CN110007598B - 一种基于代理模型的自动变速器控制参数预标定方法 - Google Patents

一种基于代理模型的自动变速器控制参数预标定方法 Download PDF

Info

Publication number
CN110007598B
CN110007598B CN201910280208.6A CN201910280208A CN110007598B CN 110007598 B CN110007598 B CN 110007598B CN 201910280208 A CN201910280208 A CN 201910280208A CN 110007598 B CN110007598 B CN 110007598B
Authority
CN
China
Prior art keywords
automatic transmission
proxy model
gear shifting
control parameters
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910280208.6A
Other languages
English (en)
Other versions
CN110007598A (zh
Inventor
付尧
高新
雷雨龙
李兴忠
张琳悦
姜赟涛
褚天争
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201910280208.6A priority Critical patent/CN110007598B/zh
Publication of CN110007598A publication Critical patent/CN110007598A/zh
Application granted granted Critical
Publication of CN110007598B publication Critical patent/CN110007598B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

本发明公开了一种基于代理模型的自动变速器控制参数预标定方法,包括:步骤一、建立自动变速器液压系统物理模型,建立换挡控制逻辑和离合器控制逻辑,同时构建成自动变速器换挡过程仿真平台;步骤二、确定自动变速器换挡过程中的响应指标,通过仿真平台得到响应指标及计算得到关键性不确定性因素;步骤三、确定自动变速器换挡过程中标定参数,在参数设计空间中构造样本点;步骤四、通过仿真平台对样本点进行仿真,得到样本点的输出响应,并且建立不确定性因素和控制参数与响应指标之间的代理模型;步骤五、通过代理模型,得到自动变速器换挡过程中控制参数。

