CN110008562B - 基于监测控制偏离度的既有道路设施的工后损伤判定方法 - Google Patents

基于监测控制偏离度的既有道路设施的工后损伤判定方法 Download PDF

Info

Publication number
CN110008562B
CN110008562B CN201910243694.4A CN201910243694A CN110008562B CN 110008562 B CN110008562 B CN 110008562B CN 201910243694 A CN201910243694 A CN 201910243694A CN 110008562 B CN110008562 B CN 110008562B
Authority
CN
China
Prior art keywords
existing road
monitoring
road facilities
deviation degree
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910243694.4A
Other languages
English (en)
Other versions
CN110008562A (zh
Inventor
苏洁
张顶立
牛晓凯
杨东波
张明
崔晓青
赵江涛
张晗
宋伟
张学广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Yiqun Engineering Consulting Co ltd
Beijing Jiaotong University
Beijing Municipal Engineering Research Institute
Original Assignee
Beijing Yiqun Engineering Consulting Co ltd
Beijing Jiaotong University
Beijing Municipal Engineering Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Yiqun Engineering Consulting Co ltd, Beijing Jiaotong University, Beijing Municipal Engineering Research Institute filed Critical Beijing Yiqun Engineering Consulting Co ltd
Priority to CN201910243694.4A priority Critical patent/CN110008562B/zh
Publication of CN110008562A publication Critical patent/CN110008562A/zh
Application granted granted Critical
Publication of CN110008562B publication Critical patent/CN110008562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Architecture (AREA)
  • Mathematical Analysis (AREA)
  • Structural Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Bridges Or Land Bridges (AREA)
  • Road Repair (AREA)

Abstract

一种基于监测控制偏离度的既有道路设施的工后损伤判定方法,包括步骤一,监测既有道路设施的最大变形值Umax;步骤二:确定穿越工程施工过程中既有道路设施的监测控制偏离度δ1;步骤三:计算既有道路设施的监测控制偏离度δ1,选择最大值作为最终的监测控制偏离度δ1max;步骤四:确定穿越工程施工后既有道路设施的监测控制偏离度δ2;步骤五:监测控制偏离度δ1max与监测控制偏离度δ2的大小;步骤六:确定既有道路设施的控制偏离度δ;步骤七:当既有道路设施的控制偏离度δ≥1.0时,对既有道路设施采取补救措施。本发明解决了传统的工后损伤评价没有一套成熟的评价体系、常采用定性的评价以及评价结果不准确的技术问题。

