器,其特征在于,包括衬底、嵌入式集成GaN微米线阵列和金属叉指电极,GaN微米线的轴线与衬底所处的平面的夹角不超过15°。
2.根据权利要求1所述的嵌入式集成GaN微米线阵列MSM型紫外光探测器,其特征在于,所述衬底的电阻率≥10000Ω·cm,所述衬底厚度为300-430μm。
3.根据权利要求1所述的嵌入式集成GaN微米线阵列MSM型紫外光探测器,其特征在于,所述衬底为晶面为(100)的硅衬底。
4.根据权利要求1所述的嵌入式集成GaN微米线阵列MSM型紫外光探测器,其特征在于,所述GaN微米线包括300-800nm的AlN层和1-3μm的GaN层。
5.根据权利要求1所述的嵌入式集成GaN微米线阵列MSM型紫外光探测器,其特征在于,所述金属叉指电极与GaN微米线形成肖特基接触。
6.根据权利要求1所述的嵌入式集成GaN微米线阵列MSM型紫外光探测器,其特征在于,所述金属叉指电极为Ni和Au由下至上依次层叠的Ni/Au金属叉指电极,其中Ni金属层和Au金属层的厚度分别为10~50nm和200~500nm;所述Ni/Au金属叉指电极的长度为200~400μm,宽度为5~20μm,电极间距为5~20μm。
7.一种权利要求1-6中任一项所述的嵌入式集成GaN微米线阵列MSM型紫外光探测器的制备方法,其特征在于,包括以下步骤:
(1)在衬底上形成凹槽;
(2)在凹槽的两侧壁上生长GaN微米线阵列;
(3)在所述GaN微米线阵列上沉积绝缘材料,填充GaN微米线间的孔隙;
(4)对绝缘材料进行抛光,得到嵌入式集成GaN微米线阵列的平面;
(5)对嵌入式集成GaN微米线阵列的平面进行光刻电极图案,利用蒸发镀膜设备制备金属叉指电极,得到紫外光探测器。
8.根据权利要求7所述的制备方法,其特征在于,所述凹槽的截面呈四边形。
9.根据权利要求8所述的制备方法,其特征在于,所述凹槽的截面的上开口的宽度为3~10μm,凹槽的深度为3~5μm;相邻凹槽的间距为3~10μm。
10.根据权利要求7所述的制备方法,其特征在于,步骤(1)中采用光刻和湿法腐蚀的方法在衬底上形成凹槽;其中光刻过程为:(i)将衬底用匀胶机进行匀胶,然后在80-120℃烘10-20min;(ii)取下烘烤完的衬底,置于紫外曝光机进行曝光,曝光参数为:紫外光功率5-15mW、曝光时间为10-20s;(iii)将曝光完的衬底置于显影液中浸泡,显影1-5min;取出后于90-110℃进行坚膜10-20min;(iv)接着浸入BOE溶液中1-5min,取出并清洗3-10min,去除光刻胶;
步骤(2)中采用金属有机气相外延工艺在衬底的凹槽上生长AlN层和GaN层,得到GaN微米线阵列;
步骤(3)中采用等离子体增强化学气相沉积法沉积绝缘材料。
CN201910248656.8A 2019-03-29 2019-03-29 嵌入式集成GaN微米线阵列MSM型紫外光探测器 Pending CN110010717A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910248656.8A CN110010717A (zh) 2019-03-29 2019-03-29 嵌入式集成GaN微米线阵列MSM型紫外光探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910248656.8A CN110010717A (zh) 2019-03-29 2019-03-29 嵌入式集成GaN微米线阵列MSM型紫外光探测器

Publications (1)

Publication Number Publication Date
CN110010717A true CN110010717A (zh) 2019-07-12

Family

ID=67168829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910248656.8A Pending CN110010717A (zh) 2019-03-29 2019-03-29 嵌入式集成GaN微米线阵列MSM型紫外光探测器

Country Status (1)

Country Link
CN (1) CN110010717A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112164738A (zh) * 2020-09-15 2021-01-01 五邑大学 一种InGaN/GaN多量子阱微米线的制备方法
CN112366233A (zh) * 2020-11-17 2021-02-12 佛山市国星半导体技术有限公司 一种GaN基紫外探测器及其制作方法
CN112366250A (zh) * 2020-11-17 2021-02-12 佛山市国星半导体技术有限公司 一种GaN基紫外探测器及其制作方法
CN113451427A (zh) * 2021-06-09 2021-09-28 佛山市国星半导体技术有限公司 一种基于GaN微米线阵列光探测器芯片叉指电极、光探测器芯片及其制备方法
CN113809191A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 一种碳化硅基氮化镓微米线阵列光电探测器及制备方法
CN113809192A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 一种梯形氮化镓微米线阵列光电探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080010707A1 (en) * 2004-10-21 2008-01-10 Sharp Laboratories Of America, Inc. Ambient environment nanowire sensor
CN107452823A (zh) * 2017-08-11 2017-12-08 华南师范大学 一种微米线阵列光探测器及其制备方法
CN108807570A (zh) * 2018-06-28 2018-11-13 华南师范大学 嵌入柔性衬底的ZnO微米线阵列紫外探测器的制备方法
CN108987545A (zh) * 2018-07-23 2018-12-11 华南师范大学 一种基于GaN微米线阵列发光二极管及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080010707A1 (en) * 2004-10-21 2008-01-10 Sharp Laboratories Of America, Inc. Ambient environment nanowire sensor
CN107452823A (zh) * 2017-08-11 2017-12-08 华南师范大学 一种微米线阵列光探测器及其制备方法
CN108807570A (zh) * 2018-06-28 2018-11-13 华南师范大学 嵌入柔性衬底的ZnO微米线阵列紫外探测器的制备方法
CN108987545A (zh) * 2018-07-23 2018-12-11 华南师范大学 一种基于GaN微米线阵列发光二极管及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEXIAO GUO等: "Realization of in-Plane GaN Microwire Array Based Ultraviolet Photodetector with High Responsivity on a Si(100) Substrate", 《ACS PHOTONICS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112164738A (zh) * 2020-09-15 2021-01-01 五邑大学 一种InGaN/GaN多量子阱微米线的制备方法
CN112366233A (zh) * 2020-11-17 2021-02-12 佛山市国星半导体技术有限公司 一种GaN基紫外探测器及其制作方法
CN112366250A (zh) * 2020-11-17 2021-02-12 佛山市国星半导体技术有限公司 一种GaN基紫外探测器及其制作方法
CN113451427A (zh) * 2021-06-09 2021-09-28 佛山市国星半导体技术有限公司 一种基于GaN微米线阵列光探测器芯片叉指电极、光探测器芯片及其制备方法
CN113809191A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 一种碳化硅基氮化镓微米线阵列光电探测器及制备方法
CN113809192A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 一种梯形氮化镓微米线阵列光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN110010717A (zh) 嵌入式集成GaN微米线阵列MSM型紫外光探测器
CN107452823B (zh) 一种微米线阵列光探测器及其制备方法
CN100585885C (zh) 蓝宝石衬底粗糙化的发光二极管及其制造方法
CN101863452B (zh) 一种改善绝缘衬底上纳米阵列结构器件制作的方法
JPH03149817A (ja) シリコンプレートを電気化学的にエッチングする方法
CN102064088A (zh) 一种干法与湿法混合制备蓝宝石图形衬底的方法
CN110416414A (zh) 一种紫外探测器及其制备方法
CN106082121A (zh) 纳米线阵列制备方法、纳米线阵列集成器件及其制备方法
CN109979803A (zh) 一种横向有序GaN微米线阵列及其制备方法
CN105118860A (zh) 一种集成有序GaN基纳米线阵列HEMT及其制备方法
CN101419092B (zh) 平面化热绝缘结构的热释电红外探测器的制备方法
US9716141B2 (en) Applications for nanopillar structures
CN103594302B (zh) 一种GaAs纳米线阵列光电阴极及其制备方法
CN103995435A (zh) 纳米图案化蓝宝石衬底及其制备方法
CN204680649U (zh) 用于高能离子注入的复合掩膜
CN109192806A (zh) 一种光电探测器及其制作方法
CN114242800B (zh) 日盲AlGaN紫外光电探测器及其制备方法
CN103078009B (zh) 基于免等离子工艺降低暗电流的光电探测器芯片制作方法
CN102560565B (zh) 一种基于soi和电铸技术的金属纳米线阵及其制备方法
CN104538490A (zh) 一种基于卷曲半导体薄膜的高灵敏度光电探测器件及其制备方法
CN102856442B (zh) 一种提高蓝宝石衬底氮化镓外延层均匀性的方法
JP7072801B2 (ja) 光電変換素子用構造体及び光電変換素子
CN101894884B (zh) 一种ⅲ族氮化物纳米阵列结构太阳能电池的制作方法
CN104600027B (zh) 一种tsv通孔的制备工艺
CN110265503B (zh) 硅基ⅲ-ⅴ族红外光电探测器阵列的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190712

RJ01 Rejection of invention patent application after publication