Description

一种基于代理模型的自动变速器控制参数预标定方法
技术领域
本发明涉及汽车传动技术领域,具体涉及一种基于代理模型的自动变速器控制参数预标定方法。
背景技术
随着节能减排要求的日益严格以及人们对汽车经济性、舒适性需求的不断提高,装有自动变速器的汽车越来越受欢迎。自动变速器换挡过程控制参数的优化和确定(即标定)是实现控制策略,优化控制品质的关键环节。在电控系统日趋复杂化背景下,传统人工在线标定方法存在工作量大、周期长、成本高、标定结果受主观经验制约等问题,已成为高品质自动变速器产品开发的技术瓶颈,传统的标定方法已无法满足标定工作量的需求。因而,寻求一种效率高、成本低、不依赖工程师经验且兼顾控制参数稳健性的离线优化方法尤为迫切。
自动变速器换挡过程控制参数标定是改善换挡品质的关键环节。代理模型是在分析和优化设计过程中可替代那些比较复杂和费时的数值分析的近似数学模型目前所使用的代理模型主要有多项式响应面、Kriging模型、径向基函数、神经网络、支持向量回归、多变量插值和回归、多项式混沌展开等多种代理模型方法。在保证最优建模的前提下,基于模型的标定可以尽量缩减试验次数,提高试验效率。同时,可以构建控制参数和不确定因素与换挡响应之间的代理模型,便于进行稳健性优化,提高系统抗干扰能力。
发明内容
基于上述问题,本发明设计开发了一种基于代理模型的自动变速器控制参数预标定方法,本发明的发明目的是解决传统人工在对控制参数标定方法中存在工作量大、周期长、成本高、标定结果受主观经验制约的问题。
本发明提供的技术方案为:
一种基于代理模型的自动变速器控制参数预标定方法,包括如下步骤:
步骤一、建立自动变速器液压系统物理模型,建立换挡控制逻辑和离合器控制逻辑,同时构建成自动变速器换挡过程仿真平台;
步骤二、确定自动变速器换挡过程中的响应指标,将自动变速换挡过程中的不确定性因素建模为随机变量,并且通过所述仿真平台得到所述响应指标及计算得到关键性不确定性因素;
步骤三、确定自动变速器换挡过程中电磁阀输入电流变化关键点的标定参数,通过所述标定参数和所述关键性不确定性因素及其取值范围构建参数设计空间,并且在所述参数设计空间中构造样本点;
步骤四、通过所述仿真平台对所述样本点进行仿真,得到所述样本点的输出响应,并且建立所述不确定性因素和控制参数与所述响应指标之间的代理模型;
步骤五、通过所述代理模型,得到自动变速器换挡过程中控制参数。
优选的是,在所述步骤二中,所述响应指标包括换挡过程最大冲击度j、离合器结合过程中滑摩功W、换挡时间t;
其中,
Figure GDA0002441697370000021
式中,ωv为变速器输入轴角速度,rw为车轮半径,ig为挡位传动比,i0为主减速器传动比;以及
Figure GDA0002441697370000022
式中,t1为离合器主从动盘从开始接触到摩擦转矩克服行驶阻力矩所用的时间,tf为发动机输出轴转速和从动盘转速同步时的时间,Tcl为摩擦转矩,Tr为行驶阻力矩。
优选的是,在所述步骤二中,确定所述不确定性因素的上下限值和分布类型,通过蒙特卡洛模拟对所述不确定性因素随机抽样,通过所述仿真平台得到所述响应指标。
优选的是,在所述步骤二中,确定所述关键性不确定性因素包括:弹簧刚度、摩擦片间隙和液压油响应时间等。
优选的是,在所述步骤三中,在所述参数设计空间中构造样本点的试验设计方法包括全因子、正交、拉丁方或者均匀试验法。
优选的是,在所述步骤三中,所述标定参数为
Figure GDA0002441697370000031
优选的是,在所述步骤四中,所述代理模型为多项式响应面、Kriging模型、径向基函数、神经网络、支持向量回归、多变量插值和回归或者多项式混沌展开。
优选的是,在所述步骤四中,所述代理模型为Kriging模型,包括:
Figure GDA0002441697370000032
式中,x0为未观测的需要估值的点,x1,x2,…,xN为其周围的观测点,y(x1),y(x2),…,y(xN)为观测值,
Figure GDA0002441697370000033
为未观测的估值,λi为待定加权系数。
优选的是,在所述步骤四中,还包括对所述代理模型进行验证:
在所述参数设计空间随机抽样选取10个试验样本点作为参数点进行分析,根据验证公式验证所述代理模型的准确性,如果R2>0.95,则所述代理模型能够替代所述仿真平台,如果R2≤0.95,则所述代理模型不满足要求,需要增加样本点数量重新构建所述代理模型;