Description

基于监测控制偏离度的既有道路设施的工后损伤判定方法
技术领域
本发明涉及道路工程领域,特别是一种基于监测控制偏离度的既有道路设施的工后损伤判定方法。
背景技术
穿越工程指采用上穿、下穿、并行、上跨或连接等方式穿越既有道路设施,并对其结构或运行可能产生影响的新建或改扩建工程。根据穿越角度的不同,穿越工程一般可分为正交(α=90°)、斜交(15°<α<90°)和平行(α≤15°)三种方式。既有道路设施指建设完成或投入使用的道路及其附属设施,包括市政道路、市政桥梁、城市隧道、地下通道、公路、公路桥梁、公路隧道、人行天桥及上述结构的附属设施等。穿越工程施工过程中,位于其影响范围内的既有道路设施势必会受其影响产生附加应力和变形,当该附加应力或变形超过其承载极限时就会造成既有道路设施的损伤或破坏,从而威胁既有道路设施的运行安全。基于控制偏离度的既有设施的工后损伤判定方法可以很好的解决上述问题;而常规的工后损伤判定方法没有成熟的,成体系,成系统的方法,往往根据监测的结论进行定性的评价,从而使评价结果不准确。
发明内容
本发明的目的是提供一种基于监测控制偏离度的既有道路设施的工后损伤判定方法,要解决传统的工后损伤评价没有一套成熟的评价体系、常采用定性的评价以及评价结果不准确的技术问题。
为实现上述目的,本发明采用如下技术方案。
一种基于监测控制偏离度的既有道路设施的工后损伤判定方法,包括步骤如下。
步骤一:监测既有道路设施的最大变形值Umax:在穿越工程施工过程中,对既有道路设施进行布点,监测既有道路设施的变形值,然后得出既有道路设施的最大变形值Umax
步骤二:确定穿越工程施工过程中既有道路设施的监测控制偏离度δ1:既有道路设施的监测控制偏离度δ1根据既有道路设施的监测结果,按式
Figure BDA0002010442140000011
计算;其中,U0为允许变形控制值。
步骤三:根据不同的监测项目分别计算既有道路设施的监测控制偏离度δ1,并选择其中的最大值作为最终的监测控制偏离度δ1max
步骤四:确定穿越工程施工后既有道路设施的监测控制偏离度δ2:当既有道路设施在穿越工程施工后产生新的结构性损伤,δ2取1.0;否则δ2取0。
步骤五:比较既有道路设施的监测控制偏离度δ1max与既有道路设施的监测控制偏离度δ2的大小。
步骤六:确定既有道路设施的控制偏离度δ:将δ1max与δ2中大的值作为既有道路设施的控制偏离度δ。
步骤七:当步骤六中确定的既有道路设施的控制偏离度δ≥1.0时,对既有道路设施采取补救措施。
优选的,所述既有道路设施包括道路、桥梁和隧道。
优选的,步骤一中的变形值指道路的竖向沉降、隆起和不均匀沉降引起的变形,桥梁的墩柱竖向沉降、墩柱的新增倾斜、统一盖梁的差异沉降和桥梁不同轴的不均匀沉降引起的变形以及隧道的竖向沉降、隧道的上浮、伸缩缝位置不均匀沉降引起的变形。
优选的,步骤三中的监测项目包括道路的竖向沉降、隆起和不均匀沉降,桥梁的竖向沉降、倾斜以及隧道的竖向沉降和上浮。
优选的,步骤四中新的结构性损伤包括道路出现塌陷、隆起、成面积的龟裂网状破坏,桥梁的新增结构性裂缝、结构破损露筋、结构变形和钢筋锈蚀,隧道产生渗漏、隧道侧壁新增结构性裂缝、隧道底板下方或侧壁内新增的不密实区域或空洞。
优选的,当步骤六中确定的既有道路设施的控制偏离度0.8≤δ<1.0时,穿越工程施工过程中对既有道路设施损伤较大,对既有道路设施采取补救措施。
优选的,当步骤六中确定的既有道路设施的控制偏离度δ<0.8时,穿越工程施工过程中对既有道路设施损伤小,损伤判定结束。
优选的,步骤七中的补救措施为。
当道路出现塌陷时,对道路下方不密实区域进行勘测和注浆补强;当道路出现隆起时,对道路进行养护维修。
当桥梁的墩柱基础沉降大于15mm时,对桥梁梁体的采取顶升支护。
当桥梁的墩柱倾斜大于千分之一时,对墩柱进行桩基托换。
当隧道沉降大于2mm时,对隧道下方的不密实区域进行勘测和注浆补强。
当隧道上浮大于1mm时,对隧道内的轨道、线路进行重新的调试。
与现有技术相比本发明具有以下特点和有益效果。
1、本发明中的工后损伤判定方法给出了定量的参数和具体的判定的方法,并结合定性分析给出不同条件下应该采取的具体的措施,使得工后损伤判定结果更为准确,工后既有道路设施使用更为安全。
2、本发明中的方法创造性地将常规监测数据与控制标准进行对比分析,通过控制偏离度定量地描述施工对道路设施的影响程度,结合该偏离程度分别采取不同的结构加固措施,从而对实际工程施工与加固有更好的指导性建议,解决了传统的工后损伤评价没有一套成熟的评价体系、常采用定性的评价以及评价结果不准确的技术问题。
具体实施方式
这种基于监测控制偏离度的既有道路设施的工后损伤判定方法,包括步骤如下。
步骤一:监测既有道路设施的最大变形值Umax:在穿越工程施工过程中,对既有道路设施进行布点,按照规范规定的频率进行有规律的监测,从而监测既有道路设施的变形值,然后得出既有道路设施的最大变形值Umax
步骤二:确定穿越工程施工过程中既有道路设施的监测控制偏离度δ1:既有道路设施的监测控制偏离度δ1根据既有道路设施的监测结果,按式
Figure BDA0002010442140000031
计算;其中,U0为允许变形控制值。
步骤三:根据不同的监测项目分别计算既有道路设施的监测控制偏离度δ1,并选择其中的最大值作为最终的监测控制偏离度δ1max
步骤四:确定穿越工程施工后既有道路设施的监测控制偏离度δ2:当既有道路设施在穿越工程施工后产生新的结构性损伤,δ2取1.0;否则δ2取0;
步骤五:比较既有道路设施的监测控制偏离度δ1max与既有道路设施的监测控制偏离度δ2的大小。
步骤六:确定既有道路设施的控制偏离度δ:将δ1max与δ2中大的值作为既有道路设施的控制偏离度δ。
步骤七:当步骤六中确定的既有道路设施的控制偏离度δ≥1.0时,对既有道路设施采取补救措施。
本实施例中,所述既有道路设施包括道路、桥梁和隧道。
本实施例中,步骤一中的变形值指道路的竖向沉降、隆起和不均匀沉降引起的变形,桥梁的墩柱竖向沉降、墩柱的新增倾斜、统一盖梁的差异沉降和桥梁不同轴的不均匀沉降引起的变形以及隧道的竖向沉降、隧道的上浮、伸缩缝位置不均匀沉降引起的变形。
本实施例中,步骤三中的监测项目包括道路的竖向沉降、隆起和不均匀沉降,桥梁的竖向沉降、倾斜以及隧道的竖向沉降和上浮。
本实施例中,步骤四中新的结构性损伤包括新增裂缝、结构破损露筋、结构变形和钢筋锈蚀;根据不同的监测对象具体如下。
当监测对象道路时,新的结构性损伤包括:道路出现塌陷、隆起、成面积的龟裂网状破坏等。
当监测对象为砖桥或者石桥或者混凝土桥时,新的结构性损伤包括:桥梁上部结构中跨中或支点位置处新增结构受力裂缝、梁间湿接缝新增渗漏析白、桥梁两幅间新增局部渗水、梁体新增破损露筋、支座缺失或破坏,桥梁下部结构中墩柱新增结构性裂缝、墩柱新增破损漏筋、墩柱倾斜以及桥面系及附属设施铺装层新增大量坑槽、裂缝、隆起、伸缩缝新增阻塞,止水新增破损,防撞护栏新增钢筋锈蚀、保护层脱落等。
当监测对象为钢结构桥时,新的结构性损伤包括:桥梁构件新增扭曲变形、损伤裂缝、开焊或严重锈蚀,联接铆钉、螺栓出现松动或损坏,油漆失效面积超过10%,梁体、墩柱等结构永久变形超过规范值以及桥面系及附属设施铺装层新增大量坑槽、裂缝、隆起、伸缩缝新增阻塞,止水新增破损,防撞护栏新增钢筋锈蚀、保护层脱落等。
当监测对象为城市隧道或者地下通道或者公路隧道时,新的结构性损伤包括:既有结构出现新的严重渗漏,既有结构出现新的结构性裂缝,既有结构底板下方或背后出现新的不密实区域或空洞;其中,不密实区域或空洞是指在监测过程中,相关设备对道路下方区域监测成像的图谱是均匀规律的,如果图谱出现波动异常,出现不规律变化,则出现不密实区域,可以根据软件分析和经验对不密实区域尺寸和位置进行估计。
本实施例中,当步骤六中确定的既有道路设施的控制偏离度0.8≤δ<1.0时,表明穿越工程对既有道路设施影响较大,根据实际对既有道路设施采取补救措施。
本实施例中,当步骤六中确定的既有道路设施的控制偏离度δ<0.8时,表明穿越工程对既有道路设施影响小,不威胁既有道路设施的运行安全,不采取措施,损伤判定结束。
本实施例中,步骤七中的补救措施为。
当道路出现塌陷时,对道路下方不密实区域进行勘测和注浆补强;当道路出现隆起时,对道路进行养护维修。
当桥梁的墩柱基础沉降大于15mm时,对桥梁梁体的采取顶升支护。
当桥梁的墩柱倾斜大于千分之一时,对墩柱进行桩基托换。
当隧道沉降大于2mm时,对隧道下方的不密实区域进行勘测和注浆补强。
当隧道上浮大于1mm时,对隧道内的轨道、线路进行重新的调试。
上述实施例并非具体实施方式的穷举,还可有其它的实施例,上述实施例目的在于说明本发明,而非限制本发明的保护范围,所有由本发明简单变化而来的应用均落在本发明的保护范围内。

Claims (7)

1.一种基于监测控制偏离度的既有道路设施的工后损伤判定方法,其特征在于,包括步骤如下:
步骤一:监测既有道路设施的最大变形值Umax:在穿越工程施工过程中,对既有道路设施进行布点,监测既有道路设施的变形值,然后得出既有道路设施的最大变形值Umax
步骤二:确定穿越工程施工过程中既有道路设施的监测控制偏离度δ1:既有道路设施的监测控制偏离度δ1根据既有道路设施的监测结果,按式
Figure FDA0002669687030000011
计算;其中,U0为允许变形控制值;
步骤三:根据不同的监测项目分别计算既有道路设施的监测控制偏离度δ1,并选择其中的最大值作为最终的监测控制偏离度δ1max
步骤四:确定穿越工程施工后既有道路设施的监测控制偏离度δ2:当既有道路设施在穿越工程施工后产生新的结构性损伤,δ2取1.0;否则δ2取0;
步骤五:比较既有道路设施的监测控制偏离度δ1max与既有道路设施的监测控制偏离度δ2的大小;
步骤六:确定既有道路设施的控制偏离度δ:将δ1max与δ2中大的值作为既有道路设施的控制偏离度δ;
步骤七:当步骤六中确定的既有道路设施的控制偏离度0.8≤δ时,穿越工程施工过程中对既有道路设施损伤大;
当步骤六中确定的既有道路设施的控制偏离度0.8≤δ时,对既有道路设施采取补救措施。
2.根据权利要求1所述的基于监测控制偏离度的既有道路设施的工后损伤判定方法,其特征在于:所述既有道路设施包括道路、桥梁和隧道。
3.根据权利要求1所述的基于监测控制偏离度的既有道路设施的工后损伤判定方法,其特征在于:步骤一中的变形值指道路的竖向沉降、隆起和不均匀沉降引起的变形,桥梁的墩柱竖向沉降、墩柱的新增倾斜、统一盖梁的差异沉降和桥梁不同轴的不均匀沉降引起的变形以及隧道的竖向沉降、隧道的上浮、伸缩缝位置不均匀沉降引起的变形。
4.根据权利要求1所述的基于监测控制偏离度的既有道路设施的工后损伤判定方法,其特征在于:步骤三中的监测项目包括道路的竖向沉降、隆起和不均匀沉降,桥梁的竖向沉降和倾斜以及隧道的竖向沉降和上浮。
5.根据权利要求4所述的基于监测控制偏离度的既有道路设施的工后损伤判定方法,其特征在于:步骤四中新的结构性损伤包括道路出现塌陷、隆起、成面积的龟裂网状破坏,桥梁的新增结构性裂缝、结构破损露筋、结构变形和钢筋锈蚀,隧道产生渗漏、隧道侧壁新增结构性裂缝、隧道底板下方或侧壁内新增的不密实区域或空洞。
6.根据权利要求1所述的基于监测控制偏离度的既有道路设施的工后损伤判定方法,其特征在于:当步骤六中确定的既有道路设施的控制偏离度δ<0.8时,穿越工程施工过程中对既有道路设施损伤小,损伤判定结束。
7.根据权利要求6所述的基于监测控制偏离度的既有道路设施的工后损伤判定方法,其特征在于:步骤七中的补救措施为:
当道路出现塌陷时,对道路下方不密实区域进行勘测和注浆补强;当道路出现隆起时,对道路进行养护维修;
当桥梁的墩柱基础沉降大于15mm时,对桥梁梁体的采取顶升支护;当桥梁的墩柱倾斜大于千分之一时,对墩柱进行桩基托换;当隧道沉降大于2mm时,对隧道下方的不密实区域进行勘测和注浆补强;当隧道上浮大于1mm时,对隧道内的轨道、线路进行重新的调试。
CN201910243694.4A 2019-03-28 2019-03-28 基于监测控制偏离度的既有道路设施的工后损伤判定方法 Active CN110008562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910243694.4A CN110008562B (zh) 2019-03-28 2019-03-28 基于监测控制偏离度的既有道路设施的工后损伤判定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910243694.4A CN110008562B (zh) 2019-03-28 2019-03-28 基于监测控制偏离度的既有道路设施的工后损伤判定方法

Publications (2)

Publication Number Publication Date
CN110008562A CN110008562A (zh) 2019-07-12
CN110008562B true CN110008562B (zh) 2021-03-23

Family

ID=67168663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910243694.4A Active CN110008562B (zh) 2019-03-28 2019-03-28 基于监测控制偏离度的既有道路设施的工后损伤判定方法

Country Status (1)

Country Link
CN (1) CN110008562B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991986A (zh) * 2015-05-18 2015-10-21 东南大学 公路桥梁支座及伸缩装置的竖向抗冲击服役性能评定方法
CN107292023A (zh) * 2017-06-20 2017-10-24 哈尔滨工业大学 一种基于损伤指标体系窄域特性的桥梁结构状态诊断方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723332B1 (ko) * 2006-06-22 2007-05-31 이옥신 내하력이 약화된 슬래브 손상부위에 대한 긴급 보수 보강시스템
CN101498221B (zh) * 2009-02-23 2011-04-27 北京交通大学 一种城市地下工程施工安全风险动态控制方法
JP6652462B2 (ja) * 2016-08-02 2020-02-26 積水樹脂株式会社 橋梁用防護柵
CN107609304B (zh) * 2017-09-29 2020-10-27 中国铁道科学研究院铁道建筑研究所 大跨度铁路桥梁的基于phm的故障诊断预测系统及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991986A (zh) * 2015-05-18 2015-10-21 东南大学 公路桥梁支座及伸缩装置的竖向抗冲击服役性能评定方法
CN107292023A (zh) * 2017-06-20 2017-10-24 哈尔滨工业大学 一种基于损伤指标体系窄域特性的桥梁结构状态诊断方法

Also Published As

Publication number Publication date
CN110008562A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN109978378B (zh) 一种新建工程穿越既有道路设施的工后评估方法
CN110008562B (zh) 基于监测控制偏离度的既有道路设施的工后损伤判定方法
CN214573260U (zh) 一种施工临时跨河钢栈桥
CN114411721A (zh) 一种钢栈桥先成桥后锚固钢管桩的置换施工方法
CN113265925A (zh) 一种滩涂地带上的施工便道结构及施工方法
Reid et al. Steel Bridge Strengthening: a study of assessment and strengthening experience and identification of solutions
CN110924312A (zh) 一种钢栈桥施工方法
Kindij et al. Adjustment of small-span masonry arch bridges to present-day demands
Campbell Effects of ice loads on the confederation bridge
CN221297633U (zh) 一种盖梁拆除上部顶升结构
Li et al. Common Problems and Maintenance Management of Highway Bridges
CN210887356U (zh) 一种利用顶推钢套筒加固桩基的施工结构
CN214221194U (zh) 一种矩形顶管施工临时后靠支座结构
Guyer et al. An Introduction to Bridge Management
CN219386039U (zh) 一种带防撞墙的预制小箱梁抗倾覆装置
CN220767769U (zh) 一种桥梁伸缩缝位置跳车的施工装置
Sun et al. Analysis of Damage Pattern of Road Bridge Landslide in Mountainous Area
Kotzé et al. Omaruru River Bridge: repairing severely deteriorated infrastructure
Wang et al. Application study and construction design of trestle of Waisha Bridge
CN117604930A (zh) 一种跨线桥梁改造利用方法
Darby et al. Repair, strengthening and replacement
CN117758613A (zh) 一种降低桥梁影响的围护河道开挖施工方法
CN115928798A (zh) 超小净距长距离斜交穿越轨道交通既有地下结构的方法
Mandić Ivanković et al. Adjustment of small-span masonry arch bridges to present-day demands
Ferrett et al. Increasing Road Headroom under the Northern Outfall Sewer; London, UK

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant