CN110004239A - 一种基于微生物溯源解析水体污染源的方法 - Google Patents

一种基于微生物溯源解析水体污染源的方法 Download PDF

Info

Publication number
CN110004239A
CN110004239A CN201910266011.7A CN201910266011A CN110004239A CN 110004239 A CN110004239 A CN 110004239A CN 201910266011 A CN201910266011 A CN 201910266011A CN 110004239 A CN110004239 A CN 110004239A
Authority
CN
China
Prior art keywords
source
microorganism
traced
water
pollution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910266011.7A
Other languages
English (en)
Inventor
张文龙
顾金飞
李轶
牛丽华
张焕军
王龙飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201910266011.7A priority Critical patent/CN110004239A/zh
Publication of CN110004239A publication Critical patent/CN110004239A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于微生物溯源解析水体污染源的方法,包括以下步骤:步骤1,微生物溯源应用可行性分析;步骤2,确定水体污染区域和潜在来源点位;步骤3,采集水体污染区域和潜在来源点位样品;步骤4,对采集样品进行DNA提取、PCR扩增以及测序分析,并基于微生物数据库进行微生物比对分类;步骤5,基于步骤4所得微生物分类结果判断微生物溯源类型并处理相应的微生物数据;步骤6,将步骤5处理后的数据,源和汇点位安排输入微生物溯源模型中进行检测;步骤7,对微生物溯源模型处理结果进行稳定性分析,不符合要求的需重新采样分析;步骤8,基于检测结果,根据判断方案判别水体污染区域的潜在来源。本发明采用方法具有适用广泛、准确以及高效的特点。

Description

一种基于微生物溯源解析水体污染源的方法
技术领域
本发明涉及一种基于微生物溯源解析水体污染源的方法,属于水体环境监测和水污染溯源技术领域。
背景技术
随着人类社会的发展,城市化工业化的推进,人类生产活动产生的污染物,通过点源和面源的方式进入水体,造成水体污染事件的频发,对水体的生态安全和人类健康都构成重要的威胁。因此,对水体污染区域进行溯源,准确掌握污染来源信息,对于水体生态环境的保护和治理有重要作用。
随着生活水平提高和水体治理技术的发展,相对于物理、化学污染,水体中微生物造成的水体污染,如致病细菌,抗生素抗性基因逐渐成为水体污染溯源的研究热点和难点。水体中的微生物会随着水和泥沙在水体中与污染物一起迁移转化,通过找寻宿主特异性或相关性的微生物,通过对微生物的溯源也可以帮助我们追踪其他污染物的来源。传统水质指纹溯源方法对水体相关微生物污染的不适用,也促进了水体微生物溯源技术的发展。
微生物溯源起源于20世纪80年代,最初是为了诊断水源污染物的来源(如牲畜粪便或人类来源),是利用宿主特异性或相关性的微生物指标,建立区别、鉴定污染源的流程。由于不同宿主饮食结构和生存环境的差异,不同污染物的指示微生物的基因型会存在一定差异,基于这种差异可进行污染物的微生物溯源。因此,指示微生物及生物标记的选择对于微生物溯源尤为重要。
微生物溯源的传统方法多数是基于不同菌株基因分型,通过判断不同来源菌株基因相似度进而判断指定微生物的来源。传统的微生物溯源方法如脉冲场凝胶电泳等由于操作复杂、费时费力等因素,无法满足日益增长的对环境微生态的认识。
发明内容
本发明所要解决的技术问题是,提供一种适用广泛、准确、高效的基于微生物溯源解析水体污染源的方法。
为解决上述技术问题,本发明采用的技术方案为:
一种基于微生物溯源解析水体污染源的方法,包括以下步骤:
步骤1,根据水体污染物环境调查情况,对水体污染物类型与微生物溯源应用进行可行性分析;
步骤2,确定水体污染区域和潜在来源点位,具体的,可根据水体的点源,面源污染输入情况,水文水资源状况,自然地理区域特征,明确水体污染物的潜在来源点位;
步骤3,采集水体污染区域和潜在来源点位样品;
步骤4,对采集样品进行DNA提取、PCR扩增以及测序分析,并基于微生物数据库进行微生物比对分类;
步骤5,基于步骤4所得微生物分类结果判断微生物溯源类型并处理相应的微生物数据;
步骤6,将步骤5处理后的数据,源和汇点位安排输入微生物溯源模型中进行检测;
步骤7,对微生物溯源模型处理结果进行稳定性分析,不符合要求的需重新采样分析;
步骤8,基于检测结果,根据判断方案判别水体污染区域的潜在来源。
进一步的,步骤3中所述样品包括水样,泥样,微生物膜,粪便或活性污泥。
进一步的,步骤4中基于Illumina Miseq平台进行高通量测序。
进一步的,步骤5中微生物溯源类型分为以下三类:
a.水体微生物污染溯源,如致病细菌,粪便细菌等,直接通过选择合适引物进行扩增测序筛选出相关微生物数据,输入到微生物溯源模型中;
b.水体微生物功能基因溯源,如抗生素抗性基因,氮循环功能基因等,将高通量测序得到的微生物数据进行功能基因分析或与相关基因库比对得到微生物功能基因数据,输入到微生物溯源模型中;
c.水体污染物相关指示微生物溯源,如氮、磷等相关指示细菌溯源,通过水体污染物与微生物的相关网络分析,筛选出与污染物有极大相关性的微生物数据,输入到微生物溯源模型中。
进一步的,步骤5中采用Spearman相关性分析进行数据处理。
进一步的,步骤6中微生物溯源模型采用SourceTracker。
进一步的,步骤7中稳定性分析采用重复多次检测结果的标准差SD和相对标准差RSD进行评估。
进一步的,步骤8中判断方案为结合实际情况和潜在来源的贡献比例,判别水体污染区域的潜在来源。
本发明所达到的有益效果:本发明通过溯源水体微生物的高通量测序得到的微生物数据,不仅可以直接识别水体中微生物造成的水体污染,如致病细菌,抗生素抗性基因,还可通过找寻宿主特异性或相关性的指示微生物,通过对微生物的溯源帮助我们追踪其他污染物的来源,采用SourceTracker作为基于高通量测序技术的微生物溯源模型,解决了传统水质指纹溯源方法对水体相关微生物污染不适用的问题,提高了该方法估计的可靠程度,本发明方法新颖独特,可以高效准确的追踪水体污染来源,为水体生态环境的保护和治理提供了重要理论依据。
附图说明
图1为本发明提供的一种基于微生物溯源解析水体污染来源方法的流程图;
图2为本发明实施例中相关网络分析筛选出与P相关的指示微生物示意图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
在本实施例中,研究区域为洞庭湖流域的西洞庭湖和南洞庭湖区域。图1为本发明提供的一种基于微生物溯源解析水体污染来源方法的流程图,该方法主要包括如下步骤:
(1)水体污染类型及微生物溯源应用可行性分析:根据水体污染物环境现状调查,研究区域洞庭湖流域富营养化水平偏高,N、P营养元素均超过国家标准,湖区存在蓝藻爆发的风险。营养元素磷是控制湖泊蓝藻爆发的关键因素,因此急需对洞庭湖流域水体污染P的来源,进行溯源。磷元素是微生物生长的必要元素,磷大部分以颗粒磷的形式与微生物一起吸附在悬浮泥沙中在河湖系统中传播,因此通过相关网络分析,可以筛选出磷的相关指示微生物,从而进行微生物溯源分析。
(2)水体污染物的潜在来源判断:洞庭湖流域大部分磷通过颗粒磷的形式吸附在入湖河流泥沙中输入湖区沉积在底泥中,在水力扰动和合适自然环境下释放造成湖区污染,因此,各条入湖河流是主要的P污染来源,具体的源、汇点位安排如表1所示。
表1洞庭湖流域底泥磷溯源的源和汇的点位安排
(3)水体污染区域和潜在来源点位样品采集:根据实地调研,采集洞庭湖流域湖心区和各条河流入湖口的底泥样品,利用采泥器对研究点位底泥进行取样,每个取样点设置3个重复,沉积物样品采自沉积物-水交界面以下0-25cm,样品采集后,记录样品的感官指标和原位监测常规水质指标。将表层沉积物样品充分混合,分别用灭菌的50mL聚丙烯管收集,一份保存于4℃冰箱中,用于底质样品的理化因子测定;另一份保存于-20℃冰箱中,用于底泥基因组DNA提取。实验室进行泥沙样品有机质(OM)、总氮(TN)、总磷(TP)、无机磷(IP)、有机磷(OP)、非磷灰石无机磷(NAIP)、磷灰石磷(AP)的检测。
(4)样品DNA提取、PCR扩增及高通量测序分析:采集的泥沙样品经过预处理后,用土壤基因组DNA提取试剂盒从0.3g底泥样品中提取总DNA并取3μL进行1%琼脂糖凝胶电泳检测。16S rRNA基因V3-V4区使用引物341F和806R进行克隆。PCR过程使用三份20-μL体系的反应物。提取的DNA样品进行Illumina Miseq测序。在质量检查后,16S rRNA序列按照97%相似性被分成各个操作分类单元(OTU),序列使用Silva v128参考数据库进行比对安排微生物分类,得到基于高通量测序的微生物数据。
(5)判断水体微生物溯源类型并处理相应的微生物数据:在本实施例中,水体微生物溯源类型为水体污染物相关指示微生物溯源。水体污染物各种形式P与微生物的相关网络分析(如图2所示),其中运用Spearman相关性分析展现不同形式P与微生物的关系,r>0.6,P<0.05的微生物被筛选出来作为与污染物P有极大相关性的微生物数据,输入到微生物溯源模型SourceTracker中。
(6)运行微生物溯源模型SourceTracker:将经过质量过滤和网络分析筛选处理的高通量测序数据,源和汇的点位安排输入到模型SourceTracker v1.0.1中,使用模型的初始参数运行。模型初始参数设置为:a rarefaction depth of 1000,burn-in 100,restart10,alpha(0.001)and beta(0.01)。为了保证模型结果的稳定性,模型重复运行5次,得到各潜在来源微生物对污染区域微生物的贡献比例。
(7)模型结果处理与稳定性分析:各潜在来源微生物对污染区域微生物的贡献比例取5次平均值为A。计算来源比例的标准差SD和相对标准差RSD来评估模型稳定性,本实施例中,所有数据的相对标准差RSD<100%,证明该模型准确性较高。
(8)判别水体污染区域的潜在来源:湖区P潜在来源的贡献比例如表2所示,西洞庭湖流域L1,L2点位P的主要贡献河流为松滋河(SZ);南洞庭湖流域L3点位P的主要贡献河流为藕池河(OC),L4点位P的主要贡献河流为汨罗河(ML)。
表2洞庭湖流域底泥磷溯源的源和汇的点位安排
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (8)

1.一种基于微生物溯源解析水体污染源的方法,其特征是,包括以下步骤:
步骤1,根据水体污染物环境调查情况,对水体污染物类型与微生物溯源应用进行可行性分析;
步骤2,确定水体污染区域和潜在来源点位;
步骤3,采集水体污染区域和潜在来源点位样品;
步骤4,对采集样品进行DNA提取、PCR扩增以及测序分析,并基于微生物数据库进行微生物比对分类;
步骤5,基于步骤4所得微生物分类结果判断微生物溯源类型并处理相应的微生物数据;
步骤6,将步骤5处理后的数据,源和汇点位安排输入微生物溯源模型中进行检测;
步骤7,对微生物溯源模型处理结果进行稳定性分析,不符合要求的需重新采样分析;
步骤8,基于检测结果,根据判断方案判别水体污染区域的潜在来源。
2.根据权利要求1所述的一种基于微生物溯源解析水体污染源的方法,其特征是,步骤3中所述样品包括水样,泥样,微生物膜,粪便或活性污泥。
3.根据权利要求1所述的一种基于微生物溯源解析水体污染源的方法,其特征是,步骤4中基于Illumina Miseq平台进行高通量测序。
4.根据权利要求1所述的一种基于微生物溯源解析水体污染源的方法,其特征是,步骤5中微生物溯源类型分为以下三类:
a.水体微生物污染溯源,直接通过选择合适引物进行扩增测序筛选出相关微生物数据,输入到微生物溯源模型中;
b.水体微生物功能基因溯源,将高通量测序得到的微生物数据进行功能基因分析或与相关基因库比对得到微生物功能基因数据,输入到微生物溯源模型中;
c.水体污染物相关指示微生物溯源,通过水体污染物与微生物的相关网络分析,筛选出与污染物有极大相关性的微生物数据,输入到微生物溯源模型中。
5.根据权利要求4所述的一种基于微生物溯源解析水体污染源的方法,其特征是,步骤5中采用Spearman相关性分析进行数据处理。
6.根据权利要求1所述的一种基于微生物溯源解析水体污染源的方法,其特征是,步骤6中微生物溯源模型采用SourceTracker。
7.根据权利要求1所述的一种基于微生物溯源解析水体污染源的方法,其特征是,步骤7中稳定性分析采用重复多次检测结果的标准差SD和相对标准差RSD进行评估。
8.根据权利要求1所述的一种基于微生物溯源解析水体污染源的方法,其特征是,步骤8中判断方案为结合实际情况和潜在来源的贡献比例,判别水体污染区域的潜在来源。
CN201910266011.7A 2019-04-03 2019-04-03 一种基于微生物溯源解析水体污染源的方法 Pending CN110004239A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910266011.7A CN110004239A (zh) 2019-04-03 2019-04-03 一种基于微生物溯源解析水体污染源的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910266011.7A CN110004239A (zh) 2019-04-03 2019-04-03 一种基于微生物溯源解析水体污染源的方法

Publications (1)

Publication Number Publication Date
CN110004239A true CN110004239A (zh) 2019-07-12

Family

ID=67169624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910266011.7A Pending CN110004239A (zh) 2019-04-03 2019-04-03 一种基于微生物溯源解析水体污染源的方法

Country Status (1)

Country Link
CN (1) CN110004239A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111118122A (zh) * 2020-01-18 2020-05-08 中国科学院大学 一种禽类粪便污染荧光定量pcr检测探针及检测方法
CN111118128A (zh) * 2020-01-06 2020-05-08 华东理工大学 一种利用微生物群落图谱解析河流水体污染来源的方法
CN111161802A (zh) * 2020-01-06 2020-05-15 华东理工大学 一种利用微生物生物标记的湖泊水体污染来源解析方法
CN112881627A (zh) * 2021-01-12 2021-06-01 六盘水师范学院 一种基于微生物测试的煤矿突水水源判别方法
CN114295749A (zh) * 2021-12-30 2022-04-08 南京大学 一种水体有机污染智能化溯源方法及系统
CN115064215A (zh) * 2022-08-18 2022-09-16 北京大学人民医院 一种通过相似度进行菌株溯源及属性鉴定的方法
WO2024051046A1 (zh) * 2022-09-09 2024-03-14 长江水利委员会长江科学院 用于估算湖库表层沉积物中的抗生素抗性基因的丰度与分布特征的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661939A (zh) * 2012-05-15 2012-09-12 北京化工大学 一种快速实现水污染溯源的方法
CN107058580A (zh) * 2017-06-02 2017-08-18 环境保护部华南环境科学研究所 一种水体微生物污染来源定量解析方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661939A (zh) * 2012-05-15 2012-09-12 北京化工大学 一种快速实现水污染溯源的方法
CN107058580A (zh) * 2017-06-02 2017-08-18 环境保护部华南环境科学研究所 一种水体微生物污染来源定量解析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHRISTOPHER STALEY等: "Application of SourceTracker for Accurate Identification of Fecal Pollution in Recreational Freshwater: A Double-Blinded Study", 《ENVIRONMENTAL SCIENCE & TECHNOLOGY》 *
冯少强: "水体粪便污染的微生物溯源及研究进展", 《中外健康文摘》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111118128A (zh) * 2020-01-06 2020-05-08 华东理工大学 一种利用微生物群落图谱解析河流水体污染来源的方法
CN111161802A (zh) * 2020-01-06 2020-05-15 华东理工大学 一种利用微生物生物标记的湖泊水体污染来源解析方法
CN111118122A (zh) * 2020-01-18 2020-05-08 中国科学院大学 一种禽类粪便污染荧光定量pcr检测探针及检测方法
CN111118122B (zh) * 2020-01-18 2022-05-24 中国科学院大学 一种禽类粪便污染荧光定量pcr检测探针及检测方法
CN112881627B (zh) * 2021-01-12 2022-09-27 六盘水师范学院 一种基于微生物测试的煤矿突水水源判别方法
CN112881627A (zh) * 2021-01-12 2021-06-01 六盘水师范学院 一种基于微生物测试的煤矿突水水源判别方法
WO2023024463A1 (zh) * 2021-12-30 2023-03-02 南京大学 一种水体有机污染智能化溯源方法及系统
CN114295749B (zh) * 2021-12-30 2022-10-25 南京大学 一种水体有机污染智能化溯源方法及系统
CN114295749A (zh) * 2021-12-30 2022-04-08 南京大学 一种水体有机污染智能化溯源方法及系统
US11965871B2 (en) 2021-12-30 2024-04-23 Nanjing University Method and system for intelligent source tracing of organic pollution of water body
CN115064215A (zh) * 2022-08-18 2022-09-16 北京大学人民医院 一种通过相似度进行菌株溯源及属性鉴定的方法
CN115064215B (zh) * 2022-08-18 2023-10-24 北京大学人民医院 一种通过相似度进行菌株溯源及属性鉴定的方法
WO2024051046A1 (zh) * 2022-09-09 2024-03-14 长江水利委员会长江科学院 用于估算湖库表层沉积物中的抗生素抗性基因的丰度与分布特征的方法

Similar Documents

Publication Publication Date Title
CN110004239A (zh) 一种基于微生物溯源解析水体污染源的方法
Props et al. Measuring the biodiversity of microbial communities by flow cytometry
Huang et al. Characterization of sediment bacterial communities in plain lakes with different trophic statuses
Wilderer et al. Modern scientific methods and their potential in wastewater science and technology
Luo et al. Microbial community structures in a closed raw water distribution system biofilm as revealed by 454-pyrosequencing analysis and the effect of microbial biofilm communities on raw water quality
Wang et al. Keystone taxa of water microbiome respond to environmental quality and predict water contamination
CN104899475B (zh) 利用水体沉积物中微生物多样性指标评价水质的方法
Savio et al. Opening the black box of spring water microbiology from alpine karst aquifers to support proactive drinking water resource management
Magagnini et al. Viral abundance and distribution in mesopelagic and bathypelagic waters of the Mediterranean Sea
Zhang et al. Linking pollution to biodiversity and ecosystem multifunctionality across benthic-pelagic habitats of a large eutrophic lake: A whole-ecosystem perspective
Vinten et al. Comparison of microbial community assays for the assessment of stream biofilm ecology
CN111944914A (zh) 一种基于抗性基因及毒力因子基因评价水体健康风险的方法
CN110033133A (zh) 一种河湖系统中泥沙溯源方法
Yargicoglu et al. Review of biological diagnostic tools and their applications in geoenvironmental engineering
CN113393081A (zh) 一种适用于再生水补给河流的健康评价方法
de los Reyes Challenges in determining causation in structure–function studies using molecular biological techniques
Xue et al. Relic DNA obscures DNA‐based profiling of multiple microbial taxonomic groups in a river‐reservoir ecosystem
Cao et al. Community analysis-based methods
Bai et al. Digitalizing river aquatic ecosystems
Devereux et al. Development and applications of microbial ecogenomic indicators for monitoring water quality: Report of a workshop assessing the state of the science, research needs and future directions
Eldridge et al. Using high-throughput DNA sequencing, genetic fingerprinting, and quantitative PCR as tools for monitoring bloom-forming and toxigenic cyanobacteria in Upper Klamath Lake, Oregon, 2013 and 2014
CN114565221A (zh) 水生态系统环境质量综合评价方法
CN107805658A (zh) 一种对水质敏感的真核微型生物t‑rflp片段的筛选方法
Hupało et al. Assessing Metropolitan Biodiversity Using Aquatic Environmental DNA Metabarcoding
Priyadarsini et al. Application of flow cytometry for rapid, high-throughput, multiparametric analysis of environmental microbiomes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190712

RJ01 Rejection of invention patent application after publication