其中,所述验证公式为
Figure GDA0002441697370000034
优选的是,在所述步骤五中,所述控制参数根据计算信噪比得到,当所述信噪比取值最大时为所述控制参数最优取值;
其中,所述信噪比为
Figure GDA0002441697370000035
本发明与现有技术相比较所具有的有益效果:本发明提出了一种基于代理模型自动变速器控制参数预标定方法,可以直接得到标定参数与换挡输出响应之间的关系,降低了标定过程中对工程师主观经验的依赖性缩减试验次数,提高试验效率,有效地缩短了汽车自动变速器标定的开发周期和开发成本。同时考虑一些不确定因素对对自动变速器换挡过程响应的影响,提高自动变速器在标定过程中的稳健性,提高自动变速器的使用寿命。
附图说明
图1为本发明所述的流程图。
图2(a)为AMEsim中构建的自动变速器机械系统示意图。
图2(b)为AMEsim中构建的自动变速器机械系统示意图。
图3为在Matlab中构建换挡控制逻辑和离合器控制逻辑图。
图4为换挡过程离合器充放油过程中关键控制参数。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
如图1~4所示,本发明公开了一种基于代理模型的自动变速器控制参数预标定方法,在标定工程师在对自动变速器换挡参数标定之前,可以通过本发明分析标定参数及一些不确定因素(比如装配误差、磨损及劣化、工况环境)对换挡过程响应的影响,得到最优参数控制区间,具体包括如下步骤:
步骤一、标定工程师首先在AMEsim中构建自动变速器液压系统(离合器液压系统和换挡液压系统)物理模型,在Matlab中构建换挡控制逻辑和离合器控制逻辑,构建成自动变速器换挡过程仿真平台;
如图2(a)所示,为本实施例在AMEsim软件中搭建的某款7挡DCT的机械结构,图2(b)所示,为本实施例在AMEsim软件中搭建的DCT湿式离合器液压系统结构,图3为将图2中AMEsim软件封装成含有输入输出的子系统,在Matlab中搭建DCT的换挡控制逻辑及离合器执行的电流信号。
步骤二、确定自动变速器换挡过程中的响应指标R,主要包括换挡过程最大冲击度j、离合器接合过程中滑摩功W、换挡时间t;
其中,冲击度j表示为车辆行驶过程中加速度a的变化率,公式为:
Figure GDA0002441697370000041
式中,ωv为变速器输入轴角速度(rad/s),rw为车轮半径(mm),ig为挡位传动比,i0为主减速器传动比;
滑摩功W就是离合器主从动盘滑动摩擦力矩在接合过程中作功的大小,可表达为:
Figure GDA0002441697370000051
式中,t1为离合器主从动盘从开始接触到摩擦转矩克服行驶阻力矩所用的时间,tf为发动机输出轴转速和从动盘转速同步时的时间,Tcl为摩擦转矩,Tr为行驶阻力矩;
换挡时间t为自动变速器完成挡位变化的时间,从当前挡位离合器开始分离开始,到目标挡位离合主从动部分完成同步结束;
步骤三、将自动变速换挡过程中的不确定性因素(弹簧刚度变化、摩擦片磨损、尺寸及装配误差、液压油响应时间等)都建模为随机变量X[x1,x2,x3,...],根据相关经验及文献,确定各个因素的上下限值和分布类型,具体的DCT不确定因素实例表1所示,通过蒙特卡洛模拟对X[x1,x2,x3,...]的随机抽样,通过仿真平台得到相应的响应指标,如式(3)所示,然后计算各不确定因素的灵敏度,灵敏度值越大,说明该参数对输出响应的贡献度越大,可根据此值选取关键性不确定性因素Y[y1,y2,y3,...]。
X[x1,x2,x3,...]→R[j,W,t] (3)
表1
Figure GDA0002441697370000052
基于方差的蒙特卡洛法将函数f(x)分解成2n项递增项之和,如式(4)所示;在采取样本数据后,对其进行计算分析,获取相应系统响应输出指标的总方差及各项偏方差,并由此得出各不确定因素与评价指标的灵敏度关系;
Figure GDA0002441697370000053
函数f(x)的总方差σ和偏方差
Figure GDA0002441697370000054
分别为:
Figure GDA0002441697370000055
Figure GDA0002441697370000061
Figure GDA0002441697370000062
全局灵敏度指数可以表示如下:
Figure GDA0002441697370000063
式中,Sim为第im个输入参数的一阶全局灵敏度系数,Sim,in为两个参数同时变化时的二阶全局灵敏度系数,某输入参数的总体全局灵敏度可以定义成该输入参数的各阶灵敏度系数之和。
步骤四、自动变速器换挡过程中电磁阀输入电流变化关键点的标定参数P[Ihold,Ifill,Tfill,Thold,Ttorque,Iend],其中,Ihold,Ifill,Iend分别为保压段、充油段、换挡结束电磁阀的输入电流,Tfill,Thold,Ttorque,为充油阶段时间,压力保持阶段时间,和转矩相时间;以比例电磁阀为例,根据工程经验和变速器实际结构确定控制过程参数上下限值,如表2所示;与步骤三选取关键性不确定性因素Y[y1,y2,y3,...]及其取值范围组成参数设计空间。
表2
Figure GDA0002441697370000064
步骤五、利用试验设计的方法在参数设计空间中构造一定数量的样本点;常用的试验设计方法有全因子、正交、拉丁方和均匀试验法等,选取参数样本点的个数一般根据计算模型的复杂程度、设计因素的个数和水平等综合情况加以考虑,并可以选取不同的算法进行抽样;
步骤六、通过步骤一构建的自动变速器仿真平台对步骤六所选取的样本点进行仿真,得到各样本点的输出响应,建立确定性因素和控制参数与换挡过程响应指标之间的代理模型;目前所使用的代理模型主要有多项式响应面、Kriging模型、径向基函数、神经网络、支持向量回归、多变量插值和回归、多项式混沌展开等多种代理模型方法;
在本实施例中,作为一种优选,以Kriging代理模型为例,
Figure GDA0002441697370000071
式中,x0为未观测的需要估值的点,x1,x2,…,xN为其周围的观测点,y(x1),y(x2),…,y(xN)为观测值,
Figure GDA0002441697370000072
为未观测的估值,其由相邻观测点的已知观测值加权取和求得;
此处,λi为待定加权系数,Kriging的关键就是计算权重系数λi,其必须满足两个条件:
无偏估计设估值点的真值为y(x0),由于模型空间变异性的存在,y(xi)以及
Figure GDA0002441697370000073
y(x0)均可视为随机变量,当为无偏估计时
Figure GDA0002441697370000074
估值
Figure GDA0002441697370000075
和真值y(x0)之差的方差最小,即
Figure GDA0002441697370000076
Figure GDA0002441697370000077
式中,γ(xi,xj)为以xi和xj两点间的距离作为间距h时参数的半方差值,γ(xi,xj)则是以xi和x0两点之间的距离作为间距h时参数的半方差值。
步骤七、从参数设计空间内利用随机抽样选10个试验样本点作为参数点进行分析,依据公式(12)验证代理模型的准确性,若R2>0.95,则可以认为建立的代理模型可以替代仿真平台,若不满足要求增加样本点数量重新构造代理模型;
Figure GDA0002441697370000078
式中,决定系数R2为衡量代理模型在设计变量空间上的全局误差,其值越接近于1,代理模型预测精度越高;
步骤八、通过构建的代理模型,利用多目标遗传算法,得到自动变速器换挡过程中控制参数稳健性最好的取值,稳健性根据式(13)计算信噪比SNSTB,其值越大,稳健性越好,信噪比计算公式为:
Figure GDA0002441697370000079
多目标遗传算法优点在于探索性能良好。在非支配排序中,因为接近Pareto前沿的个体被选择,使Pareto前进能力增强。进化过程中,将当前父代群体进行交叉和变异得到子群体,将两个群体合并。在目标空间中按照Pareto最优关系将群体中个体两两按其目标函数向量进行比较,将群体中所有个体分成多个依次控制的前沿层。在属于不同的Pareto层的情况下,利用评价Pareto优越性来评价个体的优劣。属于同一个Pareto层的个体,具有更大的拥挤距离的个体更优秀。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (9)

1.一种基于代理模型的自动变速器控制参数预标定方法,其特征在于,包括如下步骤:
步骤一、建立自动变速器液压系统物理模型,建立换挡控制逻辑和离合器控制逻辑,同时构建成自动变速器换挡过程仿真平台;
步骤二、确定自动变速器换挡过程中的响应指标,将自动变速换挡过程中的不确定性因素建模为随机变量,并且通过所述仿真平台得到所述响应指标及计算得到关键性不确定性因素;
步骤三、确定自动变速器换挡过程中电磁阀输入电流变化关键点的标定参数,通过所述标定参数和所述关键性不确定性因素及其取值范围构建参数设计空间,并且在所述参数设计空间中构造样本点;
步骤四、通过所述仿真平台对所述样本点进行仿真,得到所述样本点的输出响应,并且建立所述不确定性因素和控制参数与所述响应指标之间的代理模型;
步骤五、通过所述代理模型,得到自动变速器换挡过程中控制参数;
在所述步骤二中,所述响应指标包括换挡过程最大冲击度j、离合器结合过程中滑摩功W、换挡时间t;
其中,
Figure FDA0002441697360000011
式中,ωv为变速器输入轴角速度,rw为车轮半径,ig为挡位传动比,i0为主减速器传动比;以及
Figure FDA0002441697360000012
式中,t1为离合器主从动盘从开始接触到摩擦转矩克服行驶阻力矩所用的时间,tf为发动机输出轴转速和从动盘转速同步时的时间,Tcl为摩擦转矩,Tr为行驶阻力矩。
2.如权利要求1所述的基于代理模型的自动变速器控制参数预标定方法,其特征在于,在所述步骤二中,确定所述关键性不确定性因素的上下限值和分布类型,通过蒙特卡洛模拟对所述关键性不确定性因素随机抽样,通过所述仿真平台得到所述响应指标。
3.如权利要求2所述的基于代理模型的自动变速器控制参数预标定方法,其特征在于,在所述步骤二中,确定所述关键性不确定性因素包括:弹簧刚度、摩擦片间隙和液压油响应时间。
4.如权利要求1所述的基于代理模型的自动变速器控制参数预标定方法,其特征在于,在所述步骤三中,在所述参数设计空间中构造样本点的试验设计方法包括全因子、正交、拉丁方或者均匀试验法。
5.如权利要求4所述的基于代理模型的自动变速器控制参数预标定方法,其特征在于,在所述步骤三中,所述标定参数为
Figure FDA0002441697360000023
其中,Ihold,Ifill,Iend分别为保压段、充油段、换挡结束电磁阀的输入电流,Tfill,Thold,Ttorque,为充油阶段时间,压力保持阶段时间和转矩相时间。
6.如权利要求1所述的基于代理模型的自动变速器控制参数预标定方法,其特征在于,在所述步骤四中,所述代理模型为多项式响应面、Kriging模型、径向基函数、神经网络、支持向量回归、多变量插值和回归或者多项式混沌展开。
7.如权利要求6所述的基于代理模型的自动变速器控制参数预标定方法,其特征在于,在所述步骤四中,所述代理模型为Kriging模型,包括:
Figure FDA0002441697360000021
式中,x0为未观测的需要估值的点,x1,x2,…,xN为其周围的观测点,y(x1),y(x2),…,y(xN)为观测值,
Figure FDA0002441697360000022
为未观测的估值,λi为待定加权系数。
8.如权利要求1-7中任一项所述的基于代理模型的自动变速器控制参数预标定方法,其特征在于,在所述步骤四中,还包括对所述代理模型进行验证:
在所述参数设计空间随机抽样选取10个试验样本点作为参数点进行分析,根据验证公式验证所述代理模型的准确性,如果R2>0.95,则所述代理模型能够替代所述仿真平台,如果R2≤0.95,则所述代理模型不满足要求,需要增加样本点数量重新构建所述代理模型;
其中,所述验证公式为
Figure FDA0002441697360000031
9.如权利要求8所述的基于代理模型的自动变速器控制参数预标定方法,其特征在于,在所述步骤五中,所述控制参数根据计算信噪比得到,当所述信噪比取值最大时为所述控制参数最优取值;
其中,所述信噪比为
Figure FDA0002441697360000032
CN201910280208.6A 2019-04-09 2019-04-09 一种基于代理模型的自动变速器控制参数预标定方法 Active CN110007598B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910280208.6A CN110007598B (zh) 2019-04-09 2019-04-09 一种基于代理模型的自动变速器控制参数预标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910280208.6A CN110007598B (zh) 2019-04-09 2019-04-09 一种基于代理模型的自动变速器控制参数预标定方法

Publications (2)

Publication Number Publication Date
CN110007598A CN110007598A (zh) 2019-07-12
CN110007598B true CN110007598B (zh) 2020-07-03

Family

ID=67170447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910280208.6A Active CN110007598B (zh) 2019-04-09 2019-04-09 一种基于代理模型的自动变速器控制参数预标定方法

Country Status (1)

Country Link
CN (1) CN110007598B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111677852B (zh) * 2020-05-08 2021-07-06 中国北方车辆研究所 一种电控液动式amt变速器档位位置参数阈值实车标定方法
CN112363483A (zh) * 2020-11-02 2021-02-12 中国第一汽车股份有限公司 一种变速器虚拟标定模型建模方法
CN113048869B (zh) * 2021-03-10 2022-12-09 科世达(上海)机电有限公司 一种电子换挡器的标定方法、系统、设备及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070294017A1 (en) * 2006-06-20 2007-12-20 Eaton Corporation Method for estimating clutch engagement parameters in a strategy for clutch management in a vehicle powertrain
CN101118620A (zh) * 2007-09-18 2008-02-06 吉林大学 基于神经网络的车辆换档品质评价方法
CN102539151B (zh) * 2012-01-18 2014-05-14 北京工业大学 一种汽车变速器智能化在线质量检测方法
CN103994005A (zh) * 2014-04-13 2014-08-20 北京理工大学 一种电控单体泵柴油机模型的燃油经济性标定方法
CN103967963B (zh) * 2014-05-21 2016-08-17 合肥工业大学 基于神经网络预测的dct湿式离合器温度的测量方法
CN104408271B (zh) * 2014-12-20 2017-07-07 吉林大学 一种基于模型的汽油机标定方法
CN104696504B (zh) * 2015-01-04 2017-05-17 奇瑞控股有限公司 一种车辆换档控制方法及装置
CN106763724A (zh) * 2017-01-19 2017-05-31 西华大学 汽车有级自动变速器多性能综合最优挡位决策系统
US11308391B2 (en) * 2017-03-06 2022-04-19 Baidu Usa Llc Offline combination of convolutional/deconvolutional and batch-norm layers of convolutional neural network models for autonomous driving vehicles

Also Published As

Publication number Publication date
CN110007598A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN110007598B (zh) 一种基于代理模型的自动变速器控制参数预标定方法
US8050856B2 (en) Methods and systems for powertrain optimization and improved fuel economy
US10324004B2 (en) Methods and devices for adaptive autonomous polynomial interpolation of time series data
Xu et al. A failure-dependency modeling and state discretization approach for condition-based maintenance optimization of multi-component systems
CN101118620A (zh) 基于神经网络的车辆换档品质评价方法
JP6784003B2 (ja) 統合システム用の共同シミュレーションを構成する方法、装置、コンピュータ可読記憶媒体、及びプログラム
CN102901651A (zh) 电子产品分数阶神经网络性能退化模型及寿命预测方法
CN113065702B (zh) 基于st-seep分段法和时空arma模型的滑坡位移多线性预测方法
CN112364560A (zh) 矿山凿岩装备作业工时智能预测方法
Foulard et al. Online and real-time monitoring system for remaining service life estimation of automotive transmissions–Application to a manual transmission
CN102749584B (zh) 基于Kalman滤波的ESN的涡轮发动机的剩余寿命预测方法
CN114528666A (zh) 一种基于多层级分布式协同代理模型的复杂结构系统可靠性方法
WO2000041123A9 (en) Real-time planner for design
EP1208514A1 (en) Real-time planner for design
Wurm et al. Robust design optimization for improving automotive shift quality
CN106886620B (zh) 航天器测试资源优化配置方法
CN112905436B (zh) 一种面向复杂软件的质量评估预测方法
Nikolaidis et al. Neural networks and response surface polynomials for design of vehicle joints
CN111125964B (zh) 一种基于克里金插值法的污水处理过程代理模型构建方法
CN113360983B (zh) 一种边坡可靠度分析与风险评估方法
CN110309472B (zh) 基于离线数据的策略评估方法及装置
Ben-Akiva et al. Multi-Dimensional Choice Models: Alternative Structures of Travel Demand Models
CN102521484B (zh) 基于自适应参数域遗传算法的机油泵性能曲线的估计方法
ATHAN et al. Multicriteria optimization of anti-lock braking system control algorithms
CN116834757A (zh) 基于bp神经网络的车辆负载值估算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant