CN109988400A - 一种环保型可降解包装复合膜及其制备方法 - Google Patents

一种环保型可降解包装复合膜及其制备方法 Download PDF

Info

Publication number
CN109988400A
CN109988400A CN201910314106.1A CN201910314106A CN109988400A CN 109988400 A CN109988400 A CN 109988400A CN 201910314106 A CN201910314106 A CN 201910314106A CN 109988400 A CN109988400 A CN 109988400A
Authority
CN
China
Prior art keywords
parts
pbs resin
modified
starch
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910314106.1A
Other languages
English (en)
Other versions
CN109988400B (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruiliheng Ecological Technology Shenzhen Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910314106.1A priority Critical patent/CN109988400B/zh
Publication of CN109988400A publication Critical patent/CN109988400A/zh
Application granted granted Critical
Publication of CN109988400B publication Critical patent/CN109988400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种环保型可降解包装复合膜及其制备方法,该复合膜包括以下重量份的原料:改性PBS树脂120‑150份、耐热改性淀粉45‑60份、降解促进剂15‑22份、纳米火山灰12‑16份、硬脂酸钙5‑11份、纳米碳酸钙粉末3‑9份,通过粉碎混合、多层共挤流延制备得到。本发明通过选择西米淀粉、环保增塑剂、功能性填料对PBS树脂进行改性,提高了PBS树脂的力学性能和耐热性;改性后的PBS树脂与耐热改性淀粉、降解促进剂、润滑剂硬脂酸钙、纳米填料经粉碎混合、多层共挤流延拉伸得到该复合膜,经标准方法检测具有良好的拉伸强度、断裂伸长率、耐热阻燃性和光‑生物双降解性能。

Description

一种环保型可降解包装复合膜及其制备方法
技术领域
本发明涉及包装材料技术领域,具体涉及一种环保型可降解包装复合膜及其制备方法。
背景技术
复合膜是指由多种不同聚合物,采用共挤出吹塑方法、共挤出流延方法或共挤出拉伸方法复合而成的薄膜。这种薄膜作为塑料包装材料广泛应用于食品、加工肉类产品、日用品、化妆品、化工产品、农药领域,并且可以实现产品的密封软包装以及满足充气或抽真空、热成型等各种包装功能,具有在复杂环境下高阻湿、阻氧、阻油、保香等优异性能。
随着聚乙烯薄膜在组装和农膜中的广泛应用,大量塑料废弃物在环境中难以降解造成环境污染日益严重,关于可降解聚乙烯醇薄膜的研究越来越多,研究热点主要集中于光和生物双降解塑料上。目前公认的光-生物双降解机理是:日光、热、氧等引发降解促进剂、促氧剂和生物降解增敏剂的光氧化和自氧化作用,在产生能侵袭高聚物分子结构的游离基和生成多种含氧产物的同时,又导致高聚物的氧化断裂,使高聚物分子量下降到能被微生物消化的水平。
目前关于光-生物双降解复合膜的报道较少,可分为淀粉型和非淀粉型两种类型,目前采用淀粉作为生物降解助剂比较普遍,主要是将微生物敏感物质与合成树脂共混,同时向体系内引入降解促进剂,通过日光、热、氧等引发降解促进剂、促氧化剂和生物降解增敏剂,将合成树脂降解为低分子化合物,加入的微生物敏感物质被微生物降解,基质变得疏松,同时由于制品上聚集的微生物能够作用于生成的低分子化合物,使聚合物最终被土壤同化。
申请号201710048513.3的专利公开了一种聚乳酸/淀粉高阻隔复合膜及其制备方法,采用夹心结构,聚乳酸层作为外层,夹心层为淀粉纳米复合材料层,夹心层厚度占到了复合膜的50%-90%,具有良好的机械性能、生物降解性能、柔韧性、阻水性、热封性和超强的气体阻隔性能,广泛应用于生鲜农产品的包装、高油食品的包装、易氧化产品包装、垃圾袋等多个领域。但是,研究发现,存在以下问题:1、夹心层的耐热性较差,多层共挤流延的过程中,聚乳酸容易与淀粉会发生熔融情况,在150℃以上高温环境下,容易产生变性、碎化成糊精,产生焦糊气味,使复合膜质量大大降低;2、在常规的聚乙烯、聚乙烯醇薄膜制备过程中,会引入芳环来提高聚合物的拉伸强度和断裂伸长率,但是随着芳环含量的增加,聚合物结晶度下降,降解性能先上升、后下降,无法兼顾成本和薄膜的降解效果、机械性能。
发明内容
为了克服上述的技术问题,本发明的目的在于提供一种环保型可降解包装复合膜及其制备方法,通过选择西米淀粉、环保增塑剂、功能性填料对PBS树脂进行改性,提高了PBS树脂的力学性能和耐热性;改性后的PBS树脂与耐热改性淀粉、降解促进剂、润滑剂硬脂酸钙、纳米填料经粉碎混合、多层共挤流延拉伸得到该复合膜,经标准方法检测具有良好的拉伸强度、断裂伸长率、耐热阻燃性和光-生物双降解性能。
本发明的目的可以通过以下技术方案实现:
本发明提供了一种环保型可降解包装复合膜,包括以下重量份的原料:改性PBS树脂120-150份、耐热改性淀粉45-60份、降解促进剂15-22份、纳米火山灰12-16份、硬脂酸钙5-11份、纳米碳酸钙粉末3-9份;
所述改性PBS树脂包括以下重量份的原料:PBS树脂80-120份、西米淀粉35-50份、氯代棕榈油甲酯6-12份、马来酸酐接枝乙烯-1-辛烯共聚物8-16份、憎水珠光砂3-6份、沉淀二氧化硅1-3份;其中,该PBS树脂的密度为1.25g/cm3,熔点为112-116℃,热变形温度为52℃,维卡软化点为82℃;
该改性PBS树脂的制备方法包括以下步骤:
1)高速混匀:先称取PBS树脂、西米淀粉、马来酸酐接枝乙烯-1-辛烯共聚物、氯代棕榈油甲酯,40-46℃下以600-700r/min转速搅拌均匀;加入紫外辐照后的憎水珠光砂、沉淀二氧化硅,升温至54-60℃,以800-900r/min转速搅拌均匀,得到粘稠状的混合料;
2)熔融挤出:将混合料通入双螺杆挤出机中,在加工挤出温度135-142℃、模头温度112-116℃、螺杆转速60-80r/min的条件下熔融共混并挤出;
3)冷却挤出:挤出物料冷却至室温,通入塑料切粒机,得到切粒尺寸3×3mm的改性PBS树脂;其中,塑料切粒机的最大牵引速度为96m/min,胶辊直径为100×150mm,旋转刀的直径为200×200cm,旋转刀的齿数为24或26。
本发明在对环保型可降解包装复合膜的研究过程中,考虑到PBS(聚丁二酸丁二醇酯)树脂由丁二酸类似物与丁二醇类似物经缩聚反应合成,廉价易得,在没有引入芳环的条件下,结晶规整度高,降解性能稳定,容易被自然界的多种微生物或动植物体内的酶分解、代谢,最终分解为二氧化碳和水,是可完全降解的聚合物材料。但是,PBS树脂存在的严重缺陷是熔点低、机械性能差。因此,要想高效利用PBS树脂的完全降解性能,需要对其进行改性。
本发明选择西米淀粉作为PBS树脂的共混改性剂,氯代棕榈油甲酯作为环保增塑剂,憎水珠光砂作为耐水填料,沉淀二氧化硅作为耐热耐磨填料,通过高速混匀、熔融挤出、冷却挤出得到改性PBS树脂。在高速混匀步骤中,先将PBS树脂、西米淀粉、马来酸酐接枝乙烯-1-辛烯共聚物在40-46℃下搅拌均匀,此温度下PBS树脂未发生热变形,不会发生明显的反应;当温度升高到54-60℃时,超过PBS树脂的热变形温度,发生一定程度的变形,同时西米淀粉、马来酸酐接枝乙烯-1-辛烯共聚物呈现良好的力学性能和流变性能,与规整度高的PBS聚合物进行接枝改性,改善其界面亲和性,接枝后的PBS聚合物具有良好的低温韧性、断裂伸长率。憎水珠光砂、沉淀二氧化硅由于粒径较细,可能夹杂细菌,灰尘容易堵塞内部孔道,紫外光辐照后可以完全杀菌,提高内部孔道的紫外光稳定性,同时由于珠光砂、沉淀二氧化硅优良的流变性、耐热阻燃性,与PBS树脂高速搅拌后,可以填充入接枝PBS聚合物的分子层间结构内,进一步提高PBS树脂的耐热性、韧性、断裂伸长率、拉伸强度。熔融挤出步骤中,模头温度为112-116℃,加工挤出温度为135-142℃,使得未反应的PBS树脂在加工时熔化,进一步与其他原料反应后冷却挤出,提高了改性PBS树脂的纯度。高齿数、大直径的旋转刀可以对挤出物料进行高速均匀地切割,确保切粒尺寸和效率。
作为本发明进一步的方案,所述耐热改性淀粉的制备方法包括以下步骤:
1)按照重量份计,取工业级玉米淀粉160-180份,在60-65℃、真空度-20KPa的条件下干燥至含水量小于1%,加入单硬脂酸甘油酯12-18份、高分子量聚乳酸25-42份,混合均匀后进行微波辐照得到混合物料;其中,微波频率为2250±50MHz,辐照时间为30-40s;高分子量聚乳酸的分子量≥10万;
2)混合物料使用双螺杆挤出机挤出造粒,在熔融共混温度155-165℃、螺杆转速120-160r/min的条件下挤出即可。
本发明的耐热改性淀粉的制备过程中,考虑到玉米淀粉具有可再生、易降解、廉价易得的特点,但是耐热性和热稳定性差,高温下易变性、分解,甚至脱水交联、炭化;高分子量的聚乳酸具有良好的机械性能、易加工性、耐热阻燃性、相容性。采用先将工业级玉米淀粉在真空条件下干燥,再与增塑剂单硬脂酸甘油酯、少量的高分子量聚乳酸辐照杀菌混合,挤出造粒得到该耐热改性淀粉。由于单硬脂酸甘油酯的结构中含有一个亲油的长脂肪酸碳链和两个亲水的羟基,即亲水又亲油,具有良好的表面活性。该改性淀粉在遇水后能够形成稳定的水合分散体,对于提高复合薄膜的憎水性、耐水性也有所帮助。
作为本发明进一步的方案,所述高分子量聚乳酸的制备方法包括以下步骤:
1)向三颈烧瓶中加入6kg的L-乳酸、62.4g的0.75mol%的丙二酸,130℃水泵减压脱水后,加入11.4g对甲苯磺酰氯作为催化剂,升温至170℃反应15h,冷却后得到聚乳酸预聚物;
2)将聚乳酸预聚物加热熔融,加入8wt%的双酚A型环氧树脂,接入真空,搅拌至反应体系呈粘稠状,乙酸乙酯萃取后,减压浓缩即可。
本发明的高分子量聚乳酸制备过程中,采用L-乳酸与丙二酸在对甲苯磺酰氯的催化下生成预聚物,再与加工性好的双酚A型环氧树脂进行扩链,红外光谱检测是在910cm-1处具有环氧基团的特征吸收峰,说明环氧树脂发生了共聚,而且分子量测定结果达到了10万-12万之间。该方法简单易操作,高分子量聚乳酸以环氧基团封端,机械性能、可加工性显著提高。
作为本发明进一步的方案,所述降解促进剂为Biofiller828光氧化-生物双降解促进剂。
Biofiller828光氧化-生物双降解促进剂的外观为浓缩塑料母粒,不包含有毒重金属,对环境友好,添加到聚合物中与聚合物一起制备而成的复合材料,既能发生光氧化降解又能生物降解,而且可以起到修复土壤和堆肥的效果,制备成复合膜后可以起到阻燃和隔绝氧气的作用。
本发明还提供了一种环保型可降解包装复合膜的制备方法,包括以下步骤:
(1)粉碎混合:将改性PBS树脂、耐热改性淀粉、降解促进剂于40-50℃混合均匀,粉碎过筛得到粒径40-60目的粉末,再加入硬脂酸钙、纳米火山灰、纳米碳酸钙粉末,一起投入高速混合机中,在1600-1800r/min转速下混合均匀,得到复合膜料;
(2)多层共挤流延:将复合膜料使用挤出机和ABA型挤出流延模具制备3-5层复合膜,再采用三辊压光机进行拉伸处理即可,其中,挤出机的挤出温度为155-165℃,挤出流延模具的温度为170-180℃。
本发明的环保型可降解包装复合膜的制备方法,先将PBS树脂、改性淀粉、降解促进剂混合后,粉碎过筛,再与增塑润滑剂硬脂酸钙,阻燃增强填料纳米火山灰和纳米碳酸钙粉末混合后得到复合膜料,再使用多层共挤流延、拉伸处理得到多层复合膜,经过大量实验筛选出155-165℃的挤出温度,170-180℃的挤出流延模具温度,制备得到的复合膜经标准方法检测具有良好的拉伸强度、断裂伸长率、耐热阻燃性和光-生物双降解性能。
本发明的有益效果:
1、本发明的环保型可降解包装复合膜及其制备方法,通过选择西米淀粉、环保增塑剂、功能性填料对PBS树脂进行改性,提高了PBS树脂的力学性能和耐热性;改性后的PBS树脂与耐热改性淀粉、降解促进剂、润滑剂硬脂酸钙、纳米填料经粉碎混合、多层共挤流延拉伸得到该复合膜,经标准方法检测具有良好的拉伸强度、断裂伸长率、耐热阻燃性和光-生物双降解性能。
2、改性PBS树脂的制备过程,在高速混匀步骤中,先将PBS树脂、西米淀粉、马来酸酐接枝乙烯-1-辛烯共聚物在40-46℃下搅拌均匀,此温度下PBS树脂未发生热变形,不会发生明显的反应;当温度升高到54-60℃时,超过PBS树脂的热变形温度,发生一定程度的变形,同时西米淀粉、马来酸酐接枝乙烯-1-辛烯共聚物呈现良好的力学性能和流变性能,与规整度高的PBS聚合物进行接枝改性,改善其界面亲和性,接枝后的PBS聚合物具有良好的低温韧性、断裂伸长率;熔融挤出步骤中,模头温度为112-116℃,加工挤出温度为135-142℃,使得未反应的PBS树脂在加工时熔化,进一步与其他原料反应后冷却挤出,提高了改性PBS树脂的纯度。
3、耐热改性淀粉的制备过程中,采用先将工业级玉米淀粉在真空条件下干燥,再与增塑剂单硬脂酸甘油酯、少量的高分子量聚乳酸辐照杀菌混合,挤出造粒得到该耐热改性淀粉。由于单硬脂酸甘油酯的结构中含有一个亲油的长脂肪酸碳链和两个亲水的羟基,即亲水又亲油,具有良好的表面活性,使得玉米淀粉、高分子量聚乳酸的相容性提高,混合挤出后具有良好的耐热稳定性,且力学性能、机械性能显著提高;该改性淀粉在遇水后能够形成稳定的水合分散体,对于提高复合薄膜的憎水性、耐水性也有所帮助。
4、高分子量聚乳酸制备过程中,采用L-乳酸与丙二酸在对甲苯磺酰氯的催化下生成预聚物,再与加工性好的双酚A型环氧树脂进行扩链,红外光谱检测是在910cm-1处具有环氧基团的特征吸收峰,说明环氧树脂发生了共聚,而且分子量测定结果达到了10万-12万之间。该方法简单易操作,高分子量聚乳酸以环氧基团封端,机械性能、可加工性显著提高。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
本实施例的一种环保型可降解包装复合膜,包括以下重量份的原料:改性PBS树脂145份、耐热改性淀粉53份、Biofiller828光氧化-生物双降解促进剂18份、纳米火山灰14份、硬脂酸钙8份、纳米碳酸钙粉末7份;
其中,改性PBS树脂包括以下重量份的原料:PBS树脂103份、西米淀粉46份、氯代棕榈油甲酯9份、马来酸酐接枝乙烯-1-辛烯共聚物11份、憎水珠光砂4份、沉淀二氧化硅1.6份;其中,该PBS树脂的密度为1.25g/cm3,熔点为112-116℃,热变形温度为52℃,维卡软化点为82℃;该改性PBS树脂的制备方法包括以下步骤:
1)高速混匀:先称取PBS树脂、西米淀粉、马来酸酐接枝乙烯-1-辛烯共聚物、氯代棕榈油甲酯,40-46℃下以600-700r/min转速搅拌均匀;加入紫外辐照后的憎水珠光砂、沉淀二氧化硅,升温至54-60℃,以800-900r/min转速搅拌均匀,得到粘稠状的混合料;
2)熔融挤出:将混合料通入双螺杆挤出机中,在加工挤出温度135-142℃、模头温度112-116℃、螺杆转速60-80r/min的条件下熔融共混并挤出;
3)冷却挤出:挤出物料冷却至室温,通入塑料切粒机,得到切粒尺寸3×3mm的改性PBS树脂;其中,塑料切粒机的最大牵引速度为96m/min,胶辊直径为100×150mm,旋转刀的直径为200×200cm,旋转刀的齿数为24或26。
所述耐热改性淀粉的制备方法包括以下步骤:
1)按照重量份计,取工业级玉米淀粉160-180份,在60-65℃、真空度-20KPa的条件下干燥至含水量小于1%,加入单硬脂酸甘油酯12-18份、高分子量聚乳酸25-42份,混合均匀后进行微波辐照得到混合物料;其中,微波频率为2250±50MHz,辐照时间为30-40s;高分子量聚乳酸的分子量≥10万;
2)混合物料使用双螺杆挤出机挤出造粒,在熔融共混温度155-165℃、螺杆转速120-160r/min的条件下挤出即可。
所述高分子量聚乳酸的制备方法包括以下步骤:
1)向三颈烧瓶中加入6kg的L-乳酸、62.4g的0.75mol%的丙二酸,130℃水泵减压脱水后,加入11.4g对甲苯磺酰氯作为催化剂,升温至170℃反应15h,冷却后得到聚乳酸预聚物;
2)将聚乳酸预聚物加热熔融,加入8wt%的双酚A型环氧树脂,接入真空,搅拌至反应体系呈粘稠状,乙酸乙酯萃取后,减压浓缩即可。
本实施例环保型可降解包装复合膜的制备方法,包括以下步骤:
(1)粉碎混合:将改性PBS树脂、耐热改性淀粉、降解促进剂于46℃混合均匀,粉碎过筛得到粒径40-60目的粉末,再加入硬脂酸钙、纳米火山灰、纳米碳酸钙粉末,一起投入高速混合机中,在1700r/min转速下混合均匀,得到复合膜料;
(2)多层共挤流延:将复合膜料使用挤出机和ABA型挤出流延模具制备5层复合膜,再采用三辊压光机进行拉伸处理即可,其中,挤出机的挤出温度为163℃,挤出流延模具的温度为175℃。
实施例2
本实施例的一种环保型可降解包装复合膜,包括以下重量份的原料:改性PBS树脂145份、耐热改性淀粉53份、Biofiller828光氧化-生物双降解促进剂19份、纳米火山灰15份、硬脂酸钙10份、纳米碳酸钙粉末8份;
其中,改性PBS树脂包括以下重量份的原料:PBS树脂115份、西米淀粉46份、氯代棕榈油甲酯10份、马来酸酐接枝乙烯-1-辛烯共聚物13份、憎水珠光砂5份、沉淀二氧化硅2.5份;其中,该PBS树脂的密度为1.25g/cm3,熔点为112-116℃,热变形温度为52℃,维卡软化点为82℃;该改性PBS树脂的制备方法与实施例1相同。
所述耐热改性淀粉的制备方法与实施例1相同。
所述高分子量聚乳酸的制备方法与实施例1相同。
本实施例环保型可降解包装复合膜的制备方法,包括以下步骤:
(1)粉碎混合:将改性PBS树脂、耐热改性淀粉、降解促进剂于48℃混合均匀,粉碎过筛得到粒径40-60目的粉末,再加入硬脂酸钙、纳米火山灰、纳米碳酸钙粉末,一起投入高速混合机中,在1680r/min转速下混合均匀,得到复合膜料;
(2)多层共挤流延:将复合膜料使用挤出机和ABA型挤出流延模具制备5层复合膜,再采用三辊压光机进行拉伸处理即可,其中,挤出机的挤出温度为164℃,挤出流延模具的温度为178℃。
实施例3
本实施例的一种环保型可降解包装复合膜,包括以下重量份的原料:改性PBS树脂127份、耐热改性淀粉56份、Biofiller828光氧化-生物双降解促进剂20份、纳米火山灰16份、硬脂酸钙10份、纳米碳酸钙粉末8份;
其中,改性PBS树脂包括以下重量份的原料:PBS树脂113份、西米淀粉42份、氯代棕榈油甲酯10份、马来酸酐接枝乙烯-1-辛烯共聚物13份、憎水珠光砂6份、沉淀二氧化硅2.5份;其中,该PBS树脂的密度为1.25g/cm3,熔点为112-116℃,热变形温度为52℃,维卡软化点为82℃;该改性PBS树脂的制备方法与实施例1相同。
所述耐热改性淀粉的制备方法与实施例1相同。
所述高分子量聚乳酸的制备方法与实施例1相同。
本实施例环保型可降解包装复合膜的制备方法,包括以下步骤:
(1)粉碎混合:将改性PBS树脂、耐热改性淀粉、降解促进剂于50℃混合均匀,粉碎过筛得到粒径40-60目的粉末,再加入硬脂酸钙、纳米火山灰、纳米碳酸钙粉末,一起投入高速混合机中,在1800r/min转速下混合均匀,得到复合膜料;
(2)多层共挤流延:将复合膜料使用挤出机和ABA型挤出流延模具制备5层复合膜,再采用三辊压光机进行拉伸处理即可,其中,挤出机的挤出温度为165℃,挤出流延模具的温度为178℃。
对比例1
本对比例与实施例1相比,区别在于,将改性PBS树脂替换为PBS树脂,参与该可降解包装复合膜的制备。
对比例2
本对比例与实施例1相比,区别在于,将耐热改性淀粉替换为工业级玉米淀粉,参与该可降解包装复合膜的制备。
对比例3
本对比例与实施例1相比,区别在于,未添加降解促进剂。
对比例4
参照申请号201710048513.3的专利中实施例1制备的聚乳酸/淀粉高阻隔复合膜。
力学、耐热性能测试
参照GB/T 10004-2008《包装用塑料复合膜、袋干法复合、挤出复合》标准对实施例1-3、对比例1-4制备的复合膜进行了抗拉伸强度、断裂伸长率、耐高温性进行了测试。其中,耐高温性为复合膜经耐高温介质性试验后,无分层、破损、明显变形的最高温度。具体测试结果见表1。
表1.复合膜力学、耐热性能测试
从上表可以看出,本发明实施例的复合膜在力学性能如抗拉伸强度、断裂伸长率方面优于对比例,耐高温性方面优于对比例。对比例1由于将改性PBS树脂替换为PBS树脂,西米淀粉无法与PBS树脂进行接枝,无法改善其界面亲和性,使得低温韧性、断裂伸长率等力学性能下降明显。对比例2由于将耐热改性淀粉替换为工业级玉米淀粉,无法达到玉米淀粉、高分子量聚乳酸的相容性提高,混合挤出具有良好的耐热稳定性,且力学性能、机械性能显著提高的效果,使得抗拉伸强度、断裂伸长率、耐高温性下降。
光降解性能测试
将实施例1-3、对比例1-4制备的复合膜在室温下平衡后称量,置于紫外光照箱中进行紫外光照射,与紫外灯的直线距离保持在15-20cm,控制箱内温度为40±2℃,每隔1h翻一下复合膜,并计算光照240h后的失重率。具体测试结果见表2。
失重率=(光照前质量-光照后质量)/光照前质量×100%
表2.光降解性能测试结果
从上表可以看出,本发明实施例的复合膜在紫外光照后失重率高,说明实施例的复合膜光降解性能好。对比例3没有添加降解促进剂,无法与聚合物生成既能发生光氧化降解又能生物降解的复合膜,而且阻燃和氧气隔绝作用下降。
生物降解性能测试
将实施例1-3、对比例1-4制备的复合膜掩埋于盛有pH值6-7土壤的恒湿密闭容器中,分别隔10天、20天、30天后取出,去离子水清洗烘干后置于室温平衡24h后称量,计算降解率。具体测试结果见表3。
降解率=(降解前质量-降解后质量)/降解前质量×100%
表3.生物降解性能测试结果
项目 10天降解率/% 20天降解率/% 30天降解率/%
实施例1 5.9 13.7 25.6
实施例2 5.4 12.9 24.2
实施例3 5.5 13.4 24.9
对比例1 4.5 10.8 19.7
对比例2 3.0 8.7 16.4
对比例3 1.8 7.2 12.2
对比例4 4.2 10.1 18.3
从上表可以看出,本发明实施例的复合膜在10天、20天、30天的生物降解率以及降解增长率均高于对比例,说明实施例的复合膜生物降解性能好。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上内容仅仅是对本发明所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (5)

1.一种环保型可降解包装复合膜,其特征在于,包括以下重量份的原料:改性PBS树脂120-150份、耐热改性淀粉45-60份、降解促进剂15-22份、纳米火山灰12-16份、硬脂酸钙5-11份、纳米碳酸钙粉末3-9份;
所述改性PBS树脂包括以下重量份的原料:PBS树脂80-120份、西米淀粉35-50份、氯代棕榈油甲酯6-12份、马来酸酐接枝乙烯-1-辛烯共聚物8-16份、憎水珠光砂3-6份、沉淀二氧化硅1-3份;其中,该PBS树脂的密度为1.25g/cm3,熔点为112-116℃,热变形温度为52℃,维卡软化点为82℃;
该改性PBS树脂的制备方法包括以下步骤:
1)高速混匀:先称取PBS树脂、西米淀粉、马来酸酐接枝乙烯-1-辛烯共聚物、氯代棕榈油甲酯,40-46℃下以600-700r/min转速搅拌均匀;加入紫外辐照后的憎水珠光砂、沉淀二氧化硅,升温至54-60℃,以800-900r/min转速搅拌均匀,得到粘稠状的混合料;
2)熔融挤出:将混合料通入双螺杆挤出机中,在加工挤出温度135-142℃、模头温度112-116℃、螺杆转速60-80r/min的条件下熔融共混并挤出;
3)冷却挤出:挤出物料冷却至室温,通入塑料切粒机,得到切粒尺寸3×3mm的改性PBS树脂;其中,塑料切粒机的最大牵引速度为96m/min,胶辊直径为100×150mm,旋转刀的直径为200×200cm,旋转刀的齿数为24或26。
2.根据权利要求1所述的环保型可降解包装复合膜,其特征在于,所述耐热改性淀粉的制备方法包括以下步骤:
1)按照重量份计,取工业级玉米淀粉160-180份,在60-65℃、真空度-20KPa的条件下干燥至含水量小于1%,加入单硬脂酸甘油酯12-18份、高分子量聚乳酸25-42份,混合均匀后进行微波辐照得到混合物料;其中,微波频率为2250±50MHz,辐照时间为30-40s;高分子量聚乳酸的分子量≥10万;
2)混合物料使用双螺杆挤出机挤出造粒,在熔融共混温度155-165℃、螺杆转速120-160r/min的条件下挤出即可。
3.根据权利要求2所述的环保型可降解包装复合膜,其特征在于,所述高分子量聚乳酸的制备方法包括以下步骤:
1)向三颈烧瓶中加入6kg的L-乳酸、62.4g的0.75mol%的丙二酸,130℃水泵减压脱水后,加入11.4g对甲苯磺酰氯作为催化剂,升温至170℃反应15h,冷却后得到聚乳酸预聚物;
2)将聚乳酸预聚物加热熔融,加入8wt%的双酚A型环氧树脂,接入真空,搅拌至反应体系呈粘稠状,乙酸乙酯萃取后,减压浓缩即可。
4.根据权利要求1所述的环保型可降解包装复合膜,其特征在于,所述降解促进剂为Biofiller828光氧化-生物双降解促进剂。
5.一种环保型可降解包装复合膜的制备方法,其特征在于,包括以下步骤:
(1)粉碎混合:将改性PBS树脂、耐热改性淀粉、降解促进剂于40-50℃混合均匀,粉碎过筛得到粒径40-60目的粉末,再加入硬脂酸钙、纳米火山灰、纳米碳酸钙粉末,一起投入高速混合机中,在1600-1800r/min转速下混合均匀,得到复合膜料;
(2)多层共挤流延:将复合膜料使用挤出机和ABA型挤出流延模具制备5层复合膜,再采用三辊压光机进行拉伸处理即可,其中,挤出机的挤出温度为155-165℃,挤出流延模具的温度为170-180℃。
CN201910314106.1A 2019-04-18 2019-04-18 一种环保型可降解包装复合膜及其制备方法 Active CN109988400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910314106.1A CN109988400B (zh) 2019-04-18 2019-04-18 一种环保型可降解包装复合膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910314106.1A CN109988400B (zh) 2019-04-18 2019-04-18 一种环保型可降解包装复合膜及其制备方法

Publications (2)

Publication Number Publication Date
CN109988400A true CN109988400A (zh) 2019-07-09
CN109988400B CN109988400B (zh) 2021-05-14

Family

ID=67134061

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910314106.1A Active CN109988400B (zh) 2019-04-18 2019-04-18 一种环保型可降解包装复合膜及其制备方法

Country Status (1)

Country Link
CN (1) CN109988400B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321832A (zh) * 2021-06-28 2021-08-31 安徽顺彤包装材料有限公司 一种环保可降解塑料包装膜及其制备方法
CN114702802A (zh) * 2022-04-25 2022-07-05 上海大觉包装制品有限公司 一种降解杯盖及其制备方法
CN115847943A (zh) * 2022-11-29 2023-03-28 晋江市柒源包装印刷有限公司 一种可降解包装膜及其制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850862A (en) * 1972-07-28 1974-11-26 Union Carbide Corp Blends of a biodegradable thermoplastic dialkanoyl polymer and a naturally occurring biodegradable product
US20110311743A1 (en) * 2008-12-26 2011-12-22 Mitsubishi Chemical Corporation Resin composition, film, bag product and production process of resin composition
US20130029124A1 (en) * 2011-07-29 2013-01-31 Basf Se Biodegradable polyester foil
CN104479305A (zh) * 2014-12-10 2015-04-01 金发科技股份有限公司 一种全生物降解复合材料及其制备方法和应用
CN105885368A (zh) * 2014-12-12 2016-08-24 允友成(宿迁)复合新材料有限公司 一种高耐热型聚乳酸/热塑性淀粉复合材料及其制备方法
CN108821651A (zh) * 2018-07-19 2018-11-16 张建 一种隔音隔热材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850862A (en) * 1972-07-28 1974-11-26 Union Carbide Corp Blends of a biodegradable thermoplastic dialkanoyl polymer and a naturally occurring biodegradable product
US20110311743A1 (en) * 2008-12-26 2011-12-22 Mitsubishi Chemical Corporation Resin composition, film, bag product and production process of resin composition
US20130029124A1 (en) * 2011-07-29 2013-01-31 Basf Se Biodegradable polyester foil
CN104479305A (zh) * 2014-12-10 2015-04-01 金发科技股份有限公司 一种全生物降解复合材料及其制备方法和应用
CN105885368A (zh) * 2014-12-12 2016-08-24 允友成(宿迁)复合新材料有限公司 一种高耐热型聚乳酸/热塑性淀粉复合材料及其制备方法
CN108821651A (zh) * 2018-07-19 2018-11-16 张建 一种隔音隔热材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐红: "高分子量L型聚乳酸的合成与表征", 《上海大学学报(自然科学版)》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321832A (zh) * 2021-06-28 2021-08-31 安徽顺彤包装材料有限公司 一种环保可降解塑料包装膜及其制备方法
CN114702802A (zh) * 2022-04-25 2022-07-05 上海大觉包装制品有限公司 一种降解杯盖及其制备方法
CN114702802B (zh) * 2022-04-25 2024-02-27 上海大觉包装制品有限公司 一种降解杯盖及其制备方法
CN115847943A (zh) * 2022-11-29 2023-03-28 晋江市柒源包装印刷有限公司 一种可降解包装膜及其制备工艺

Also Published As

Publication number Publication date
CN109988400B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
CN106221165B (zh) 一种高阻隔的全生物降解地膜及其制备方法
US5449708A (en) Biodegradable starch-based polymer compositions
CN103992517B (zh) 一种可连续化生产全降解淀粉基塑料合金及其制备方法
CN101781467B (zh) 生物质合成塑料制品及其制备方法
US8389614B2 (en) Biodegradable nanopolymer compositions and biodegradable articles made thereof
CN113861635A (zh) 一种淀粉改性pbat/pla生物降解塑料薄膜及其制备方法
JP7431326B2 (ja) 生分解性樹脂組成物及びその製造方法
CN113801350A (zh) 一种碳酸钙填充pbat/pla生物降解塑料薄膜及其制备方法
CN1037515C (zh) 一种可生物降解的含淀粉的高分子组合物及其制备方法
CN107835829A (zh) 包含高浓度生物实体的母料组合物
CN109988400A (zh) 一种环保型可降解包装复合膜及其制备方法
CN102875853A (zh) 一种可降解塑料及其制备方法
JP2003073539A (ja) 高強度生分解性樹脂組成物及び成形品
CN1039648C (zh) 可得自含变构淀粉和热塑性聚合物的熔体的聚合物组合物
CN107304285A (zh) 一种聚酯改性材料及其膜制品的制备方法
CN106700460A (zh) 一种木质素改性pcl生物降解塑料及其制备方法
CN101045801A (zh) 一种全生物降解塑料及其生产方法
CN115593061A (zh) 一种高阻隔性生物降解复合膜及其制备工艺
CN107987322A (zh) 一种生物可降解地膜的制备方法
CN104945870A (zh) 一种可完全生物降解的改性聚乳酸吹膜级树脂及其制备方法
KR102579310B1 (ko) 폴리비닐알코올을 포함하는 생분해성 수지 조성물 및 그 제조방법
EP4071211A1 (en) Biodegradable resin composition and method for producing same
CN113462132A (zh) 一种可生物降解复合材料及其制备方法和可生物降解透气膜
CN112500600B (zh) 一种自清洁抗菌可降解日化瓶及其制备方法
CN114836012B (zh) 一种完全生物降解垃圾袋薄膜材料及垃圾袋薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210425

Address after: 2 / F, Anbo Lijing garden, 6012 Shennan Avenue, Meiling community, Lianhua street, Futian District, Shenzhen, Guangdong 518000

Applicant after: Ruiliheng ecological technology (Shenzhen) Co.,Ltd.

Address before: 317000 Huanya Plastic Film Factory, 639 Dongfang Avenue, Dayang Street, Linhai City, Taizhou City, Zhejiang Province

Applicant before: Gu Shuiying

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant