CN109996810A - 从微藻中纯化重组骨桥蛋白的方法 - Google Patents

从微藻中纯化重组骨桥蛋白的方法 Download PDF

Info

Publication number
CN109996810A
CN109996810A CN201780073205.4A CN201780073205A CN109996810A CN 109996810 A CN109996810 A CN 109996810A CN 201780073205 A CN201780073205 A CN 201780073205A CN 109996810 A CN109996810 A CN 109996810A
Authority
CN
China
Prior art keywords
ropn
algae
purified
pure
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780073205.4A
Other languages
English (en)
Other versions
CN109996810B (zh
Inventor
米勒·特朗
迈克尔·玛菲尔德
杰瑞米·菲尔拉拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Triton Agea Innovation Co
Original Assignee
Triton Agea Innovation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Triton Agea Innovation Co filed Critical Triton Agea Innovation Co
Publication of CN109996810A publication Critical patent/CN109996810A/zh
Application granted granted Critical
Publication of CN109996810B publication Critical patent/CN109996810B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/473Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used alpha-Glycoproteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明提供了从转基因微藻的培养物中获得经纯化的重组骨桥蛋白(rOPN)的方法,以及来自这些培养物的营养补充剂。

Description

从微藻中纯化重组骨桥蛋白的方法
相关文献的交叉引用
本申请根据35 U.S.C.§119(e)要求于2016年11月27日提交的美国系列号62/426,567的优先权,其全部内容通过引用并入本文。
背景技术
骨桥蛋白(OPN)是大约300个氨基酸的酸性多功能蛋白质,其在1979年首次被鉴定。由于广泛的翻译后修饰,骨桥蛋白以几种同种型存在。已经表征了从若干物种和来源获得的OPN进行了翻译后修饰。牛乳汁OPN具有28个磷酸化位点以及3个O-糖基化位点。略大的人乳汁OPN含有38个磷酸化位点和5个O-糖基化位点,而人尿液OPN也有5个O-糖基化位点,但只有31个磷酸化位点。大鼠骨OPN具有至少29个磷酸化位点,4个O-糖基化位点且具有酪氨酸硫酸化位点。由小鼠成骨细胞培养物分泌的骨桥蛋白具有27个磷酸化位点和5个O-糖基化位点。除了磷酸化位点的数量之外,同种型之间的磷酸化程度也不同。例如,尽管在奶牛乳汁OPN中所有28个磷酸化位点都被完全修饰,但是在人尿液OPN的31个磷酸化位点中仅约8个被修饰。此外,OPN含有RGD(精氨酸、甘氨酸、天冬氨酸)整合素结合序列,其促进细胞与各种表面的附着。
自发现以来,OPN涉及许多生物学功能,包括细胞介导的免疫应答的激活、钙化的抑制,和新生儿免疫发育。在人类母乳中,OPN已被证明对婴儿免疫力至关重要。骨桥蛋白通过诱导T细胞分泌IL-12刺激T细胞分化成辅助T细胞1(Th-1)。已知Th-1细胞对于通过增强细菌或原生动物的吞噬作用来辅助巨噬细胞、改善病毒清除和最大化CD8T细胞的增殖是至关重要的。相反,OPN下调IL-10的分泌并限制辅助T细胞2(Th-2)的产生。骨桥蛋白还具有调理作用,其与病原体结合并标记它们以进行吞噬作用。这些因素表明了OPN在新生儿和婴儿肠道发育中的重要作用。
骨桥蛋白在婴儿免疫中的作用是众所周知的。以前的研究证明,奶牛乳汁与人类母乳中的OPN浓度之间存在差异。在一些研究中,OPN已被证明占人类母乳的10%。当将人乳汁中的OPN浓度与主要来源于牛乳汁的婴儿配方食品(infant formula)中的浓度进行比较时,这种差异进一步突出。因此,通过添加OPN可以改善婴儿配方食品模拟母乳营养价值的能力。目前,商业规模的唯一OPN来源是奶牛乳汁。然而,由于奶牛乳汁中低水平的OPN和纯化高成本的组合,使用奶牛乳汁来补充婴儿配方食品在商业上是不可行的。先前开发OPN的替代来源的尝试,诸如在大肠杆菌中产生的OPN,由于缺乏磷酸化而导致产生在生物学上无活性的蛋白质。
在过去的40年中,已经开发了重组蛋白表达系统以满足对蛋白质的不断增长的需求。然而,这些系统通常很昂贵,并且因此对于生产治疗中使用的高价值蛋白质有所保留。使用重组蛋白表达系统来生产具有营养价值的蛋白质的想法很少被考虑,主要是因为潜在的成本,特别是与广泛的蛋白质纯化相关的成本。在过去的10年中,对用于生物燃料的大规模和可负担的绿藻生产存在巨大的兴趣和相当大的投资。现在可以利用藻类遗传学、生长和生物燃料生产力方面的进步来生产重组蛋白质。
莱茵衣藻(Chlamydomonas reinhardtii)是真核绿藻,已被开发为重组蛋白表达系统很多年。已经对莱茵衣藻的核、叶绿体和线粒体基因组进行了测序和转化。具体而言,通过先进的蛋白质表达盒的开发以及对细胞器生物学的理解的增加,已将莱茵衣藻的叶绿体转变为稳健的表达系统。最近,绿藻的叶绿体已经用于表达磷酸化的生物活性OPN(美国专利申请公开号2016/0257730)。由于能够以商业规模生产重组OPN,因此需要一种能够纯化由微藻产生的OPN的经济上可行的方法。本发明提供了这样的方法。
发明内容
本文提供了通过破碎液体环境中微藻的细胞结构来获得由转基因微藻表达的经纯化的重组骨桥蛋白(rOPN)的方法。在某些实施方案中,微藻细胞结构由被选自以下至少一种的方法破碎:冻融、珠打(bead beating)、酸水解、均化、微流化、使用法式压榨、超声处理、酶处理或氮减压。在一个实施方案中,液体环境具有介于约pH4.3至约pH8.5之间的第一pH,而在另一个实施方案中,液体环境的第一pH介于约pH4.3至约6.0之间。在一个特定实施方案中,液体环境的第一pH为约pH5.0。
微藻细胞结构的破碎引起可溶性和不可溶性细胞部分的形成,可溶性细胞部分含有rOPN。通过本领域已知的任何方法(例如离心、过滤、沉降或这些方法的组合)分离可溶性和不可溶性细胞部分。在某些实施方案中,通过以10000xg离心分离可溶性和不可溶性细胞部分。在可溶性钙盐存在下,将可溶性部分的pH调节至介于约pH5.0至约pH9.0之间的第二pH,以形成含有rOPN的沉淀物和上清液。在某些实施方案中,将pH调节至介于约pH6.0至约pH8.5之间或介于约pH7.0至约pH8.5之间的第二pH。在更进一步的实施方案中,将可溶性部分调节至约pH8.0的第二pH。在另外的实施方案中,可溶性钙盐可以是氯化钙、柠檬酸钙、硫酸钙、氟化钙、磷酸钙或碳酸钙。在一个特定实施方案中,可溶性钙盐是浓度为约100mM至约250mM的氯化钙。在一些实施方案中,通过离心、沉降和/或过滤分离含有rOPN的沉淀物和上清液。在一个实施方案中,通过以10000xg离心分离沉淀物和上清液。
通过将pH调节至介于约pH4.3至约pH5.0之间的第三pH来溶解沉淀物内的rOPN。在一些实施方案中,第三pH介于约pH4.5至5.0之间或介于约pH4.7至约pH5.0之间。在特定的实施方案中,第三pH为约pH5.0。在将pH增加至第三pH后,通过沉降、离心和/或过滤除去钙盐。在一个实施方案中,通过以10000xg离心除去钙盐。然后将已溶解的rOPN与阴离子交换介质结合,所述阴离子交换介质可以是弱或强阴离子交换介质。在一些实施方案中,DEAE-琼脂糖被用作弱阴离子交换介质,Q树脂被用作强阴离子交换介质。然后从阴离子交换介质中洗脱结合的rOPN。在一些实施方案中,用竞争性盐从阴离子交换介质洗脱结合的rOPN。在一个实施方案中,竞争性盐是氯化钠。在特定的实施方案中,使用浓度介于约200mM和约400mM之间的氯化钠洗脱结合的rOPN。在洗脱时从阴离子交换介质中收集rOPN以产生经纯化的rOPN。纯化程度可以从大于20%纯的到大于99%纯的。
附图说明
图1显示用于在藻类中表达rOPN的载体;
图2显示了各种启动子对藻类中rOPN表达的影响。%TSP是总可溶性蛋白质的百分比;
图3显示了牛OPN在藻类中的表达(图3A),并且该藻株是同质的(图3B)。
具体实施方式
提供以下详细说明书以帮助本领域技术人员实践所要求保护的发明。然而,该详细说明书不应被解释为对所要求保护的发明进行不当限制,因为本领域普通技术人员可以在不脱离本发明要求保护的发明的范围的情况下对本文所讨论的实施方案进行修改和变化。
本申请中引用的所有出版物、专利、专利申请、公共数据库、公共数据库条目和其他参考文献通过引用整体并入本文,如同每个单独的出版物、专利、专利申请、公共数据库、公共数据库条目或者其他参考文献被具体地和单独地指出通过引用并入一样。
如在本说明书和所附权利要求中使用的,单数形式“a”、“an”和“the”包括复数指代,除非上下文另有明确说明。
在提供数值范围的情况下,应当理解,除非上下文另有明确规定,还具体公开了该范围的上限和下限之间的介于下限单位的十分之一的每个中间值。涵盖在规定范围内的任何规定值或中间值与规定范围内的任何其他规定值或中间值之间的每个较小范围。这些较小范围的上限和下限可以独立地包括或排除在该范围内,并且涵盖了在该较小范围中包括任一个端点、不包括端点或包括两个端点的每个范围,其在规定范围内的端点受任何特别的排除。如果规定的范围包括一个或两个端点,则还包括排除这些端点中的一个或两个的范围。
本文提供了用于从遗传转化的微藻获得的重组骨桥蛋白(rOPN)的经纯化制品的生产的方法。如本文所用,“微藻”是无脉管藻类,并且可包括分类为光合细菌(包括蓝细菌)的生物。应注意,在本发明中,术语微藻和藻类可互换使用。
可用于生产rOPN的微藻属的非限制性实例包括蓝藻门(Cyanophyta)、原绿藻门(Prochlorophyta)、红藻门(Rhodophyta)、绿藻门(Chlorophyta)、不等鞭毛藻门(Heterokontophyta)、Tribophyta、灰藻门(Glaucophyta)、丝足虫藻(Chlorarachniophyte)、裸藻门(Euglenophyta)、裸藻纲(Euglenoids)、定鞭藻门(Haptophyta)、金藻门(Chrysophyta)、隐藻门(Cryptophyta)、淀粉鞭毛藻(Cryptomonads)、甲藻门(Dinophyta)、双鞭甲藻(Dinoflagellata)、定鞭金藻(Pyrmnesiophyta)、硅藻门(Bacillariophyta)、黄藻门(Xanthophyta)、真眼点藻门(Eustigmatophyta)、Raphidophyta、褐藻门(Phaeophyta)和浮游藻类(Phytoplankton)。微藻也可以是微藻种,包括但不限于莱茵衣藻(Chlamydomonas reinhardtii)、盐生杜氏藻(Dunaliella salina)、盐生拟微球藻(Nannochloropsis salina),眼点拟微球藻(Nannochloropsis occulata)、二形栅藻(Scenedesmus dimorphus)、斜生栅藻(Scenedesmus obliquus)、特氏杜氏藻(Dunaliella tertiolecta)或雨生红球藻(Haematococcus pluvialis)。本发明的“微藻”可以是单细胞无脉管生物。在其他实例下,微藻可以是多细胞无脉管生物的一个或更多个细胞。
可以与本发明的方法一起使用的微藻种的另外的非限制性实例包括:东方曲壳藻(Achnanthes orientalis)、阿格门氏藻spp.(Agmenellum spp.)、透明茧形藻(Amphiprorahyaline)、咖啡形双眉藻(Amphora coffeiformis)、咖啡形双眉藻线状变种(Amphoracoffeiformis var.linea)、咖啡形双眉藻斑点变种(Amphora coffeiformisvar.punctata)、咖啡形双眉藻泰勒氏变种(Amphora coffeiformis var.taylori)、咖啡形双眉藻细薄变种(Amphora coffeiformis var.tenuis)、Amphora delicatissima、Amphoradelicatissima var.capitata、双眉藻sp.(Amphora sp.)、项圈藻(Anabaena)、纤维藻(Ankistrodesmus)、镰形纤维藻(Ankistrodesmus falcatus)、黄金色藻(Boekeloviahooglandii)、包特氏菌sp.(Borodinella sp.)、布朗葡萄藻(Botryococcus braunii)、苏台德葡萄籽(Botryococcus sudeticus)、Bracteococcus minor、Bracteococcusmedionucleatus、四鞭藻(Carteria)、纤细角毛藻(Chaetoceros gracilis)、牟氏角毛藻(Chaetoceros muelleri)、牟氏角毛藻亚盐变种(Chaetoceros muellerivar.subsalsum)、角毛藻属sp.(Chaetoceros sp.)、Chlamydomas perigranulata、无硝小球藻(Chlorella anitrata)、南极小球藻(Chlorella antarctica)、金绿小球藻(Chlorella aureoviridis)、卡氏小球藻(Chlorella Candida)、包囊小球藻(Chlorellacapsulate)、脱水小球藻(Chlorella desiccate)、椭圆小球藻(Chlorella ellipsoidea)、浮水小球藻(Chlorella emersonii)、淡褐小球藻(Chlorella fusca)、淡褐小球藻空腔变种(Chlorella fusca var.vacuolate)、谷氏小球藻(Chlorella glucotropha)、水溪小球藻(Chlorella infusionum)、水溪小球藻栖海岸变种(Chlorella infusionumvar.actophila)、水溪小球藻增大变种(Chlorella infusionum var.auxenophila)、凯氏小球藻(Chlorella kessleri)、匍扇小球藻(Chlorella lobophora)、黄绿小球藻(Chlorella luteoviridis)、黄绿小球藻金绿变种(Chlorella luteoviridisvar.aureoviridis)、黄绿小球藻淡黄变种(Chlorella luteoviridis var.lutescens)、红藻小球藻(Chlorella miniata)、微小小球藻(Chlorella minutissima)、突变小球藻(Chlorella mutabilis)、夜间小球藻(Chlorella nocturna)、卵小球藻(Chlorellaovalis)、巴夫氏小球藻(Chlorella parva)、嗜光小球藻(Chlorella photophila)、普氏小球藻(Chlorella pringsheimii)、原始小球藻(Chlorella protothecoides)、原始小球藻耐酸变种(Chlorella protothecoides var.acidicola)、规则小球藻(Chlorellaregularis)、规则小球藻小型变种(Chlorella regularis var.minima)、规则小球藻伞状变种(Chlorella regularis var.umbricata)、瑞氏小球藻(Chlorella reisiglii)、嗜糖小球藻(Chlorella saccharophila)、嗜糖小球藻椭圆变种(Chlorella saccharophilavar.ellipsoidea)、盐生小球藻(Chlorella salina)、简单小球藻(Chlorella simplex)、耐热性小球藻(Chlorella sorokiniana)、小球藻sp.(Chlorella sp.)、球形小球藻(Chlorella sphaerica)、斯蒂格小球藻(Chlorella stigmatophora)、万尼氏小球藻(Chlorella vanniellii)、普通小球藻(Chlorella vulgaris)、普通小球藻粗皮变种(Chlorella vulgaris fo.tertia)、普通小球藻自养变种(Chlorella vulgarisvar.autotrophica)、普通小球藻绿色变种(Chlorella vulgaris var.viridis)、普通小球藻普通变种(Chlorella vulgaris var.vulgaris)、普通小球藻普通变种粗皮变种(Chlorella vulgaris var.vulgaris fo.tertia)、普通小球藻普通变种绿色变种(Chlorella vulgaris var.vulgaris fo.viridis)、黄色小球藻(Chlorella xanthella)、左氏小球藻(Chlorella zofingiensis)、他伯氏小球藻(Chlorella trebouxioides)、普通小球藻(Chlorella vulgaris)、水溪绿球藻(Chlorococcum infusionum)、绿球藻sp.(Chlorococcum sp.)、绿梭藻(Chlorogonium)、蓝隐藻sp.(Chroomonas sp.)、金球藻sp.(Chrysosphaera sp.)、球钙板藻属(Cricosphaera sp.)、寇氏隐甲藻(Crypthecodiniumcohnii)、隐藻sp.(Cryptomonas sp.)、隐蔽小环藻(Cyclotella cryptica)、梅尼小环藻(Cyclotella meneghiniana)、小环藻sp.(Cyclotella sp.)、杜氏藻sp.(Dunaliellasp.)、拜尔代维勒杜氏藻(Dunaliella bardawil)、双眼杜氏藻(Dunaliella bioculata)、颗粒状杜氏藻(Dunaliella granulate)、海洋杜氏藻(Dunaliella maritime)、微小杜氏藻(Dunaliella minuta)、巴夫杜氏藻(Dunaliella parva)、比雷杜氏藻(Dunaliellapeircei)、普林莫杜氏藻(Dunaliella primolecta)、盐生杜氏藻(Dunaliella salina)、陆生杜氏藻(Dunaliella terricola)、特氏杜氏藻(Dunaliella tertiolecta)、绿色杜氏藻(Dunaliella viridis)、陆生杜氏藻(Dunaliella terricola)、绿色独球藻(Eremosphaeraviridis)、独球藻sp.(Eremosphaera sp.)、椭圆藻sp.(Ellipsoidon sp.)、裸藻spp.(Euglena spp.)、伏氏藻sp.(Franceia sp.)、克罗脆杆藻(Fragilaria crotonensis)、脆杆藻sp.(Fragilaria sp.)、粘球藻sp.(Gleocapsa sp.)、丽丝藻sp.(Gloeothamnionsp.)、雨生红球藻(Haematococcus pluvialis)、膜胞藻sp.(Hymenomonas sp.)、球等鞭金藻亲近种(Isochrysis aff.galbana)、球等鞭金藻(Isochrysis galbana)、鳞孔藻属(Lepocinclis)、微星藻属(Micractinium)、微星藻属(Micractinium)、微小单针藻(Monoraphidium minutum)、单针藻sp.(Monoraphidium sp.)、微球藻sp.(Nannochlorissp.)、盐生拟微球藻(Nannochloropsis salina)、拟微球藻sp.(Nannochloropsis sp.)、适意舟形藻(Navicula acceptata)、毕氏舟形藻(Navicula biskanterae)、假卵泡舟形藻(Navicula pseudotenelloides)、薄膜舟形藻(Navicula pelliculosa)、嗜腐舟形藻(Navicula saprophila)、舟形藻sp.(Navicula sp.)、肾鞭藻sp.(Nephrochloris sp.)、肾藻sp.(Nephroselmis sp.)、普通菱形藻(Nitschia communis)、亚历山大菱形藻(Nitzschia alexandrine)、小新月菱形藻(Nitzschia closterium)、普通菱形藻(Nitschia communis)、细端菱形藻(Nitzschia dissipata)、碎片菱形藻(Nitzschiafrustulum)、汉氏菱形藻(Nitzschia hantzschiana)、平庸菱形藻(Nitzschiainconspicua)、中型菱形藻(Nitzschia intermedia)、小头菱形藻(Nitzschiamicrocephala)、微小菱形藻(Nitzschia pusilla)、微小菱形藻椭圆变种(Nitzschiapusilla elliptica)、微小菱形藻莫纳变种(Nitzschia pusilla monoensis)、四边形菱形藻(Nitzschia quadrangular)、菱形藻sp.(Nitzschia sp.)、掠鞭藻sp.(Ochromonassp.)、小卵胞藻(Oocystis parva)、极小卵胞藻(Oocystis pusilla)、卵胞藻sp.(Oocystissp.)、沼泽颤藻(Oscillatoria limnetica)、颤藻sp.(Oscillatoria sp.)、亚短颤藻(Oscillatoria subbrevis)、凯氏拟小球藻(Parachlorella kessleri)、嗜酸帕氏藻(Pascheria acidophila)、巴夫藻sp.(Pavlova sp.)、三角褐指藻(Phaeodactylumtricomutum)、噬菌体属(Phagus)、席藻属(Phormidium)、扁藻sp.(Platymonas sp.)、卡氏颗石藻(Pleurochrysis camerae)、齿状颗石藻(Pleurochrysis dentate)、颗石藻sp.(Pleurochrysis sp.)、魏氏原壁藻(Prototheca wickerhamii)、雍滞原壁藻(Protothecastagnora)、波多黎各原壁藻(Prototheca portoricensis)、桑堪形原壁藻(Protothecamoriformis)、饶氏原壁藻(Prototheca zopfii)、Pseudochlorella aquatica、塔胞藻sp.(Pyramimonas sp.)、桑堪藻属(Pyrobotrys)、混浊红球藻(Rhodococcus opacus)、囊状金藻(Sarcinoid chrysophyte)、被甲栅藻(Scenedesmus armatus)、裂壶藻属(Schizochytrium)、水绵属(Spirogyra)、钝顶螺旋藻(Spirulina platensis)、裂丝藻sp.(Stichococcus sp.)、聚球藻sp.(Synechococcus sp.)、Synechocystisf、万寿菊(Tageteserecta)、孔雀草(Tagetes patula)、四角藻(Tetraedron)、四爿藻sp.(Tetraselmis sp.)、亚心形扁藻(Tetraselmis suecica)、威氏海链藻(Thalassiosira weissflogii)和弗雷德鲜绿球藻(Viridiella fridericiana)。
可用于生产rOPN的微藻可以在陆地上,例如在池塘、沟渠中,或在封闭或部分封闭的生物反应器系统中生长。藻类也可以直接在水中生长,例如,在大洋、海、湖泊、河流、水库等中生长。藻类可以在不同体积的培养系统中生长。在一个实施方案中,藻类可以例如在小规模实验室系统中生长。小规模实验室系统是指体积小于约6升的培养物。在一个实施方案中,小规模实验室培养物可以是1升、2升、3升、4升或5升。在另一个实施方案中,小规模实验室培养物可小于1升。还在另一个实施方案中,小规模实验室培养物可以是100毫升。在一个实施方案中,培养物可以是10毫升或更少。在另一个实施方案中,培养物可以是5毫升或更少。还在另一个实施方案中,培养物可以是1毫升或更少。
或者,培养系统可以是大规模培养物,其中大规模培养物是指培养物的体积大于约6升,或大于约10升,或大于约20升。大规模生长也可以是培养物在50升或更多、100升或更多,或200升或更多容量下生长。大规模生长可以是例如池塘、容器(containers)、器皿(vessels)或其他区域中的培养物的生长,其中包含培养物的池塘、容器、器皿或区域为例如至少5平方米、至少10平方米、至少200平方米、至少500平方、至少1500平方米、至少2500平方米,或更大。
本发明还提供了在非常大规模的培养系统中生产rOPN。非常大规模的液体培养系统可以是10000至20000升。在一个实施方案中,超大规模培养系统可以是10000至40000升或10000至80000升。在另一个实施方案中,超大规模培养系统可以是10000至100000升或10000至150000升。还在另一个实施方案中,培养系统可以是10000至200000升或10000至250000升。本发明还包括10000至500000升或10000至600000升的培养系统。本发明还提供10000至1000000升的培养系统。
在本发明的一个方面,培养系统可以是天然或人工的池塘。在一个实施方案中,人工池塘可以是水沟池塘。在水沟池塘中,藻类、水和营养物环绕“水沟”循环。动力手段(诸如浆轮)为水沟中的液体提供恒定的运动,使得生物体能够以选定频率循环回到液体的表面。浆轮还提供搅拌源以给系统供氧。可以通过CO2注入系统将CO2添加到培养系统中作为进行光合作用的原料。这些水沟池塘可以封闭在例如建筑物或温室中,或者可以位于室外。在一个实施方案中,室外水沟养殖系统可以用盖子封闭或暴露于环境。
或者,生产rOPN的微藻可以生长在封闭结构(诸如生物反应器)中,其中环境受到比开放系统或半封闭系统更严格的控制。光生物反应器是结合了某种类型的光源以向反应器提供光子能量输入的生物反应器。术语生物反应器可以指与环境封闭并且不与环境直接交换气体和/或污染物的系统。生物反应器可描述为封闭的,并且在光生物反应器照射的情况下,设计用于控制液体细胞悬浮培养物的生物质产生的培养容器。生物反应器的实例包括但不限于玻璃容器、不锈钢容器、塑料管、罐、塑料套和袋。在光生物反应器的情况下,可以使用的光源的实例包括但不限于荧光灯泡、LED和自然日光。因为这些系统是封闭的,所以生物体需要生长的所有东西(例如,二氧化碳、营养物、水和光)必须被引入生物反应器中。
尽管设置和维护成本较高,但生物反应器与开放系统相比具有若干优点。例如,它们可以防止污染或使污染最小化、允许单一培养物的无外来污染的培养(即,仅由一种生物组成的培养物)、可以更好地控制培养条件(例如,pH、光、二氧化碳和温度)、防止水蒸发、降低由于放气导致的二氧化碳损失,以及允许更高的细胞浓度。另一方面,生物反应器的某些要求(诸如冷却、混合、控制氧气积聚和生物淤积),使得这些系统的建造和操作比开放系统或半封闭系统更昂贵。
可连续收获(与大多数较大体积的培养系统一样),或一次收获一批(例如,与聚乙烯袋培养一样)生产rOPN的微藻。批量收获设置好例如营养物、生物(例如微藻)和水,并使得生物能够生长直至收获该批次。通过连续收获,可以例如连续地、每天地或以固定的时间间隔收获一部分藻类物质。
可以在允许光合作用的条件下生长藻类,然而,这不是必需的(例如,生物体可以在没有光的情况下生长)。在本发明的实践中使用的藻类可以是光养的、混合营养的或异养的。光养或光合自养藻类是使用光子捕获作为能量来源并且可以固定无机碳的藻类。因此,光养藻类能够在光存在下使用无机碳作为代谢碳的来源。如本文所用,异养藻类是指不能使用光子捕获作为能源,而必须依赖于有机碳源的藻类。混合营养藻类是那些能够利用光子捕获和无机碳固定来支持生长,但在没有光的情况下可以使用有机碳作为能源的藻类。因此,混合营养藻类具有光养和异养藻类的代谢特征。在一些情况下,生物质可以从遗传修饰的生物体获得。在一些情况下,藻类可以以减小和破坏光合作用能力的方式进行遗传修饰。在微生物不能进行光合作用(天然地或由于选择)的生长条件下,将为生物体提供必要的营养物以在没有光合作用的情况下支持生长。例如,其中(或其上)生长有机体的培养基可补充有任何所需的营养物,包括有机碳源、氮源、磷源、维生素、金属、脂质、核酸、微量营养物和/或任何有机体特定的要求。有机碳源包括宿主生物能够代谢的任何碳源,包括但不限于乙酸盐、简单碳水化合物(例如葡萄糖、蔗糖、乳糖)、复合碳水化合物(例如淀粉、糖原)、蛋白质和脂类。本领域技术人员将认识到,并非所有生物体都能够充分代谢特定营养物,并且从一种生物体到另一种生物体可能需要将营养物混合物改良以提供适当的营养物混合物。
在某些情况下,可能需要在破碎藻类细胞之前减少微藻培养物中所含的液体量。微藻与液体的分离可以通过本领域普通技术人员已知的方法完成。在一个方面,可以允许微藻通过重力沉降并去除上覆的液体。在另一个方面,可以通过离心含有微藻的培养物来收获微藻。在一个方面,液体培养物的离心可以使用固定容量离心机以分批模式进行。在不同的方面,可以使用连续流动离心机完成微藻的批量收获。在另一个方面,可以通过连续流动离心从生长培养物中连续收获微藻。在其他方面,脱水可以通过过滤(例如,切向流过滤)完成。在其他方面,脱水可以通过电泳技术(诸如电解凝结和电解絮凝)完成。
在本发明的一个方面,可以通过絮凝将液体系统中生长的微藻与液体部分分离。絮凝可以通过使用合成或天然絮凝剂的化学絮凝或通过自动絮凝来完成。诱导絮凝的方法包括能在美国专利号8,969,066和美国专利公开号US 2015/0284673(申请号14/649524)中找到的方法,这些专利各自通过引用整体并入本文。可以通过重力、离心或本领域技术人员已知的其他物理方法将絮凝物与培养液分离。在特定的实施方案中,可通过溶气浮选(DAF)将絮凝物与培养液分离。
已经对本发明的方法中使用的微藻进行了遗传修饰以产生骨桥蛋白。由于藻类不天然产生骨桥蛋白,为了本发明的目的,由微藻产生的所有骨桥蛋白被认为是重组骨桥蛋白。使用本文公开的方法纯化的重组骨桥蛋白可以由从天然产生骨桥蛋白的哺乳动物种获得的核苷酸序列编码。在某些实施方案中,藻类产生的rOPN是人OPN、牛OPN、山羊OPN、绵羊OPN或骆驼科动物OPN。
编码rOPN的核苷酸序列可以是天然存在的或野生型序列,或者可以是经修饰的序列。修饰的类型包括至少一个核酸的缺失、至少一个核酸的添加,或至少一个核酸的替换。本领域技术人员将知道如何对核苷酸序列进行修饰。
可以对核苷酸序列进行的一种特定类型的修饰是密码子优化。如本领域所知,编码多核苷酸的一个或更多个密码子可以是“偏好的”或“优化的”以反映宿主生物的密码子使用。例如,编码多核苷酸的一个或更多个密码子可以是“偏好的”或“优化的”以反映叶绿体密码子使用或核密码子使用。大多数氨基酸由两种或更多种不同的密码子编码(简并性),并且公认的是,各种生物利用某些密码子优先于其他密码子。在整个说明书中,“偏好的”或密码子“优化的”可互换使用。密码子偏好可以在不同生物中(包括例如在与人类相比的藻类中)不同地倾斜。通常,选择的密码子偏好反映了用核酸转化的生物体(或其中的细胞器)的密码子使用。可以从头合成偏向于特定密码子使用的多核苷酸,或者可以使用常规重组DNA技术进行遗传修饰,例如通过定点突变方法,以改变一个或更多个密码子,使得它们偏好于叶绿体密码子使用。使用这些在叶绿体中使用的优先密码子在本文中称为“叶绿体密码子使用”。用于莱茵衣藻的叶绿体和核密码子使用的实例可以在本领域中找到,例如在美国专利申请公开号2004/0014174和国际专利公开号WO2011/063,284中,其通过引用并入本文。
通过使用表达载体实现OPN蛋白在藻类中的表达。表达载体是设计的载体,使得插入特定位点的编码序列将被转录并翻译成蛋白质。表达载体或其线性化部分可包含一种或更多种编码目的OPN的外源核苷酸序列。在某些情况中,编码rOPN的序列侧翼是两个与待转化的微藻中含有的序列具有同源性的序列。
同源序列是例如与参考核苷酸序列(例如,在宿主细胞中要插入编码rOPN的序列的位置处发现的核苷酸序列)具有至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少98%或至少99%的序列同一性的序列。同源序列使得外源序列能够重组到待转化的宿主藻类的核或质体基因组中。
在一些实施方案中,表达载体包含与可操作地连接一种或更多种控制元件(诸如启动子和/或转录终止子)的多核苷酸。当核酸序列与另一核酸序列处于功能关系时,其可操作地连接。例如,如果前序列或分泌前导序列的DNA表达为参与多肽分泌的前蛋白,则它可操作地与多肽的DNA连接;如果启动子影响序列的转录,则它与编码序列可操作地连接;或者如果核糖体结合位点被定位以便于翻译,则它与编码序列可操作地连接。通常,可操作地连接的序列是连续的,并且在分泌前导序列的情况下,是连续的并且处于阅读阶段。通过在限制酶位点连接来实现连接。如果不能获得合适的限制性位点,则可以使用本领域技术人员已知的合成寡核苷酸衔接子或接头。Sambrook et al.,Molecular Cloning,ALaboratory Manual,2nd Ed.,Cold Spring Harbor Press,(1989)and Ausubel et al.,Short Protocols in Molecular Biology,2nd Ed.,John Wiley&Sons(1992)。
如本文使用的术语,调节或控制元件广泛地指调节多核苷酸的转录或翻译或其可操作地连接的多肽的定位的核苷酸序列。实例包括但不限于RBS、启动子、增强子、转录终止子、发夹结构、RNA酶稳定性元件、起始(起始)密码子、内含子切除和维持正确的阅读框的拼接信号、终止密码子、琥珀或赭石密码子,以及IRES。调节元件可包括启动子和转录终止信号和翻译终止信号。为了引入特定的限制性位点,可以为元件提供连接子,以促进控制序列与编码rOPN的核苷酸序列的编码区的连接。另外,包含细胞区室化信号的序列(即,将多肽靶向细胞溶质、细胞核、叶绿体膜或细胞膜的序列)可以连接到编码rOPN的多核苷酸上。这些信号在本领域中是众所周知的并且已被广泛报道。
在表达载体中,目标核苷酸序列与宿主细胞识别的启动子可操作地连接以指导mRNA合成。启动子是通常位于结构基因起始密码子上游100至1000个碱基对(bp)的非翻译序列,其调节在其控制下的核酸序列的转录和翻译。启动子可以是组成型启动子或诱导型启动子。诱导型启动子是响应于环境的某些变化(例如营养素的存在与否或温度的变化)在其控制下从DNA启动增加的转录水平的启动子。相反,组成型启动子保持相对恒定的转录水平。
许多启动子在藻类中具有活性,包括对被转化的藻类是内源的启动子,以及对被转化的藻类不是内源的启动子(即来自其他藻类的启动子、来自高等植物的启动子,以及植物病毒或藻类病毒的启动子)。在藻类中有活性的外源和/或内源启动子,以及在藻类中有功能的抗生素抗性基因包括但不限于例如Curr.Microbiol.(1997)35(6):356-62(普通小球藻);Marine Biotechnol.(NY).(2002)4(l):63-73(椭圆小球藻);MoI.Gen.Genet.(1996)252(5):572-9(三角褐指藻(Phaeodactylum tricornutum));Plant MoI.Biol.(1996)31(1):1-12(团藻(Volvox carteri));Proc.Natl.Acad.Sci.U S A.(1994)91(24):11562-6(团藻);Falciatore A,Casotti R,Leblanc C,Abrescia C,Bowler C,PMID:10383998,(1999)1(3):239-251(Laboratory of Molecular Plant Biology,StazioneZoologica,Villa Comunale,1-80121Naples,Italy)(三角褐指藻和威氏海链藻);PlantPhysiol.(2002)129(1):7-12.(紫球藻sp.(Porphyridium sp.));Proc.Natl.Acad.Sci.USA,(2003)100(2):438-42.(莱茵衣藻);Proc.Natl.Acad.Sci.USA.(1990)87(3):1228-32.(莱茵衣藻);Nucleic Acids Res.(1992)20(12):2959-65;MarineBiotechnol.(NY).(2002)4(1):63-73(小球藻);Biochem.MoI.Biol.Int.(1995)36(5):1025-35(莱茵衣藻);J.Microbiol.(2005)43(4):361-5(杜氏藻);Marine Biotechnol.(NY)(1999)1(3):239-251.(海链藻和Phaedactylum);Appl.Microbiol.Biotechnol.(2002)58(2):123-37(多个种);MoI.Genet.Genomics(2004)271(1):50-9(Thermosynechococcus elongates);J.Bacteriol.(2000),182,211-215;FEMS Microbiol.Lett.(2003)221(2):155-9;Plant Physiol.(1994)105(2):635-41;Plant MoI.Biol.(1995)29(5):897-907(聚热藻PCC 7942(Synechococcus PCC 7942));Marine Pollut.Bull.(2002)45(1-12):163-7(项圈藻PCC 7120);Proc.Natl.Acad.Sci.USA.(1984)81(5):1561-5(项圈藻(多个株));Proc.Natl.Acad.Sci.U SA.(2001)98(7):4243-8(Synechocystis);MoI.Gen.Genet.(1989)216(1):175-7(多个种);MoI.Microbiol.(2002)44(6):1517-31;Plasmid(1993)30(2):90-105(Fremyella diplosiphon);Gene(1993)124:75-81(莱茵衣藻);Current Micro.(1991)22:15-20;Current Genet.(1991)19:317-322(小球藻)中描述的这些。另外的启动子可以在US专利6,027,900的表1中找到。
可以使用本领域已知的任何方法将编码rOPN的多核苷酸引入藻类细胞中。可通过多种方法将多核苷酸引入细胞中,所述方法是本领域熟知的并且部分基于特定宿主细胞选择。例如,可以使用直接基因转移方法(诸如使用粒子枪的电穿孔或微粒介导(生物射弹)转化),或“玻璃珠法”或脂质体介导的转化将多核苷酸引入细胞。
微粒介导的转化利用微粒(诸如金或钨,其通过用氯化钙、亚精胺或聚乙二醇沉淀而涂覆有所需的多核苷酸)。使用诸如BIOLISTIC PD-1000粒子枪(BioRad;Hercules CA)的装置将微粒粒子加速至高速进入细胞。使用生物射弹方法进行转化的方法是本领域熟知的(例如,如Christou,Trends in Plant Science(1996)1:423-431中所述)。用于转化藻类的示例性方法可以在国际专利申请公开号WO2011/034,863和WO2011/063,284以及Biosci.Biotechnol.Biochem.(2014)78:812-7;J.Biosci.Bioeng.(2013)115:691-4;Proc.Natl.Acad.Sci.USA(2011)108:21265-9;和Plant Physiol.(2002)129:7-12;Adv.Expl.Med.Biol.(2007)616:1-9;Molec.Biotechnol.(2005)30:185-91;Science(1988)240:1534-38;Folia Microbiol.(2000)45:496-504;Plant Physiol.(2002)129:7-12;Molec.Gen.Genetics(2000)263:404-10;.J.Biosci.Bioeng.(1999)87:307-14;Proc.Natl.Acad.Sci.USA(1990)87:2087-90;Plant Cell(1989)1:123-32;PlantBiotechnol.J.(2007)5:402-12;和J.Biotechnol.(2013)163:61-8中找到。
rOPN可以在细胞核中或在诸如叶绿体的质体中表达。当利用核转化时,可以通过使用核转化构建体修饰蛋白质用于质体靶向,其中,编码rOPN的DNA序列与能够促进编码的rOPN转运到植物质体中的任何可用的转运肽序列融合,并通过使用适当的启动子驱动表达。rOPN的靶向可以通过将编码质体(例如叶绿体)转运肽序列的DNA融合到编码rOPN的DNA的5'末端来实现。编码转运肽区域的序列可以例如从植物核编码的质体蛋白(诸如核酮糖二磷酸羧化酶的小亚基(SSU)、EPSP合酶、植物脂肪酸生物合成相关基因(包括脂肪酰基-ACP、硫酯酶、酰基载体蛋白(ACP)、硬脂酰-ACP去饱和酶、β-酮酰基-ACP合酶和酰基-ACP硫酯酶),或LHCPII基因等)获得。质体转运肽序列也可以从编码类胡萝卜素生物合成酶(诸如GGPP合成酶、八氢番茄红素合成酶和八氢番茄红素去饱和酶)的核酸序列获得。其他转运肽序列在Plant Mol.Biol.Rep.(1991)9:104;J.Biol.Chem.1989 264:17544;PlantPhysiol.(1987)84:965;Biochem.Biophys.Res.Commun.(1993)196:1414;和Science(1986)233:478中公开。另一种转运肽序列是来自衣藻(Chlamydomonas)的完整ACCase(Genbank ED096563,氨基酸1-33)的序列。有效转运至质体的转运肽的编码序列可包括特定转运肽的全部或部分编码序列,并且还可含有与特定转运肽相关的成熟蛋白质编码序列的部分。存在许多可用于将靶蛋白递送到质体中的转运肽的实例,并且只要获得递送到质体中,用于本发明的特定转运肽编码序列并不重要。质体内的蛋白水解加工然后产生成熟的rOPN。
除非转基因藻类将rOPN分泌到周围介质中,否则将需要破碎藻类的细胞结构以释放rOPN。如果rOPN产生或存储在质体中,则可能还需要破碎质体膜。本领域已知各种方法用于破碎细胞和质体膜。本领域普通技术人员可以容易地选择合适的方法或方法的组合以满足其特定环境,而无需过多的实验。
一种常规使用的称为珠打的方法涉及通过使用通常由玻璃、陶瓷或不锈钢制成的非常小的珠子进行机械破碎。在该方法中,将细胞和珠子混合在一起,并通过搅拌或摇动使混合物经受高度搅拌。当细胞和珠子碰撞时,细胞破裂,释放出细胞内的内容物。使用这种方法的优点是剪切力非常低。通过施加高剪切力也可以实现细胞裂解。施加这种力的一种方法是使用法式压力机。法式压力机使用高压迫使细胞通过狭窄的孔口。由此产生的高剪切压力导致细胞膜破裂。法式压力机通常通过气动或液压装置施加力。相关方法是使用均质器,诸如杜恩斯均质器。在该方法中,通过迫使样品在管的侧面和可能高速旋转的研棒之间产生剪切力。可以使用的破碎细胞的另一种方法是微流化器方法。在微流化器中,通过增强泵迫使细胞通过固定几何形状的微通道,这产生导致细胞膜高速率破裂的高剪切力。
使用超声处理的破碎取决于冲击波的产生。冲击波通过响应于振荡电流而快速膨胀和高频收缩的探针产生。当探针收缩时,负压使液体向上流过探针,而探针的膨胀推动液体。在20千赫的速率下,液体变成了一个微观冲击波区域。产生的冲击波非常强大,并且高效地破碎细胞膜。
可以破碎细胞的另一种方法是氮减压。在该方法中,大量氮气在高压下溶解在细胞中。接下来,压力迅速释放。减压导致氮迅速从溶液中排出,并且所产生的气泡使细胞膜破裂。
在另一个实施方案中,通过使用酸处理完成细胞裂解。在该实施方案中,将酸以约40nM至160nM的浓度添加至藻类。酸处理通常在允许细胞破裂快速发生而不损害OPN的温度下进行。在某些实施方案中,通过将细胞暴露于介于约pH3.8至约5.5或介于约pH4.3至约pH6.0之间的pH来破碎藻类细胞。在一个实施方案中,通过暴露于约5.0的pH破碎藻类细胞。温度和酸浓度的最佳组合将根据所用藻类的种类而变化。本领域普通技术人员可以常规地确定最佳条件。
对于本领域技术人员显而易见的是,待破碎的细胞通常在液体培养基中。在一些实施方案中,液体培养基将含有缓冲液以将pH维持在所需限度内。可在细胞破碎期间使用的合适缓冲液的实例包括但不限于乙酸盐缓冲液、磷酸盐缓冲液、柠檬酸盐缓冲液和tris缓冲液。
细胞破裂方法的上述实例仅用于说明目的,而不是限制性的。本领域技术人员将能够设想替代方法。对于本领域技术人员来说,显而易见的是,上述细胞破碎方法可以单独使用或以任何组合使用。
作为细胞破碎的结果,产生可溶性和不可溶性细胞部分,可溶性部分中含有rOPN。然后使用本领域已知的任何方法或方法组合分离可溶性和不可溶性部分。例如,可通过沉降、过滤、离心或这些技术的任何组合来分离不可溶性和可溶性部分。对于沉降,使含有可溶性和不可溶性部分的制剂在不搅拌的情况下静置足够的时间,使不可溶性部分沉降到底部。
如果使用过滤,可以单独使用本领域已知的任何过滤方法或与其他技术组合使用。对于本领域技术人员显而易见的是,所选择的精确过滤方法将取决于许多因素,包括但不限于待过滤材料的体积。在一个实施方案中,通过材料通过半透膜的重力流来完成过滤,其中在滤液(渗透物)中发现rOPN,在渗余物中发现细胞膜部分。在一些实施方案中,通过施加真空或正压来提高过滤速率。半透膜的构造可以是基本平坦的表面或管状。在某些实施方案中,使用切向流过滤。
对于本领域技术人员显而易见的是,选择半透膜的合适孔径是重要的。应选择孔径以使rOPN能够通过膜进入滤液,而较大分子和不可溶性物质保留在渗余物中。在各种实施方案中,半透膜的孔径使得分子量大于50kDa、大于75kDa、大于100kDA、大于250kDa、大于500kDa、大于750kDa或大于1000kDa的材料被半透膜保留。在一个实施方案中,在所公开的方法的实践中不使用超滤。为了本发明的目的,超滤定义为利用半透膜的过滤手段,其中膜保留分子量小于50kDa的材料。
在另一个实施方案中,通过离心分离可溶性和不可溶性细胞部分。与过滤一样,除了其他因素之外,所使用的精确离心方式将随待处理材料的体积而变化。在一些实施方案中,使用桌面离心机,而在其他实施方案中,可以使用地板模型离心机。在桌面或地板模型离心机的情况下,可以使用固定角度或摆动式转子。在一些实施方案中,可通过连续离心分离可溶性和不可溶性部分。用于连续离心的装置的实例包括堆叠盘和沉降式离心机。在一些实施方案中,将材料以约10000xg离心。
在一些实施方案中,可溶性和不可溶性细胞部分的分离在环境温度下完成。在其他实施方案中,可溶性和不可溶性细胞部分的分离在低于环境温度的温度下进行。在某些实施方案中,分离在约0℃至20℃、约0℃至15℃、0℃至10℃、或0℃至5℃之间进行。
在从不可溶性细胞部分分离后,通过在可溶性钙盐存在下增加可溶性部分的pH,使rOPN从可溶性细胞部分中沉淀出来。通过添加碱增加可溶性细胞部分的pH。可以在要求保护的方法的实践中使用的碱包括碱金属和碱土金属的氢氧化物,诸如氢氧化钠、氢氧化钾和氢氧化镁。在一个实施方案中,添加碱以将pH增加至介于约pH5.0至pH9.0之间。在另一个实施方案中,pH增加至介于约pH7.5至pH8.5之间。在一个特定实施方案中,可溶性部分的pH增加至约8.0的pH。
用于沉淀rOPN的可溶性钙盐的量将随所用的具体盐和存在的rOPN的量而变化。本领域技术人员可以使用常规方法容易地确定所需的钙盐浓度,但钙盐的浓度通常为约100mM至约250mM。可用于本文公开的方法的钙盐的非限制性实例包括氯化钙、柠檬酸钙、硫酸钙、氟化钙、磷酸钙、碳酸钙或其任何组合。
然后将沉淀的rOPN与流体上清液分离。可以使用本领域已知的将沉淀物与上清液分离的任何方法,包括但不限于沉降、离心和过滤。沉降和离心可以基本上如本文所述来进行,除了这种情况:在沉降和离心的情况下,沉淀和离心的沉淀物或小球被保留,而液体部分(上清液)被丢弃。在过滤的情况下,保留了渗余物而不是滤液。另外,在这种情况下,选择半透膜的孔径,使得沉淀的rOPN保持在渗余物中。
然后将保留物中的rOPN溶解在pH介于约pH4.3至约pH5.0之间的溶液中。在一些实施方案中,溶液的pH介于约pH4.7和约pH5.0之间,而在特定实施方案中,溶液的pH为约5.0。用于溶解rOPN的溶液可选地含有缓冲剂。可以使用任何有用范围介于约pH4和6之间的缓冲液。合适的缓冲剂的非限制性实例包括乙酸钠缓冲剂、柠檬酸钠缓冲剂、磷酸柠檬酸盐缓冲剂、磷酸钠缓冲剂和磷酸钾缓冲剂。
增溶溶液的pH降低引起钙沉淀。通过本领域已知的任何方法从溶解溶液中除去沉淀的钙,包括但不限于如本文所述的沉降、离心和过滤。
除去沉淀的钙后,将含有rOPN的增溶溶液施加到阴离子交换介质上。离子交换是基于其总电荷分离可电离分子的方法。在阴离子交换中,将可电离的分子置于pH大于其等电点的介质中。在这种环境中,分子将具有负电荷并且将通过静电力结合到带正电荷的阴离子交换树脂上。因为蛋白质的等电点基于其一级氨基酸序列,所以本领域技术人员可以容易地估计蛋白质的等电点,从而确定适当的条件以确保用于阴离子交换的净负电荷。例如,乳汁OPN通常具有小于4.5的等电点,因此pH大于4.5是合适的。本领域技术人员还将理解,来自不同物种或同一物种的不同组织的OPN可具有不同的等电点。通常,通过阴离子交换色谱法在介于约4.0和6.0之间的pH下进行OPN的纯化。
通常,通过使树脂与要使用的介质的pH平衡来进行离子交换。平衡后,将含有待纯化蛋白质的样品施加到树脂上,使蛋白质与树脂结合。然后洗涤树脂以除去未结合的蛋白质,然后通过改变培养基的pH以中和蛋白质的电荷来洗脱目的蛋白质。或者,使用带电荷的盐离子梯度,其中盐离子与蛋白质竞争树脂结合位点。蛋白质的洗脱可以通过线性梯度洗脱或步骤等度洗脱(step isocratic elution)进行。线性梯度洗脱通常与盐离子洗脱一起使用,并且步骤等度洗脱与pH洗脱一起使用。在一个实施方案中,通过施加200mM至400mM线性盐梯度从阴离子交换树脂上洗脱rOPN。在特定的实施方案中,梯度中使用的盐是氯化钠。
通常通过使得介质能够流过包含在柱中的树脂来进行离子交换,但是可以使用其他配置。适用于本文公开的方法的实践的柱包括但不限于重力柱、旋转柱、高压柱和中压柱。当梯度施加到树脂上时,收集洗脱材料的部分并检测rOPN的存在。以这种方式,rOPN与不需要的蛋白质分离。
所用的阴离子交换树脂可以是强阴离子交换树脂或弱阴离子交换树脂。强阴离子交换树脂的非限制性实例是Q树脂,而弱离子交换树脂的非限制性实例是DEAE阴离子交换树脂。其他合适的离子交换树脂对于本领域技术人员而言是显而易见的。
本文所述方法的应用引起从藻类培养物中生产基本上纯的rOPN制剂。在本发明的上下文中,基本上纯的是指rOPN不含来自原始来源藻类的其他污染蛋白质、核酸和其他生物材料。纯度可以通过标准方法测定,并且通常至少约20%纯的、至少约40%纯的、至少约50%纯的、至少约60%纯的、至少约70%纯的、至少约75%纯的、至少约80%纯的、至少约85%纯的、至少约90%纯的、至少约95%纯的、至少约98%纯的,或至少约99%纯的。分析可以是例如通过凝胶染色、分光光度法或末端标记评估的重量或摩尔百分比。
实施例
以下实施例旨在提供本发明的应用的说明。以下实施例不旨在完全限定或以其他方式限制要求保护的发明的范围。
实施例1、表达载体构建
通过标准DNA方法进行所有DNA操作。使用来自www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=3055.chloroplast的莱茵衣藻叶绿体密码子偏好从头合成牛骨桥蛋白基因和FAM20C基因。将牛骨桥蛋白基因连接到编码1xflag肽(DYDDDDKS)(SEQID NO:1)的序列的下游。合成的骨桥蛋白基因产物的密码子适应指数=0.972,Nc=24.6。该基因产物位于16启动子和5'UTR的下游,其对应于在莱茵衣藻叶绿体中和rbcL 3'UTR上游表达的65个不同基因。使用卡那霉素抗性基因(aphaVI)选择用重组基因转化的藻类。aphaVI基因的表达由psbD启动子和5'-UTR驱动,并置于第二rbcL3-UTR的上游。将psbH基因座的侧翼区放置在转化构建体的任一端,以使得能够在psbH基因座上游整合转基因牛骨桥蛋白基因(图1A)(ref)。一旦从选择中移除转基因藻株,两个rbcL 3'-UTR使得能够去除aphaVI选择标记。
为了与牛骨桥蛋白共表达高尔基体激酶FAM20C,在用于驱动牛骨桥蛋白转录的16s启动子的上游设计表达盒。该表达盒含有atpA基因的启动子和5'-UTR以及psbA基因的3'-UTR(图1)。FAM20C基因的密码子适应指数=0.954,NC=24.2(图1B)。
实施例2、基因整合到叶绿体基因组中的分析
筛选粒子轰击后获得的转基因藻株是否存在转基因牛骨桥蛋白基因。PCR分析用于鉴定含有牛骨桥蛋白基因的几种转基因系。在PCR中使用正向引物(5'-TACAGAATCAGCTAATGATGGTCGTGGTG-3')(SEQ ID NO:2)和反向引物(5'-GCTGAACGAATTACGTCGCCACCTTCACG-3')(SEQ ID NO:3)以检测500bp产物的存在,该产物与用牛骨桥蛋白基因转化的莱茵衣藻藻株整合。莱茵衣藻的叶绿体含有多达80个拷贝的基因组,并鉴定其中牛骨桥蛋白基因已被稳定整合的转基因藻株,进行同质筛选以确保转基因不能被宿主细胞除去。使用PCR筛选来确定每种转基因藻株的同质性水平(美国专利号8,268,553)。针对编码16srRNA基因的序列的引物(正向:5'-CCGAACTGAGGTTGGGTTTA-3'(SEQID NO:4)和反向:5'-GGGGGAGCGAATAGGATTAG-3'(SEQ ID NO:5))和位于wt(ccl690mt+)亲本藻株的基因座的引物(正向:5'-CGTCCACTAAAATTTATTTACCCGAAGGGG-3'(SEQ ID NO:6)和反向:5'-GTTAAGGCTAGCTGCTAAGTCTTCTTTTCGC-3'(SEQ ID NO:7))被用于针对整合位点的对照引物结合中。从整合位点丢失扩增子意味着莱茵衣藻的稳定转化藻株。在进行进一步分析之前,所有测试的藻株都被确定为同质的(homoplasmic)。
实施例3、转基因藻类的藻株中重组骨桥蛋白积累的分析
为了确定莱茵衣藻叶绿体是否积累牛骨桥蛋白,使用与碱性磷酸酶偶联的抗FLAG抗体的蛋白质印迹分析(图2A)。比较来自前10个表现载体转化的藻株的藻类裂解物。向每个孔中加入10微克总可溶性蛋白质,并通过聚丙烯酰胺凝胶电泳分离蛋白质。将分离的蛋白质转移到硝酸纤维素膜上。封闭膜并用抗标志抗体探测骨桥蛋白的存在。为了确定哪个产生的载体累积了最多的蛋白质,将前10个载体与先前转化成的最佳表达载体(莱茵衣藻的叶绿体直接用重组骨桥蛋白基因取代psbA基因)进行比较(图2B)。为了确定牛骨桥蛋白在转基因莱茵衣藻叶绿体中的百分比表达,使用ELISA测定法。通过ELISA测定,叶绿体可以将牛OPN积累至总可溶性蛋白质的~4.5%。根据总可溶性蛋白质,这在蛋白质表达方面增加了3倍。
实施例4、从莱茵衣藻叶绿体中纯化牛骨桥蛋白
为了纯化牛骨桥蛋白,培养20L表达bOPN基因的转基因莱茵衣藻藻株。收获细胞,随后在50mM pH5.0的NaOAc中使用冻融策略使其破裂。然后通过离心(10000×g)分离可溶性和不可溶性部分。然后将可溶性裂解物调节至pH8.0并加入氯化钙至终浓度为250mM,以使牛骨桥蛋白能够从溶液中沉淀出来。然后通过以10000xg离心将经沉淀的小球与可溶性部分分离。骨桥蛋白沉淀后,将小球重悬于50毫升pH5.0的NaOAc中,使牛骨桥蛋白溶解。然后将样品以10000×g离心以除去氯化钙。然后将溶解的骨桥蛋白施加于弱阴离子交换柱(DEAE-sepharose)。然后使用浓度为400mM的NaCl洗脱骨桥蛋白。
使用ELISA测定法测定纯化程度。测定来自每种可溶性裂解物、氯化钙小球、重悬浮的氯化钙小球和阴离子交换层析的等量(500ng)总蛋白质的bOPN。使用Bio Rad DC蛋白质测定法(Bio Rad Laboratories,Hercules,CA)测定总蛋白质。bOPN的量以总蛋白质的百分比表示,如表1所示。
表1
纯化步骤 可溶性裂解物 CaCl<sub>2</sub>小球 可溶性小球 阴离子交换
总蛋白(ng) 500 500 500 500
bOPN(ng) 17.36 97.36 143.95 407.74
纯度百分比 3.5% 19.5% 28.8% 81.6%
应该理解,已经通过说明和示例的方式详细描述了要求保护的发明,以使本领域的其他技术人员熟悉要求保护的发明、其原理和实际应用。要求保护的发明的具体制剂和方法不限于所呈现的具体实施方案的描述,而是应根据以上权利要求及其等同物来看待描述和实例。虽然上面的一些实例和描述包括关于所要求保护的发明可以起作用的方式的一些结论,但是发明人不打算受那些结论和作用的约束,而是仅将它们作为可能的解释来提出。
应进一步理解,上述具体实施方案并非旨在穷举或限制要求保护的发明,并且根据上述实例和描述,许多替代、修改和变化对于本领域普通技术人员来说是显而易见的。因此,要求保护的发明旨在涵盖落入所附权利要求范围内的所有这些替代、修改和变化。

Claims (52)

1.用于获得经纯化的重组骨桥蛋白的方法,所述方法包括:
获得表达重组骨桥蛋白(rOPN)的转基因微藻;
在具有介于4.3和8.5之间的第一pH的液体环境中破碎所述微藻细胞结构以产生可溶性和不可溶性细胞部分,其中,所述rOPN在所述可溶性部分中;
分离所述可溶性和不可溶性部分;
在可溶性钙盐存在下将所述可溶性部分的pH增加至介于5.0至9.0之间的第二pH以形成含有所述rOPH的沉淀物和上清液;
分离所述沉淀物与上清液;
在具有介于4.3和5.0之间的第三pH的液体中溶解所述rOPN;
从经溶解的rOPN中除去所述钙盐;
将经溶解的rOPN施加到阴离子交换介质上,其中,所述rOPN结合到所述阴离子交换介质;
从所述阴离子交换介质洗脱结合的rOPN;和
收集所述rOPN以获得经纯化的rOPN。
2.如权利要求1所述的方法,其中,所述rOPN在质体中表达。
3.如权利要求2所述的方法,其中,所述质体是叶绿体。
4.如权利要求1所述的方法,其中,所述rOPN是人OPN、牛OPN、山羊OPN、绵羊OPN或骆驼科OPN。
5.如权利要求4所述的方法,其中,所述rOPN是牛OPN或人OPN。
6.如权利要求5所述的方法,其中,所述rOPN是人OPN。
7.如权利要求5所述的方法,其中,所述rOPN是牛OPN。
8.如权利要求1所述的方法,其中,通过冻融、珠打、酸水解、均化、微流化、法式压榨、超声处理、酶处理或氮减压来破碎所述微藻细胞结构。
9.如权利要求1所述的方法,其中,所述第一pH介于4.3至8.5之间。
10.如权利要求9所述的方法,其中,所述第一pH介于4.3和6.0之间。
11.如权利要求10所述的方法,其中,所述第一pH值约为5.0。
12.如权利要求1所述的方法,其中,通过离心、过滤或沉降来分离所述可溶性和不可溶性部分。
13.如权利要求12所述的方法,其中,通过离心分离所述可溶性和不可溶性部分。
14.如权利要求13所述的方法,其中,以约10000xg来进行所述离心。
15.如权利要求1所述的方法,其中,所述第二pH介于6.0至8.5之间。
16.如权利要求15所述的方法,其中,所述第二pH介于7.0至8.5之间。
17.如权利要求16所述的方法,其中,所述第二pH值约为8.0。
18.如权利要求1所述的方法,其中,所述可溶性钙盐是氯化钙、柠檬酸钙、硫酸钙、氟化钙、磷酸钙或碳酸钙。
19.如权利要求18所述的方法,其中,所述可溶性钙盐是氯化钙。
20.如权利要求19所述的方法,其中,所述氯化钙以100mM至250mM存在。
21.如权利要求1所述的方法,其中,通过离心、过滤或沉降分离所述沉淀物和上清液。
22.如权利要求21所述的方法,其中,通过离心分离所述沉淀物和上清液。
23.如权利要求22所述的方法,其中,以约10000xg来进行所述离心。
24.如权利要求1所述的方法,其中,所述第三pH介于4.5和5.0之间。
25.如权利要求24所述的方法,其中,所述第三pH介于4.7和5.0之间。
26.如权利要求25所述的方法,其中,所述第三pH约为5.0。
27.如权利要求1所述的方法,其中,通过离心或过滤去除所述钙盐。
28.如权利要求27所述的方法,其中,通过离心去除所述钙盐。
29.如权利要求28所述的方法,其中,以约10000xg来进行所述离心。
30.如权利要求1所述的方法,其中,所述阴离子交换介质是弱离子交换介质。
31.如权利要求30所述的方法,其中,所述弱阴离子交换介质是DEAE。
32.如权利要求1所述的方法,其中,所述阴离子交换介质是强离子交换介质。
33.如权利要求32所述的方法,其中,所述强离子交换介质是Q树脂离子交换介质。
34.如权利要求1所述的方法,其中,所述阴离子交换介质包含在色谱柱中。
35.如权利要求1所述的方法,其中,通过用NaCl洗脱来移除所述rOPN。
36.如权利要求35所述的方法,其中,所述NaCl的浓度介于200mM至400mM。
37.如权利要求1所述的方法,其中,所述经纯化的rOPN为至少20%纯的。
38.如权利要求37所述的方法,其中,所述经纯化的rOPN至少50%纯的。
39.如权利要求38所述的方法,其中,所述经纯化的rOPN为至少90%纯的。
40.如权利要求39所述的方法,其中,所述经纯化的rOPN为至少95%纯的。
41.如权利要求40所述的方法,其中,所述经纯化的rOPN为至少98%纯的。
42.如权利要求41所述的方法,其中,所述经纯化的rOPN为至少99%纯的。
43.如权利要求1所述的方法,其中,所述液体环境进一步包括缓冲液。
44.如权利要求43所述的方法,其中,所述缓冲液是乙酸钠或柠檬酸钠。
45.如权利要求44所述的方法,其中,所述缓冲液是乙酸钠。
46.用于获得经纯化的重组骨桥蛋白的方法,所述方法包括:
获得表达重组骨桥蛋白(rOPN)的转基因微藻;
在含有5mM乙酸钠并具有约5.0的第一pH的液体环境中破碎所述藻类细胞结构以产生可溶性和不可溶性部分,其中,所述rOPN在可溶性部分中;
以10000xg离心分离所述可溶性和不可溶性部分;
在250mM氯化钙存在下将所述可溶性部分的pH增加至约8.0的第二pH以形成含有rOPN的沉淀物和上清液;
通过以10000xg离心分离所述沉淀物与上清液;
在具有约5.0的第三pH的液体中溶解所述rOPN;
通过以10000xg离心从经溶解的rOPN中除去所述氯化钙;
将经溶解的rOPN施加到DEAE阴离子交换色谱柱,其中,所述rOPN结合到DEAE阴离子交换介质;
用400mM氯化钠从所述DEAE阴离子交换介质洗脱结合的rOPN;和
收集所述rOPN以获得经纯化的rOPN。
47.如权利要求46所述的方法,其中,所述经纯化的rOPN为至少20%纯的。
48.如权利要求47所述的方法,其中,所述经纯化的rOPN为至少50%纯的。
49.如权利要求48所述的方法,其中,所述经纯化的rOPN为至少90%纯的。
50.如权利要求49所述的方法,其中,所述经纯化的rOPN为至少95%纯的。
51.如权利要求50所述的方法,其中,所述经纯化的rOPN为至少98%纯的。
52.如权利要求51所述的方法,其中,所述经纯化的rOPN为至少99%纯的。
CN201780073205.4A 2016-11-27 2017-11-16 从微藻中纯化重组骨桥蛋白的方法 Active CN109996810B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662426567P 2016-11-27 2016-11-27
US62/426,567 2016-11-27
PCT/US2017/061916 WO2018098001A1 (en) 2016-11-27 2017-11-16 Method of purification of recombinant osteopontin from microalgae

Publications (2)

Publication Number Publication Date
CN109996810A true CN109996810A (zh) 2019-07-09
CN109996810B CN109996810B (zh) 2023-08-22

Family

ID=62195395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780073205.4A Active CN109996810B (zh) 2016-11-27 2017-11-16 从微藻中纯化重组骨桥蛋白的方法

Country Status (4)

Country Link
US (1) US10954280B2 (zh)
EP (1) EP3544994A4 (zh)
CN (1) CN109996810B (zh)
WO (1) WO2018098001A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113717917A (zh) * 2021-06-30 2021-11-30 中国海洋大学 一种雨生红球藻纯种培养的联合抗生素施用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030149249A1 (en) * 2000-01-07 2003-08-07 Sorensen Esben Skipper Process for isolation of osteopontin from milk
CN1533283A (zh) * 2001-05-17 2004-09-29 Ӧ���о�ϵͳARS�ɷݹ�˾ 骨桥蛋白用于治疗和/或预防神经疾病
CN101679485A (zh) * 2007-04-24 2010-03-24 上海抗体药物国家工程研究中心有限公司 骨桥蛋白的功能表位、针对该单元的单克隆抗体及它们的应用
WO2015126992A1 (en) * 2014-02-19 2015-08-27 The Regents Of The University Of California Colostrum/milk protein compositions

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2383392A (en) 1992-07-21 1994-02-14 Immunex Corporation Process for isolating recombinant polypeptides
US6027900A (en) 1996-04-12 2000-02-22 Carnegie Institution Of Washington Methods and tools for transformation of eukaryotic algae
AU2003239182B2 (en) 2002-04-23 2008-11-06 The Scripps Research Institute Expression of polypeptides in chloroplasts, and compositions and methods for expressing same
US20070134229A1 (en) 2005-10-11 2007-06-14 Bin Tian Non-native constitutively active osteopontin
DK2162537T3 (da) 2007-06-01 2012-04-23 Sapphire Energy Inc Anvendelse af genetisk modificerede organismer til at frembringe biomasse-nedbrydende enzymer.
WO2009027284A1 (en) 2007-08-31 2009-03-05 Laboratoires Serono Sa Purification of osteopontin
EP2260105B1 (en) 2008-02-29 2016-08-17 The Trustees Of The University Of Pennsylvania Production and use of plant degrading materials
WO2009158658A2 (en) 2008-06-27 2009-12-30 Sapphire Energy, Inc. Induction of flocculation in photosynthetic organisms
EP2477478B1 (en) 2009-09-15 2016-11-30 Sapphire Energy, Inc. A system for transformation of the chloroplast genome of scenedesmus sp. and dunaliella sp.
WO2011063284A1 (en) 2009-11-19 2011-05-26 Sapphire Energy, Inc. Production of therapeutic proteins in photosynthetic organisms
EP3505632B1 (en) 2009-12-28 2022-08-03 Sanofi Vaccine Technologies, S.A.S. Production of heterologous polypeptides in microalgae, microalgal extracellular bodies, compositions, and methods of making and uses thereof
US20150284673A1 (en) 2012-12-13 2015-10-08 Sapphire Energy, Inc. Harvesting algae from water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030149249A1 (en) * 2000-01-07 2003-08-07 Sorensen Esben Skipper Process for isolation of osteopontin from milk
CN1533283A (zh) * 2001-05-17 2004-09-29 Ӧ���о�ϵͳARS�ɷݹ�˾ 骨桥蛋白用于治疗和/或预防神经疾病
CN101679485A (zh) * 2007-04-24 2010-03-24 上海抗体药物国家工程研究中心有限公司 骨桥蛋白的功能表位、针对该单元的单克隆抗体及它们的应用
WO2015126992A1 (en) * 2014-02-19 2015-08-27 The Regents Of The University Of California Colostrum/milk protein compositions
US20160369291A1 (en) * 2014-02-19 2016-12-22 The Regents Of The University Of California Colostrum/milk protein compositions

Also Published As

Publication number Publication date
CN109996810B (zh) 2023-08-22
EP3544994A1 (en) 2019-10-02
EP3544994A4 (en) 2020-06-03
US20190276508A1 (en) 2019-09-12
WO2018098001A1 (en) 2018-05-31
US10954280B2 (en) 2021-03-23

Similar Documents

Publication Publication Date Title
US9732351B2 (en) Chloroplast expressing colostrum or milk polypeptides
US10570428B2 (en) Variant thioesterases and methods of use
JP2022512979A (ja) 藻類におけるプロトポルフィリンixを過剰生成する方法、及び当該藻類由来の組成物
US20200332249A1 (en) Production of iron-complexed proteins from algae
US20130102055A1 (en) Continuous flocculation deflocculation process for efficient harvesting of microalgae from aqueous solutions
CN105873940A (zh) 具有增强的光合作用的植物及其生产方法
CN103582694A (zh) 通过双溶剂法提取极性脂质
CN103748104A (zh) 通过双溶剂法提取蛋白质
CN104651236B (zh) 一种用于提高莱茵衣藻脂肪酸含量的转基因衣藻、构建方法及其用途
CN105189740B (zh) 工程化微生物
WO2012125737A2 (en) Methods for increasing carbon fixation
CN103269579A (zh) 对病原体和寄生体的控制
US11618890B2 (en) Beta-ketoacyl-ACP synthase II variants
US10954280B2 (en) Method of purification of recombinant osteopontin from micro algae
WO2019200318A1 (en) Modified organisms for improved flavor and aroma
WO2023039419A2 (en) Systems and methods for measuring mat density of aquatic biomass
US20230037413A1 (en) Sucrose invertase variants
US9322013B2 (en) Magnetic separation of algae
WO2014074790A1 (en) Reducing concentration of contamination with electro-coagulation
US20170267984A1 (en) Chlorophyllase overproduction to enhance photosynthetic efficiency
US11352618B2 (en) Modified organisms for improved flavor and aroma
WO2023245240A1 (en) Promotion of synchronous sexual maturation and spawning in aquatic animals
EP4090735A1 (en) Beta-ketoacyl-acp synthase iv variants
CN105779296A (zh) 一种高产神经酰胺基因工程海洋球石藻株的构建方法
WO2015017445A1 (en) Fatty acid production in cell-free systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant